J. Appl. Math. & Informatics Vol. 26(2008), No. 3 - 4, pp. 457 - 469
Website: http://www kcam.biz

POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY
VALUE PROBLEMS WITH ONE-DIMENSIONAL
p-LAPLACIAN OPERATOR

FUYI XU*, ZHAOWEI MENG AND WENLING ZHAO

- ABSTRACT. In this paper, we study the existence of positive solutions for
the following nonlinear m-point boundary value problem with p-Laplacian:

C (Gp)) + f(tu(t) =0, O<t<l,
w(0) = Y7 % e (),
L w1 =300 (€ — 300 beu(€) — Yot b (&),

where ¢p(s) is p-Laplacian operator, i.e., ¢p(s) = |s|P72s, p > 1,¢4 =
1 1

($p)"!, =+ - =1,1<k<s<m=-2a; b € (0,400) with 0<
p q

k m-2
Do i T e ki <1, 0< YT %a <1,0< 6 <&< <
Em—2 < 1,f € C([0,1] x [0, +00), [0, +00)). We show that there exists one
or two positive solutions by using fixed-point theorem for operator on a

cone. The conclusions in this paper essentially extend and improve the
known results.

-
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1. Introduction

In this paper, we study the existence of positive solutions for the following
nonlinear m-point boundary value problem with p-Laplacian

(Pp(w) + flt,u(t)) =0, O0<t<1,
w(0) = 77 % as! (&), (1.1)
u(l) = Z biu(&;) — Zz-ﬁk+1 w(é) — Do 33—1 biu'(&i),
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where ¢,(s) is p-Laplacian operator, i.e.,

1 1
dp(s) = |s[P™%s, p> 1,04 = (¢p) 7", —+—é=l,1§k§s§m~—2,
D
m—2
ai, bj € (0,+00) with 0<Zb— Z b <1, 0< Zaz<1
=1 i=k+4+1 = 1=1 '

0<§1<§2< < €m-o < 1, f € C(|0, 1] 10, 400), [0,+oo)).

The study of multi-point boundary value problems for linear second-order or-
dinary differential equations was initiated by I'in and Movisev [1, 2]. Motivated
by the study of [1, 2], Gupta [3] studied certain three-point boundary value
problems for nonlinear ordinary differential equations. Since then, more general
nonlinear multi-point boundary value problems have been studied by several
authors. We refer the reader to [4, 5, 6| for some references along this line.
Multi-point boundary value problems describe many phenomena in the applied
mathematical sciences. For example, the vibrations of a guy wire of a uniform
cross-section and composed of N parts of different densities can be set up as a
multi-point boundary value problems (see Moshinsky {7]); many problems in the
theory of elastic stability can be handle by the method of multi-point boundary
value problems(see Timoshenko [8]) "

In 2001, Ma [6] studied m-point boundary value problem (BVP)

(W) + h(t)fu) =0, 0<t<1,

w(0)=0, u(l)= mg;lz o (6:)

| ' m—2 _ o
wherea; >0(1=1,2,--- ,m—-2), Y a;i<1,0<E <8< <€p-a<

1=1
1, and f € C({0,+00), [0, +0)), h € C([0,1],[0,4+00)). Author established the
existence of positive solutions theorems under the condition that f is either
superlinear or sublinear.

In [4], Ma and Castaneda studied the followmg m-point boundary value prob-
lem (BVP)

(W) + R fu) =0, 0<t<1,
m—2 m—2

=Y au(&),  u(l)= Z Biu(&:)
1=1 1=1 '

-wherea; >0, 8, >0(:1=1,2,-- —2), Zaz<1 Z,@,<1 0<& <

§a < <€m—2< 1, and f € C([0, -I-oo) 0, +oo)) h € C([O 1] [0,4+00)). They
showed the existence of at least one positive solution if f is either superlinear or
sublinear by applying the fixed point theorem in cones.

\
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Recently, Ma etal. [5] used the monotone iterative technique in cones to

prove the existence of at least one positive solutions for m-point boundary value
problem (BVP) |

( (¢,,(u'))’ +a(t)f(t,ut)) =0, 0<t<l,

m—2 :
w'(0) = Zaz &), )= bu(g),
i=1

' m—2 m—2
where 0 < ) b, <1, 0< ) ai<1l, 0<§ <& <-r <€ma <l
i=1 i=1
a(t) € L'{0,1], f € C([0,1] x {0, +00), [0, +00)).
Motivated by the results mentioned above, in this paper we study the exis-
tence of positive solutions of m-point boundary value problem (1.1). We gener-
alize the results in [4, 5, 6].

