Browse > Article
http://dx.doi.org/10.4134/JKMS.2005.42.3.529

WEYL@S THEOREMS FOR POSINORMAL OPERATORS  

DUGGAL BHAGWATI PRASHAD (5 Tudor Court, Amherst Roda London W13 8NE England)
KUBRUSLY CARLOS (Catholic University of Rio de Janeiro)
Publication Information
Journal of the Korean Mathematical Society / v.42, no.3, 2005 , pp. 529-541 More about this Journal
Abstract
An operator T belonging to the algebra B(H) of bounded linear transformations on a Hilbert H into itself is said to be posinormal if there exists a positive operator $P{\in}B(H)$ such that $TT^*\;=\;T^*PT$. A posinormal operator T is said to be conditionally totally posinormal (resp., totally posinormal), shortened to $T{\in}CTP(resp.,\;T{\in}TP)$, if to each complex number, $\lambda$ there corresponds a positive operator $P_\lambda$ such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P_{\lambda}^{\frac{1}{2}}(T-{\lambda}I)|^{2}$ (resp., if there exists a positive operator P such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P^{\frac{1}{2}}(T-{\lambda}I)|^{2}\;for\;all\;\lambda)$. This paper proves Weyl's theorem type results for TP and CTP operators. If $A\;{\in}\;TP$, if $B^*\;{\in}\;CTP$ is isoloid and if $d_{AB}\;{\in}\;B(B(H))$ denotes either of the elementary operators $\delta_{AB}(X)\;=\;AX\;-\;XB\;and\;\Delta_{AB}(X)\;=\;AXB\;-\;X$, then it is proved that $d_{AB}$ satisfies Weyl's theorem and $d^{\ast}_{AB}\;satisfies\;\alpha-Weyl theorem.
Keywords
Weyl's theorems; single valued extension property; posinormal operators;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 P. Aiena and F. Villafane, Weyl's theorem of some classes of operators, Extracta Math.(in press)
2 P. Aiena and O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged) 67 (2001), 461-477
3 P. Aiena and M. Mbekhta, Characterization of some classes of operators by means of the Kato decomposition, Boll. Unione. Mat. Ital. 10-A(1966), 609-621
4 S. R. Caradus, W. E. Pfaffenberger and Y. Bertram, Calkin Algebras and Algebras of operators on Banach Spaces, Marcel Dekker, New York, 1974
5 I. Colojoara and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968
6 R. E. Curto and Y. M. Han, Weyl's theorem, a-Weyl's theorem and local spectral theory, J. London Math. Soc. 67 (2003), 499-509   DOI
7 B. P. Duggal, A remark on generalized Putnam-Fuglede theorems, Proc. Amer. Math. Soc. 129 (2000), 83-87   DOI   ScienceOn
8 B. P. Duggal, Weyl's theorem for a generalized derivation and an elementary operator, Mat. Vesnik 54 (2002), 71-81
9 B. P. Duggal, S. V. Djordjvic, and C. S. Kubrusly, Kato type operators and Weyl's theorem, J. Math. Anal. Appl.(in press)
10 M. R. Embry and M. Rosenblum, Spectra, tensor products and linear operator equations, Pacific J. Math. 53 (1974), 95-107   DOI
11 J. Eschmeier and M. Putinar, Bishop's condition ($\beta$) and rich extensions of linear operators, Indiana Univ. Math. J. 37 (1988), 325-347   DOI
12 W. H. Lee and W. Y. Lee, A spectral mapping theorem for the Weyl spectrum, Glasg. Math. J. 38 (1996), 61-64   DOI
13 K. B. Laursen and M. N. Neumann, Introduction to local spectral theory, Clarendon Press, Oxford, 2000
14 M. Mbekhta, Generalisation de la decomposition de Kato aux operateurs paranormaux et spectraux, Glasg. Math. J. 29 (1987), 159-175   DOI
15 M. Oudghiri, Weyl's and Browder's theorem for operators satisfying the SVEP, Studia Math. 163 (2004), 85-101   DOI
16 R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), 2115-2124   DOI   ScienceOn
17 H. G. Heuser, Functional Analysis, John Wiley and Sons, 1982
18 In Ho Jeon, Se Hee Kim, Eungil Ko, and Ji Eum Park, On positive-normal operators, Bull. Korean Math. Soc. 39 (2002), 33-41   DOI   ScienceOn
19 T. Kato, Perturbation theory for nullity, defiency and other quantities of linear operators, J. Math. Anal. 6 (1958), 261-322   DOI
20 M. Radjabalipour, An extension of Putnam-Fuglede theorem for hyponormal operators, Math. Z. 194 (1987), 117-120   DOI
21 V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919
22 H.'C. Rhaly Jr., Posinormal operators, J. Math. Soc. Japan 46 (1994), 587-605   DOI