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ISOLATION NUMBERS OF INTEGER MATRICES AND

THEIR PRESERVERS

LeRoy B. Beasley, Kyung-Tae Kang, and Seok-Zun Song

Abstract. Let A be an m × n matrix over nonnegative integers. The

isolation number of A is the maximum number of isolated entries in A. We
investigate linear operators that preserve the isolation number of matrices

over nonnegative integers. We obtain that T is a linear operator that
strongly preserve isolation number k for 1 ≤ k ≤ min{m,n} if and only

if T is a (P,Q)-operator, that is, for fixed permutation matrices P and

Q, T (A) = PAQ or, m = n and T (A) = PAtQ for any m× n matrix A,
where At is the transpose of A.

1. Introduction

A semiring is a set S equipped with two binary operations + and · such that
(S,+) is a commutative monoid with identity element 0 and (S, ·) is a monoid
with identity element 1. In addition, the operations + and · are connected by
distributivity and 0 annihilates S.

A semiring S is called antinegative if 0 is the only element to have an additive
inverse. The following are some examples of antinegative semirings which occur
in combinatorics. Let B = {0, 1}. Then (B,+, ·) is an antinegative semiring
(the binary Boolean semiring) if arithmetic in B follows the usual rules except
that 1 + 1 = 1. If F is the real interval [0, 1], then (F,+, ·) = (F,max,min) is
an antinegative semiring (the fuzzy semiring). Any nonnegative subsemiring of
the real numbers, such as the nonnegative integers, is an antinegative semiring.

Let Z+ be the semiring of nonnegative integers. There are many papers
on linear operators on a matrix space that preserve matrix functions over an
algebraic structure; see ([5], [11] and [14]). Integer matrices also have been the
subject of research by many authors ([3], [14]).

Finding the factor rank of a Boolean (0, 1)-matrix is an NP-complete prob-
lem ([13]), and consequently finding bounds on the factor rank of a (0, 1)-matrix
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is of interest to those researchers that would use factor rank in their work. If the
(0, 1)-matrix is the reduced adjacency matrix of a bipartite graph, the isolation
number of the matrix is the maximum size of a non-competitive matching in
the bipartite graph. This is related to the study of such combinatorial problems
as the patient-hospital problem, the stable marriage problem, etc. ([4], [9]). An
additional reason for studying the isolation number is that it is a lower bound
on the factor rank of a Boolean (0, 1)-matrix ([1], [10]).

Terms not specifically defined here can be found in Brualdi and Ryser [8]
for matrix terms, or Bondy and Murty [7] for graph theoretic terms.

Beasley and Pullman ([3]) introduced factor rank of a matrix inMm,n(Z+)
and compared it with Boolean rank of its support. Gregory et al. ([10]) intro-
duced set of isolated entries and compared Boolean rank with biclique covering
number. Beasley ([1]) introduced isolation number of (0,1)-matrix and com-
pared it with Boolean rank.

In this article, we consider the isolation number of a matrix over Z+ and
characterize the linear operators that preserve sets defined by the isolation
number.

2. Preliminaries

LetMm,n(Z+) be the set of all m× n matrices with entries in the semiring
Z+. The usual definitions for adding and multiplying matrices apply to integer
matrices as well. The matrix A(m,n) denotes a matrix in Mm,n(Z+), In is the

n×n identity matrix, O(m,n) is the m×n zero matrix, and J (m,n) is the m×n
matrix all of whose entries are 1. Let E

(m,n)
i,j be the m×n matrix whose (i, j)th

entry is 1 and whose other entries are all 0. We call E
(m,n)
i,j a cell and αE

(m,n)
i,j a

weighted cell. We will suppress the superscripts or subscripts on these matrices
when the orders are evident from the context and we write A, I, O, J , Eij
and αEi,j respectively. For a matrix A, #(A) denotes the number of nonzero
entries in A. Further, we let the set of all cells be denoted E. That is,

E = {Ei,j ∈Mm,n(Z+) | i = 1, . . . ,m and j = 1, . . . , n}.