In the rest of the paper, we make the following assumptions:

—2
(Hy) ai, b; € (0,400), o<§:b- Zb <1 0< Zaz<1 0< & <
=1  i=k41 : 21

o < < €poa < 1
(Hz) f e C([0,1] x [0, +00), [0, +-00)).

By a positive solution of BVP (1.1), we understand a function u Wthh 1S

positive on (0, 1) and satisfies the differential equations as well as the boundary
conditions in BVP (1.1).

The following well-known result of the fixed point theorems is needed in our |
arguments.

Lemma 1.1.[10-12] Let K be a cone in a Banach space X. Let D be an open
bounded subset of X with Dy = DN K # 0 and Dg # K. Assume that

A: Dg — K is a compact map such that x # Az forxz € ODk. Then the
following results hold:

(1) If |Az|| < ||zl|l, x € 0Dk, then i(A,Dg,K) =1; o

(2) If there exists xo € K\{0} such that z # Az + Axo for all x € 8Dk and
all A > 0, then i(A, D, K) =

(3) Let U be open in X such that U C Dg. If i(A,Dk,K) = 1 and
i(A, D, K) =0, then A has a fized point in Dg\Ug. The same 'res'u,lt holds if
t(A,Dg,K) =0 and i(A, Dk, K) = 1.

2. Preliminaries and Lemmas

In this section , we present some lemmas that are important to our main
results. - |

Lemma 2.1. Let (H;) and (H3) hold. Then for x € C*[0,1], the problem
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[ (Dp(u'))" + f(t,2(2)) =0, 0<t<1,

m—2
w'(0) = ) e (&),

\ i=1 | . N (2.1)
k s
= Z b,-u(fi) — Z b,-u f, Z b u fz

\ | 1=1 i=k+1 ' - t=s+1

1

has a unique solution u(t) = B; — / ¢, 1 (Aa, — / f(r, :c('r))d'r) ds, where
t 0 .

Az, B; satisfy - o

m-—2 £ | o _ :
1 Az) = ) ais;! (A:r"‘ / | f(s,w(S))dS), (22

B, =_1—Z,1b1+21-k+1 (Zb]cp (A —/f('ra: ))dr)d

—‘Zb ¢ A—/f('ra:r))dr)

i=k+1 3

+ Z b¢ A -—/ fsa:s))ds))

i=s+1

®p (2212 a,-) -
1 -y (Z::;z ai)
A:,, € [—l/l f(s,x(s))ds,O] ‘satisfying (2.2).
- Proof. The prgof is similar to Lemma 2.1(5], we omit the details. O

Lemma 2.2. Let (H,) and (H3) hold. If x € C+[0 1], the 'u.mq'u,e solution of
the problem (2.1) satisfies u(t) > 0. -

Define | = . Then there exists a unique

Proof. According to Lemma 2.1 we first have— A, + / f(r;x(r))dr > 0. So
u(l)= B -
1 8
= — b qb“--l Az — / f(r,z(r))dr)ds
1-—- zz-— b + Zz-k+1 (z ? ( 0 )

1=

_ Z b; A,,—/O £, (r))dr)ds

i=k+1 §i
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+ Z bi¢ " (Ag —f fsxs))ds))

1=s+1

l

ok

I

g

R

=

+ |

g

=

:t
M
Q“

\
?
.‘.ts
+

\
%
-\3
B
©
3-

1”22:151'14-27 ks b (Zb/ ¢y (—4As +/ f(r,z(r))dr)d
__; b,—/E:qb“ ( — Az +/ fra:r))dr)ds)
(02t [ 6 (e [0

_ > 0.

1 - Ei:l b; + Zi:k—i—l i

If t € [0,1), we have

u(t) = B; — ftl ¢;1 (Aa: _ /08 f(r,:c(r))dfr) ds

= u(l) + /;1 qb;I (—A;r + fos f(r,a:('r))dr) ds

2 u(l) 2 0.
So u(t) > 0, t € [0,1]. The proof of Lemma 2.2 is completed. o

Lemma 2.3. Let (Hy) and (H3) hold. If x € C1[0,1], the unique solution of
the problem (2.1) satisfies

f ou(t) >
2t u(t) > 7 |ul]

iy b — s b)(1 — &)
1— S5y bibke + i1 bikk
Proof. Clearly

o) =05 (4= [ floa0ds) = 05" (~Ae+ / G a(6))ds)

<0.

where vy, =

€ (0,1).