2.1. Factor rank and isolation numbers

The factor rank ([3]), r(A), of a nonzero matrix A in Mm,n(Z+) is the
minimal number k such that there exist matrices B ∈ Mm,k(Z+) and C ∈
Mk,n(Z+) such that A = BC. The factor rank of the zero matrix is 0. The
factor rank of matrices over fields is the same as usual rank. If r(A) = k, then
A = [a1,a2, . . . ,ak] ×[b1,b2, . . . ,bk]t = a1b1

t + a2b2
t + · · ·+ akbk

t, which is
a sum of k m× n matrices of factor rank 1. Therefore r(A) is the least k such
that A is the sum of k matrices of factor rank 1.

Let A ∈Mm,n(B) be the set of all m×n matrices with entries in the binary
Boolean semiring B. The Boolean rank ([5], [12]), β(A), of a nonzero Boolean
matrix A in Mm,n(B) is the minimal number r such that there exist Boolean
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matrices B ∈ Mm,r(B) and C ∈ Mr,n(B) such that A = BC. That is, the
Boolean rank is also factor rank over B. Some authors call this the Schein rank
[13].

From now on we will assume that 2 ≤ m ≤ n. It follows that 0 ≤ r(A) ≤ m
for all nonzero A ∈Mm,n(Z+).

By considering a minimal sum of factor rank one matrices for A and B
such as A = A1 + · · · + Ak, and B = B1 + · · · + Bl, we have that A + B =
A1 + · · · + Ak + B1 + · · · + Bl, so that A + B has factor rank at most k + l.
This establishes the following lemma.

Lemma 2.1. For matrices A and B in Mm,n(Z+), we have r(A + B) ≤
r(A) + r(B).

For A = [ai,j ] ∈Mm,n(Z+), we define A ∈Mm,n(B) to be the matrix [ai,j ]

where ai,j = 1 if and only if ai,j 6= 0. A is called the pattern of A.
If A and B are matrices inMm,n(Z+), we say that B dominates A (written

A v B or B w A) if bi,j = 0 implies ai,j = 0 for all i and j. Equivalently,

A v B if and only if A+B = B. This provides a reflexive and transitive
relation on Mm,n(Z+).

Let A ∈ Mm,n(Z+). A set, I(A), of nonzero entries is called a set of
independent entries ([4]) of A if any two of them are neither in the same row
nor in the same column. A set, S(A), of independent entries of A is called a set
of isolated entries ([4], [10]) of A if for any pair, ai,j , ak,l ∈ S(A), the submatrix[ ai,j ai.l
ak,j ak,l

]
of A on rows i and k and on columns j and l has ai,l = 0 or ak,j = 0.

The isolation number of A ([1], [4]), ι(A), is the maximum cardinality of any
set of isolated entries in A. Hence we have:

Lemma 2.2. If there are k isolated entries in A, then ι(A) ≥ k.

In [1] it was shown that the set of matrices of Boolean rank one and the set
of matrices whose isolation number is one are the same set. It was also shown
that the set of matrices of Boolean rank two and the set of matrices whose
isolation number is two are the same set.

Since no two isolated entries can lie in any single factor rank one submatrix,
we have:

Lemma 2.3. Let A ∈Mm,n(Z+). Then ι(A) ≤ r(A).

However, as the following example shows, the factor rank of a matrix may
be greater than the isolation number of the matrix.

Example 2.4. Consider a matrix A ∈M5,5(Z+) :

A =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 2
1 1 1 0 1
1 0 1 0 0

 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
1 0 1 0




1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 1

.
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Then ι(A) ≥ 3 since the three bold 1’s in A constitute a set of isolated entries,
but r(A) ≤ 4 with given factorization of A. An exhaustive search will show
that ι(A) = 3 and r(A) = 4 so that i(A) < r(A).

Lemma 2.5. Let A ∈Mm,n(Z+). Then β(A) ≤ r(A).

Proof. Let r(A) = k. Then A = BC with B ∈Mm,k(Z+) and C ∈Mk,n(Z+).

Then A = BC with B ∈Mm,k(B) and C ∈Mk,n(B). Therefore β(A) ≤ k. �

Lemma 2.6. For matrices A and B inMm,n(Z+), we have ι(A+B) ≤ ι(A)+
ι(B).