462 ' Fuyi Xu Zhaowei Meng Wenling Zhao

This implies that

lull = u(0), min u(t) = u(l).

It is easy to see that u'(t2) < u'(t;) for any ¢, t; € [0,1] with ¢; < ¢5. Hence
u'(t) is a decreasing function on [0, 1]. This means that the graph of u(t) is
concave down on (0, 1). So we have |

w(€k) — u(1)€e 2 (1 — &k)u(0).

Together with u(1) = Z biu(&) — Z biu(€;) — Z b;u'(&) and u'(t) <0
i=1 i=k+1 i=s+1
on [0, 1], we get

u(0) < Zf:;llbiu({k) — u(1) Zle bilk — Y iekin b-u(fk) + u(1) Z::k+l bik
) (Zf:l bi — 3 iz k41 ) (1 — &)
S biu(€) — u(1) 8 bk — iy baul€) + w(1) 00 gy bik

(Zf:1 bi — 3 ikt ) (1- )
u(1) (1 ~ Zle b€k + Z::k—H bifk) _ u(1)

(Zf-_-lbe:—Z, =k+1 )(1 §k) T

The proof of Lemma 2.3 is completed. | ]

A

Now we define K = {ue€ E|l u>0, mingp)u(t) > v|jull}, where vy = Y2,
v is defined in Lemma 2.3 and

o (Bhbo R )(1 3
2 —
(1+z_k+1 (L+ky+ 300, .9+1 %q) (1+ k)™

Obviously, K is a cone in E. Define an operator T:K—C 0,1] by setting
(Tz)(¢) | N

) k
= - (Zb ¢, (As —/ f(r,z(r))dr)ds

Doimi bit ik b \ioy Ve

- i bi/&ld) / frx?"))df")

t=k+1

+ mz_zbqb / f(s,z(s) ds))

1=s+1 .

- /t 1 ¢, " (A:,, —~ /0 f(r,a:('r))dr) ds

€ (0,1).
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Lemma 2.4. T : K — K is completely continuous.
Proof. According to Lemma 2.3 we easily obtain

Tu >0, and if(l)fl] Tu"(t) > nlTull > v||Tul|, for ve€ K,
telo,

which means that TK C K. Now we show that T is a completely continuous
operator.

(i) We show that T is continuous. First, we prove that A, is continuous
about .

Suppose {z,} C C*[0,1] with z, — zo € C*[0,1]. Let {A,}(n =0,1,2---)
be constants decided by (2.2) corresponding to z,(n = 0,1,2---). As z, — o
uniformly on [0,1] and f : [0,1] x [0,00) — [0,00) is continuous, we have that
for € = 1, there exists N > 0, when n > N, for any r € [0, 1],

0< f(rza(r)) <1+ f(r,20(r)) <1+ rrg[g)g]f(r Zo(r)). (23)

So, |
Ane [‘—-z /0 1 f(s,:cn(s))ds,O} c [—z(1+rr£l%§] f.('r zo(r))), o] |

which means {A,} is bounded.
Suppose {A,} does not converge to Ag. Then, there exist two subsequences

(A} and {AP} of {A4,} with AL — ¢, and AD — ¢y, but ¢1 # ¢. By the
construction of {A,}(n=0,1,2---), we have

¢, (AD)) ——Zaqb‘ ( AL — ] f(s, x50 (s) ) (24)

Combining (2.3) and using Lebesgue S dommated convergence theorem in
(2.4), we get

¢y (1) = im Z a,,df (A(l) ] f(s,z8 (s )

m—2 £
= Z a,cf)" ( lim A(l) lim f(s,:cgk)(s))ds)

T — 00 nE—o0 Jq

. ) Ef-
= aid’;l (Ci— A f(S,wo(S))dS)-

=1

Since {Ap}(n = 0,1,2---) is unique, we get ¢; = Ag. Similarly, ¢ = Ag. So,
c1 = ¢y, which is a contradiction. Therefore, for any =, — z9, An — Ao, which
means A, : C*[0,1] — R is continuous. So the continuity of T" is obvious.
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(ii) We prove T is compact. Let £ C K be an bounded set. Then, there
exists R, such that Q C {z € K : ||z]| < R} for any = € 2, we have

0 </ f(s,z(s))ds < sGIO,Iilil,?z)e{IO,R] (s,u) = M;.
So we get
|A:r| ..<_ lMl-
Therefore,

1-— Zi——-l b_i + Zi-—-k.—i—l 1

T <t ((L+1)M).
The Arzela-Ascoli theorem guarantees that T is relatively compact, which

means 1 is compact. | | | 0J
We define K, = {z(t) € K : ||z|| < p},
% = (FHO €K min, =) < 70)

{m zeE, z>0,7|z| < Iéltléllw(t) < 'yp}.