Proof. Let A+ B = C = [ci,j ] and ι(A+ B) = k. Then there is a set {ciα,jα :
α = 1, . . . , k} of isolated entries for A+B = C. Therefore those corresponding
entries aiα,jα in A (or biα,jα in B) are contained in a set of isolation numbers
for A (or B, resp.). This implies that ι(A) + ι(B) ≥ k. �

2.2. Upper ideals

A subset, U, ofMm,n(Z+) is called an upper ideal ifX ∈ U impliesX+Y ∈ U
for every Y ∈ Mm,n(Z+). Upper ideals and linear operators preserving upper
ideals was first introduced by Beasley and Pullman in 1992 [6]. See also [2].

A subset, G ⊂Mm,n(Z+), is bigraphical if X ∈ G implies PXQ ∈ G for all
permutation matrices P and Q of appropriate orders. The reason for this name
is that the bipartite graph associated with a matrix has the same properties as
any other bipartite that has only relabeling of the weighted bipartite sets.

An upper ideal U is said to separate cells if for any two distinct cells E and
F in E, there is some X 6∈ U such that X + E ∈ U while X + F 6∈ U.

Let F be a subset of Mm,n(Z+). The upper ideal generated by F, U(F),
is the set of matrices not dominated by any element of F, i.e., U(F) = {A ∈
Mm,n(Z+) | for all B ∈Mm,n(Z+), A+B 6∈ F}.

Lemma 2.7. Let F be the set of (0, 1)-matrices inMm,n(Z+) whose isolation
number is k, for some 2 ≤ k ≤ m. Then U(F) separates cells.

Proof. Let C and D be cells inMm,n(Z+). Then, by permuting we can assume
that C = E1,1 and D = Ei,j for some (i, j) 6= (1, 1).

If j 6= 1, interchange the jth column with the nth column, so that D = Ei,n.
If j = 1, then i 6= 1. In this case, we may interchange the ith row with the

mth row, so that D = Em,1.
In either case, since k ≤ min{m,n}, we have D = Er,s with r + s ≥ k + 1.

Let A = (ai,j) where ai,j = 0 if i+ j ≤ k and ai,j = 1 otherwise. Then A ∈ F
and {ai,j | i + j = k + 1} is a set of isolated entries of size k. Further, A ≥ D
so ι(A+D) = k but ι(A+C) = k − 1. So A+D 6∈ U(F) while A+C ∈ U(F).
That is, U(F) separates cells. �
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2.3. Linear operators

A mapping T : Mm,n(Z+) → Mm,n(Z+) is called a linear operator if for
any X,Y ∈ Mm,n(Z+), T (X + Y ) = T (X) + T (Y ), and T (αX) = αT (X) for
any α ∈ Z+.

Let f :Mm,n(Z+) → Z+ be a mapping. Let W be a subset of Mm,n(Z+).
For a linear operator T :Mm,n(Z+)→Mm,n(Z+), we say that T

(1) preserves f if for any k ∈ Z+, f(T (X)) = k whenever f(X) = k for all
X ∈Mm,n(Z+);

(2) preserves W if T (X) ∈W whenever X ∈W for all X ∈Mm,n(Z+);
(3) strongly preserves W if T (X) ∈ W if and only if X ∈ W for all X ∈
Mm,n(Z+);

A linear operator T : Mm,n(Z+) → Mm,n(Z+) is called a (P,Q)-operator
if there are permutation matrices P and Q such that T (X) = PXQ for all
X ∈ Mm,n(Z+), or when m = n, T (X) = PXtQ for all X ∈ Mm,n(Z+),
where Xt is the transpose of X.

A linear operator T :Mm,n(Z+) →Mm,n(Z+) is said to be nonsingular if
T (X) = O only if X = O. Unlike linear operators over a field, nonsingular
operators over Z+ need not be invertible. For example, T (X) = 2X for any
X ∈Mm,n(Z+) is nonsingular, but it is not invertible.

Theorem 2.8. Let T : Mm,n(Z+) → Mm,n(Z+) be a linear operator. Then
the following are equivalent:

(1) T is bijective on E;
(2) T is surjective on E;
(3) there exists a permutation σ on {(i, j) | i = 1, 2, . . . ,m; j = 1, 2, . . . , n}

such that T (Ei,j) = Eσ(i,j) for all 1 ≤ i ≤ n; 1 ≤ j ≤ m.

Proof. That (1) implies (2) and (3) implies (1) is straight forward. We now
show that (2) implies (3).

We assume that T is surjective. Then, for any pair (i, j), there exists some
X ∈ Mm,n(Z+) such that T (X) = Ei,j . Clearly X 6= O by the linearity of
T . Thus there is a pair of indices (r, s) such that X = xr,sEr,s + X ′ where
the (r, s) entry of X ′ is zero and the following two conditions are satisfied:
xr,s 6= 0 and T (Er,s) 6= O. Indeed, if in the contrary for all pairs (r, s) either
xr,s = 0 or T (Er,s) = O, then T (X) = 0 which contradicts with the assumption
T (X) = Ei,j . For xr,s ∈ Z+, it follows that

T (xr,sEr,s) v T (xr,sEr,s) + T (X \ (xr,sEr,s)) = T (X) = Ei,j .

Hence, xr,sT (Er,s) = T (xr,sEr,s) v Ei,j and T (Er,s) 6= O by the above. There-
fore, T (Er,s) v Ei,j . Indeed, if on the contrary, T (Er,s) is a sum of certain
multiples of cells, then xr,sT (Er,s) is.

Let Pi,j = {Er,s | T (Er,s) v Ei,j}. By the above Pi,j 6= ∅ for all (i, j). By its
definition Pi,j ∩Pu,v = ∅ whenever (i, j) 6= (u, v). That is {Pi,j} is a set of mn
nonempty sets which partition the set of cells. By the pigeonhole principle, we
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must have that the number of cells in Pi,j is only 1 for all (i, j). Necessarily, for
each pair (r, s) there is a unique pair (i, j) such that T (Er,s) = xr,sEi,j for some
xr,s ∈ Z+. That is, there is some permutation σ on {(i, j) | i = 1, 2, . . . ,m; j =
1, 2, . . . , n} such that for some scalars xi,j ∈ Z+, T (Ei,j) = xi,jEσ(i,j). We now
only need to show that the xi,j are all 1. Since T is surjective and T (Er,s) 6v
Eσ(i,j) for (r, s) 6= (i, j), there is some α ∈ Z+ such that T (αEi,j) = Eσ(i,j).
But then, since T is linear, T (αEi,j) = αT (Ei,j) = αxi,jEσ(i,j) = Eσ(i,j). That
is, αxi,j = 1, or xi,j = 1 in Z+. �

A line is a matrix of the form Ri =
∑n
j=1Ei,j or of the form Cj =

∑m
i=1Ei,j .

That is, a line is a matrix which includes all the ones in a row or column, and
all other entries are 0.

Lemma 2.9. Let T : Mm,n(Z+) → Mm,n(Z+) be a linear operator. If T is
bijective on E and maps lines to lines, then T is a (P,Q)-operator.

Proof. Let L = {Ri | 1 ≤ i ≤ m} ∪ {Cj | 1 ≤ j ≤ n}. Then, since T maps lines
to lines and is bijective on E, T is bijective on L.

If m 6= n, the image of each Ri must be some Rk, and the image of each Cj
must be some Cl since T is bijective on the cells.

If m = n, then either the image of every full row is a full row and hence the
image of every full column is a full column, or the image of every full row is a
full column and hence the image of every full column is a full row, since T is
bijective on L. If the image of every full row is a full column and the image of
every full column is a full row, composing T with the transpose operator gives
an operator that maps full rows to full rows and full columns to full columns.
In these cases, letting σ be a permutation such that T (Ri) = Rσ(i) and τ be
a permutation such that T (Cj) = Cτ(j), we have that T is a (P,Q)-operator
on L where P is the permutation matrix corresponding to σ and Q is the
permutation matrix corresponding to τ . That is, T (Ei,j) = PEi,jQ or m = n,
T (Ei,j) = PEti,jQ for all Ei,j ∈ E.

Now, if m = n and the image of one full row is a full row and the image of
another full row is a full column, say without loss of generality that T (R1) = R1

and T (R2) = C1. Then, #(R1 + R2) = 2n while #(R1 + C1) = 2n − 1, an
impossibility since T is bijective. Therefore T is a (P,Q)-operator on L.

Therefore, for any A = [ai,j ] ∈Mm,n(Z+), we have

T (A) = T (

m∑
i=1

n∑
j=1

ai,jEi,j) =

m∑
i=1

n∑
j=1

ai,jT (Ei,j)

=

m∑
i=1

n∑
j=1

ai,jPEi,jQ = P (

m∑
i=1

n∑
j=1

ai,jEi,j)Q = PAQ.