Lemma 2.5.[10] Q, defined above has the followmg propertzes
(a) Ky, CQp, CKp;
(b) Q, is open relative to K;

(c) X €09, if and only if Orgtlgl z(t) = yp;

(d) Ifz €09, thenyp <z(t) < p forte[0,1].

For the convenience, we introduce the following notations.

Y i} fu) oo
f,fp_mm{orsntlgl 20(0) .ue['yp,p]}, fg—ma.x{orgfmécl 20(7) .uG[O,p]},

: o . L f(t) u)
;7= J%S“po%‘?‘gxl ¢p(u)’

f(t,u)
fo = ot 0 )

(1 - Zi:l b; + Zi:k+l z) q
(1+ ST b+ k) + S0 bg) (14 R
(1 - Zfz bi + Z: k+1 ) q
(Zf:l b‘ - Z: k+1 ) ( 'fk)

(a:=o00 or o*),

m =

M=
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Remark 2.1. By (H;), it is easy to see that 0 < m, M < oo and M~y =
M1y, = im <m. - | | S

Lemma 2.6. If f satisfies the following condition f§ < ¢p(m) and x # Tz for
z €0 K, then i(T,K,, K) = 1.

Probf. For z € 8 K,, we have

—A; + /08 flryz(r))dr < l/ol flr,z{r))dr + _/08 flryz(r))dr

< lgp(m)dp(p) + dp(Mm)dp(p)s
= ¢p(m)dp(p)(l + s).

So ¢! ( —A, +/ flr,x 'r))d'r') < mp(l-}—s)q 1, Therefore,

| | | T k |
Tz = = — T, x{T
(Tx)(t) LS by (;b A (pp (Az / f(r,z(r))dr)ds

—ibi/qb_l /f'ra: ))dr)d

1e=k+4-1

m—2 £ '
+ Z biqb;l(A,V- f(s,:v(s))ds))

i=s+1 0

N /tl ¢y (Az - fo fr, a:(r))dr) ds
Z b1+z (Zb/ (’6_1( Ay +f f(r,z(r))dr)ds
=1 i=k+1 0

+ Z big, ! (—Am+ /0 f('r,:z:(r))d'r)

1==8-+1

+ / ¢y (-Ax+ / 8 f(r,;c('r))dr) ds)

mp (14 S03, b1+ k) + £057 bia) 1+ B
| (1 - Zi:l b; + Z::k+1 bi) q

which implies that ||Tz|| < ||z|| for z € K Hence by Lemma 1.1(1) it follows
that +(T,Q,, K) = 1. O

Lemma 2.7. If f satisfies the following condition f£, > c;bp(M v) and x 75 T:r:
forx € 0 Q,, then

/\

:“... p,

i(T,Q,, K) = 0.
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Proof. Let e(t) = 1 for t € [0,1]. Then e € 8K,. We claim that
r#Tx+ Xe, €0, A>0.

In fact, if not, there exist zp € 9, and A9 > 0 such that o = Txg + Age. By
f8, 2> ¢p(Mr), we have

A+ [ sao)dr > [ fatn)r > 0,0)0p(0)s
0 0

So qb;l (-—Aa, +/ f(r,:c(r))d'r) > M~psi~1. Therefore,
0 :

zo(t) = Tzo(t) + Age

— 1 | __1
ml—Zr—b-%Zz k1 D (Zb/¢ A'l‘/fT’iI?O Nir)¢

—Z /qﬁ A+/f1:co ))d'r)d

1=k+1

+ Z bqup —A; +/ f(s,zo(s ))ds))

t=s+1

; / e (—Ax+ fo f(r,xo(r))dr) de t X "

> — 7 ! . (Zb ¢;1I(_A:L. + /s f(ryzo(r))dr)ds

1“21-1b'+23 k1 i \io]

8

— Z qb—l .A -I—/ f(r a:g(r))dr)ds) + Ao

i=kt1 7Sk
Zf~—1 b; — Z?——k—kl b\
1*Zzlb+21 k1 0i Jén
(Tim1 b = Pimr ) Myp(1 — &)

(1- zizx bi + Zi:k—}-l bi)q

This implies that vp > vp+ Ag which is a contradiction. Hence by Lemma 1.1(2)
it follows that i(T',2,, K) = 0. 1

IV

¢;1(-Ax+/0 f(r,:cg('r))dr)ds)

> +A0=’)’p+)\0.