Similarly, when m = n, we have T (A) = PAtQ. Hence T is a (P,Q)-operator
on Mm,n(Z+). �
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3. Isolation numbers and their preservers

Let T :Mm,n(Z+)→Mm,n(Z+) be a linear operator. Define T :Mm,n(B)

→Mm,n(B) by T (A) =
∑m
i=1

∑n
j=1 T (ai,jEi,j) for anyA = [ai,j ] ∈Mm,n(Z+).

Then T is a well defined linear operator since it is a composition of well defined
linear operators.

If T preserves Boolean ranks 1 and 2, then T is a (P,Q)-operator ([5]).
Since the Boolean rank and isolation number of a matrix agree ([1]) when their
Boolean ranks are 1 and 2, we have the following lemma.

Lemma 3.1. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator.
Then the following are equivalent:

(1) T preserves the isolation number of matrices,
(2) T preserves isolation numbers 1 and 2,
(3) T is a (P,Q)-operator.

From this lemma, we have the following theorem.

Theorem 3.2. Let T : Mm,n(Z+) → Mm,n(Z+) be a linear operator and
bijective on E. Then the following are equivalent:

(1) T preserves the isolation number of matrices,
(2) T preserves isolation numbers 1 and 2,
(3) T is a (P,Q)-operator.

Proof. That (1) implies (2) and (3) implies (1) is straight forward. We now
show that (2) implies (3).

We assume that T preserves the isolation numbers 1 and 2. Since T is
bijective on E, we have T (Ei,j) = T (Ei,j) for all Ei,j ∈ E. Thus T preserves

isolation numbers 1 and 2 onMm,n(B). By Lemma 3.1, T is a (P,Q)-operator.
For any A = [ai,j ] ∈Mm,n(Z+), we have

T (A) = T (

m∑
i=1

n∑
j=1

ai,jEi,j) =

m∑
i=1

n∑
j=1

ai,jT (Ei,j)

=

m∑
i=1

n∑
j=1

ai,jT (Ei,j) =

m∑
i=1

n∑
j=1

ai,j(PEi,jQ)

=

m∑
i=1

n∑
j=1

P (ai,jEi,j)Q = P

m∑
i=1

n∑
j=1

(ai,jEi,j)Q = PAQ.

Similarly, when m = n, we have T (A) = PAtQ. Therefore T is a (P,Q)-
operator on Mm,n(Z+).

Proposition 3.3. If T : Mm,n(Z+) → Mm,n(Z+) is a linear operator that
preserves isolation numbers k and l with k < l, then T is nonsingular.

Proof. Suppose that T (A) = 0 for some nonzero A ∈ Mm,n(Z+). Then
there exists some cell Ei,j v A such that T (Ei,j) = 0. Without loss of
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generality, assume that T (E1,1) = 0. Since ι(E1,1 + E2,2 + · · · + El,l) =
l, and T preserves isolation number l, we have ι(T (E2,2 + · · · + El,l)) =
ι(T (E1,1 + E2,2 + · · · + El,l)) = l. Let X = (T (E2,2 + · · · + El,l)). Then
we can choose a set of l-isolated entries S = {xi(1),j(1), xi(2),j(2), . . . , xi(l),j(l)}
in X and hence there is some cell in {E2,2, . . . , El,l} whose image under T
dominates two isolated entries in S. Without loss of generality, we may as-
sume that T (E2,2) dominates two isolated entries xi(1),j(1) and xi(2),j(2). Fur-
ther, there is some cell in {E2,2, . . . , El,l} whose image under T dominates
xi(3),j(3). Without loss of generality, we may assume that T (E2,2 + E3,3)
dominates three isolated entries xi(1),j(1), xi(2),j(2) and xi(3),j(3). Continu-
ing this process, there are k cells in {E2,2, . . . , El,l} the sum of whose image
under T dominates isolated entries xi(1),j(1), . . . , xi(k+1),j(k+1). Without loss
of generality, we may assume that T (E2,2 + · · · + Ek+1,k+1) dominates iso-
lated entries xi(1),j(1), xi(2),j(2), . . . , xi(k+1),j(k+1). Therefore ι(T (E2,2 + · · · +
Ek+l,k+l)) ≥ k+1, a contradiction since ι(E2,2 + · · ·+Ek+1,k+1) = k and hence
ι(T (E2,2 + · · ·+Ek+1,k+1)) = k. This contradiction establishes the lemma. �

The following lemma first appeared in [6, Lemma 3.3] and later in [2, Lemma
7]. We include the short proof here for completeness.

Lemma 3.4 ([6, Lemma 3.3]). Let T : Mm,n(Z+) → Mm,n(Z+) be a linear
operator. If an upper ideal U separates cells and T strongly preserves U, then
T is bijective on E and hence it is bijective onMm,n(Z+).

Proof. Since E is finite, there is a power of T , say T r which is idempotent. Let
L = T r. Then L strongly preserves U since T does, and L2 = L.

Suppose that T (X) = O. If a cell E v X, then T (E) = O. Let F be
any other cell. Since U separates cells, there is some N ∈ Mm,n(Z+) which
separates F from E. That is, N 6∈ U, N + F 6∈ U but N + E ∈ U. But then
T (N)+T (E) = T (N) v T (N+F ) and since N+E ∈ U, T (N) = T (N+E) ∈ U,
contradicting that T strongly preserves U and N 6∈ U. Thus, T and hence L is
nonsingular.

Now, let F be any cell and suppose that E v L(F ). If E 6= F , let N
separate E from F . That is, N 6∈ U, N + E ∈ U but N + F 6∈ U. Then
L(N + F ) = L(N) + L(F ) = L(N) + L2(F ) w L(N) + L(E), which is seen by
the fact that L is idempotent and E v L(F ). Thus, L(N + F ) w L(N + E),
and hence L(N + F ) ∈ U, contradicting that L strongly preserves U. Thus,
L(E) = E.

Now, suppose that T (E) = T (F ) for two distinct cells E and F . Then,
L(E) = T r(E) = T r(F ) = L(F ), and from above, E = F . That is T is
injective on E. Since E is finite, T is bijective on E, and hence is bijective on
Mm,n(Z+) by the linearity of T . �

Definition 3.5. A two-claw in a bipartite graph is a pair of edges incident
with one vertex. In Mm,n(Z+), a two-claw matrix is a sum of two weighted
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cells, the entries are both in the same row or column. And a matrix A with all
its k = #(A) nonzero entries in one row or column is called k-claw.

Lemma 3.6. Let T : Mm,n(Z+) → Mm,n(Z+) be a linear operator. If T is
bijective on E and T preserves two claws, then T is a (P,Q)-operator.

Proof. If T preserves two-claws and is bijective on E, then T preserves k-claws
for all k. That is, T preserves lines. By Lemma 2.9, T is a (P,Q)-operator. �

Theorem 3.7. Let T : Mm,n(Z+) → Mm,n(Z+) be a linear operator on
Mm,n(Z+) and let U be an upper ideal that separates cells. If T strongly pre-
serves U and T preserves two claws, then T is a (P,Q)-operator.

Proof. If T strongly preserves U, then T is bijective on E by Lemma 3.4. Since
T preserves two-claws, T is a (P,Q)-operator by Lemma 3.6. �

Lemma 3.8. Let F be a family of (0, 1)-matrices inMm,n(Z+) such that O 6∈ F
and J 6∈ F. Then we have the following assertions:

(1) U(F) is an upper ideal.
(2) If T : Mm,n(Z+) → Mm,n(Z+) strongly preserves F, then T strongly

preserves U(F).
(3) If F is bigraphical, then U(F) is bigraphical.

Proof. (1) It follows from the definition of U(F).
(2) If A 6∈ U(F), then there is some N ∈ Mm,n(Z+) such that A + N ∈ F.

Then, T (A) + T (N) = T (A+N) ∈ F and hence T (A) 6∈ U(F).
For converse implication, let L = T r be idempotent (as in Lemma 3.4).

Suppose that T (A) 6∈ U(F). Then, T (A)+Y ∈ F for some Y ∈Mm,n(Z+). Let
Z = T r−1(Y ). Then T r−1(T (A) + Y ) = L(A) +Z ∈ F. But then, L(A+Z) =
L(A) + L(Z) = L2(A) + L(Z) = L(L(A) + Z) ∈ F. Thus, A + Z ∈ F since L
strongly preserve F. That is, A 6∈ U(F).