3. The main results
We now give our results on the existence of positive solutions of BVP (1.1).

Theorem 3.1. Suppose conditions (H;), (Hz2) hold, and assume that one of the
following conditions hold:
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- (H3) There exist p1, p2 € (0,400) with p; < ypp such that f§' < ¢p(m), f£2, >

(bP(M’Y); | | .
(Hy) There exist py, p2 € (0, +00) with py < po such that f§ < ¢p(m),

%(M v).

Then, the BVP (1.1) has at least one positive solution.

1
YA1 2

Proof Assume that (H3) holds, we show that T has a fixed point uy in sz\K or-
By f§' < ¢p(m) and Lemma 2.6, we have that

(T, K,,,K)=1.
By f2, > #p(M~) and Lemma 2.7, we have that
(T, Km, K)=0.

By Lemma 2.5 (a) and p; < yp2, we have K o C Kyp, C Qp,. It follows from
Lemma 1.1 (3) that T has a fixed point u; in Q,,\K,,. When condition (H4)
holds, the proof is similar to the above, so we omit it here. [

As a special case of Theorem 3.1, we obtain the following result.

Corollary 3.1. Suppose conditions (H;), (H;) hold, and assume that one of the
following conditions holds: | o -

(Hs) 0< f° < ¢p(m) and ¢p(M) < foo < 00;
(He) 0< f* < dp(m) and ¢p(M) < fo < oo.
Then, the BVP (1.1) has at least one positive solution.

Theorem 3.2. Assume conditions (Hy), (Hz)hold, and suppose that one of the
following conditions holds:

(H7) There exist py, p2, p3 € (0,+00) with p; < ’ng and pa < p3 such that
' < pp(m), f£2 > ¢p(M7y), x# Tz, V€ Bsza and f§° < ¢p(m);

(Hg) There exist p1, p2, p3 € (0, +0oc) with p; < p2 < "ng such that

2 S (Pp( ) [ 2 (f)p(M'y), r#Tz, VxedK,,, and fL5 > qbp(M'y)

Then, the BVP (1.1) has at least two positive solutions. Moreover, if in
(H7) f§' < ¢p(m) is replaced by f§' < ¢pp(m), then the BVP (1.1) has a third
positive solution x3 € K, . -

Proof. Assume that condition (H7) holds, we show that either T' has a fixed
point z; in 8K,, or Q,,\K,,. If z # Tz for ¢ € 8K, UOK,,. By Lemma
2.6 and Lemma 2.7, we have that (T, K,,, K) =1, T, K,,, K) =1, and
i(T, K,,, K)=0. By Lemma 2.5(a) and p; < vp2, we have K,, C K,,, C Q,,.
It follows from Lemma 1.1 (3) that T has a fixed point z; in ,,\K,,. Similarly,
T has a fixed point in K,,\Q,, when condition (Hg) holds. | O

As a special case of Theorem 3.2, we obtain the following result.
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Corollary 3.2. Assume conditions (Hy), (Hz)hold. If there exists p > 0 such
that one of the following condztzons holds:
(Hg) 0 < f° < ¢p(m), f2, > ¢p(M~n), z # Tz, Yz € 0Q, and 0 < f°°
¢P(m); _
(Hho) Pp(m) < fo < o0, fg < ¢p(m), z # Tz, Vz € 2 K, .a_nd ¢’p(n’{) <
foo < 00, then the BVP (1.1) has at least two positive solutions.

4. Examples

Example 4.1. Con31der the following five-point boundary value problem with
p-Laplacian

s 4 2u
Y 1 \/§ 1 | 3e | _
(@p(u')) + u2 a5 50 + 142+7e“+62“]
w0 = ey s Luddy 4 L) (4.1)
1 1 1 3
1) =u(=)— =u(=) - 4u'(=
1 1 1 1 | 1
Where ay = g’ q2= -4"'.' az = 51 bl = 1: b22=§a b3=41 €l - Za 52 -
1 3 3 | 1 {1 64e<*
— - - = - ' t = 2 —_ .
g ST p P=g flhu=ul 3+12O+7e“+62“]
By computing, we can know g = 3, = — — + 3, = —, m=
m, M = ﬁ Obviously,
fo= = (m)P~!,
V) o6 1
- = = (ML
fo= T g 323> /13 = (M)

So condition (Hs) hold, by Corollary 3.1, BVP (4. 1) has at least one posmve
solution.
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