(3) Suppose that PAQ 6∈ U(F) for some permutation matrices P,Q. Then
there is some PBQ ∈ Mm,n(Z+) such that P (A + B)Q = PAQ + PBQ ∈ F.
Since F is bigraphical, A+B = P tP (A+B)QQt ∈ F. Thus A 6∈ U(F). Hence
U(F) is bigraphical. �

Lemma 3.9. Let T : Mm,n(Z+) → Mm,n(Z+) be a linear operator. If T
is bijective on E and strongly preserves isolation number k, then T preserves
two-claws.

Proof. For k = 1 let ι(A) = 2. Then we can write A = A1 + A2 with ι(A1) =
ι(A2) = 1. Thus ι(T (A)) = ι(T (A1 + A2)) ≤ ι(T (A1)) + ι(T (A2)) = 2. But
ι(T (A)) 6= 1 since T strongly preserves isolation number 1. Hence ι(T (A)) =
2. That is, T preserves isolation number 2. Then T is a (P,Q)-operator by
Theorem 3.2. Thus T preserves two-claws.

Thus, suppose that k ≥ 2. Since T is bijective on E, a cell goes to a cell
under T . Suppose that Ei,j + Ei,k is a sum of two cells in a line, that is
a two-claw but T (Ei,j + Ei,k) is not a two-claw. Then T (Ei,j + Ei,k) is a
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matrix containing exactly two ones which are not collinear. Without loss of
generality, we may assume that T (Ei,j + Ei,k) = E1,1 + E2,2. Let E3, . . . , Ek
be cells such that T (Er) = Er,r, r = 3, . . . , k. Since Ei,j + Ei,k is a two-
claw, ι(Ei,j + Ei,k) = 1. Thus, ι(Ei,j + Ei,k + E3 + · · · + Ek) < k. But
T (Ei,j + Ei,k + E3 + · · ·+ Ek) = E1,1 + E2,2 + E3,3 + · · ·+ Ek,k has isolation
number k, a contradiction since T strongly preserves isolation number k. Thus,
T preserves two-claws. �

Our main theorem is:

Theorem 3.10. Let T :Mm,n(Z+)→Mm,n(Z+) be a linear operator. Then,
T strongly preserves isolation number k for any 2 ≤ k ≤ min{m,n} if and only
if T is a (P,Q)-operator.

Proof. If T is a (P,Q)-operator, then clearly, T strongly preserves isolation
number k.

Now, suppose that T strongly preserves isolation number k with k ≥ 2.
Let Fk be the set of all (0, 1)-matrices in Mm,n(Z+) with isolation number

k. So T strongly preserves Fk. By Lemma 3.8(2), T strongly preserves U(Fk).
By Lemma 2.7 U(Fk) separates cells. By Lemma 3.4, T is bijective on E.
By Lemma 3.9, T preserves two-claws. Therefore T is a (P,Q)-operator by
Theorem 3.7. �

Proposition 3.11. Let T :Mm,n(Z+)→Mm,n(Z+) be a linear operator and
bijective on E. Then, T strongly preserves isolation number 1 if and only if T
is a (P,Q)-operator.

Proof. If T is a (P,Q)-operator, then clearly, T strongly preserves isolation
number 1.

Now, suppose that T strongly preserves isolation number 1. Let ι(A) = 2.
Then we can write A = A1 + A2 with ι(A1) = ι(A2) = 1. Thus ι(T (A)) =
ι(T (A1 + A2)) ≤ ι(T (A1)) + ι(T (A2)) = 2. But ι(T (A)) 6= 1 since T strongly
preserves isolation number 1. Hence ι(T (A)) = 2. That is, T preserves isolation
number 2. Since T is bijective on E, T is a (P,Q)-operator by Theorem 3.2. �

Thus we have obtained some characterizations of linear operators that pre-
serve the isolation number of integer matrices.

For the further researches on the linear operators that preserve the isolation
number of integer matrices, we suggest a problem:

Problem 3.12. Let T : Mm,n(Z+) → Mm,n(Z+) be a linear operator. If T
preserves any two isolation numbers h and k, then does T be a (P,Q)-operator?
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