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ABSTRACT. For a rank-1 matrix A, there is a factorization as A = ab’, the product of two
vectors a and b. We characterize the linear operators that preserve rank and some equiv-
alent condition of rank-1 matrices over a chain semiring. We also obtain a linear operator
T preserves the rank of rank-1 matrices if and only if it is a form (P, Q, B)-operator with
appropriate permutation matrices P and @, and a matrix B with all nonzero entries.

1. Introduction and preliminaries

There are many papers on linear operators that preserve the rank of matrices
over several semirings([1]-[6]). Matrices over a chain semiring also have been the
subject of research by many authors (see [2], [5]). Beasley and Pullman [1] defined
the perimeter of a Boolean rank-1 matrix in order to characterize the linear opera-
tors preserving Boolean rank. Song [5] obtained characterization of linear operators
that preserve column rank over the fuzzy scalars.

In this article, we consider the rank-1 matrices over a chain semiring and their
perimeters. We also characterize the linear operators that preserve the rank and
perimeter of the rank-1 matrices over a chain semiring.

A semiring is essentially a ring in which only the zero is required to have an
additive inverse.

Let K be any set of two or more elements. If K is totally ordered by < (i.e.,
x < yory <z for all distinct elements z,y in K), then define z + y as max(z,y)
and zy as min(z,y) for all z,y € K. If K has a universal lower bound and a
universal upper bound, then K becomes a semiring, and called a chain semiring.
The following are interesting examples of a chain semiring.

Let H be any nonempty family of sets nested by inclusion, 0 = Nyegz, and
1 =Ugegx. Then S =HU {0, 1} is a chain semiring.

Let o, w be real numbers with o < w. Define S={f € R : @ < § <w}. Then
S is a chain semiring. It is isomorphic to the chain semiring in the previous example
with H = {[e, 8] : a < 8 < w}. Furthermore, if we choose the real numbers 0 and 1
as @ and w in the previous example, then m x n matrices over F = {5 : 0 < g < 1}
is called fuzzy matrices.
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In particular, if we take H to be a singleton set, say {a}, and denote §) by 0 and
{a} by 1, the resulting chain semiring B = {0, 1} is called a binary Boolean algebra,
and it is a subsemiring of every chain semiring.

Let M, (K) denote the set of all mxn matrices with entries in a chain semiring
K. Then addition, multiplication by scalars, and product of matrices on M,, ,(K)
are defined as if K were a field.

The rank or factor rank, r(A), of a nonzero matrix A € M,, »,(K) is defined
as the least integer k for which there exist m x k and k X n matrices B and C
with A = BC. The rank of a zero matrix is zero. We note that A € M,, ,(K)
is a matrix with rank 1 if and only if there exist nonzero vectors a € M,, 1(K)
and b € M,, 1 (K) such that A = ab’. But the following example shows that these
vectors a and b are not uniquely determined by A.

Example 1.1. Let

_ al a2 oo an
A= {0 0 - 0}
be a fuzzy matrix in My, (F) with n > 2, where 0 < «; < 1 for all ¢. Then we have
A=MTar ay - anl= "1 o -+ an]=--,
0 0

where a; <~ < 1.

Let Appy = {(4,5)| 1 < i <m, 1 < j <n}and E,, = {E;j| (1,]) € Amn}s
where FE;; is the matrix whose (4, j)th entry is 1 and whose other entries are all 0.
We call F;; a cell.

For any vector u € M, 1(K), we define |u| to be the number of nonzero entries
in u. Let A = [a;;] be any matrix in M,, »,(K). Then we define A* = [a];] to be
the matrix in M, ,(B) whose (¢, j)th entry is 1 if and only if a;; # 0. It follows
from the definition that

(1.1) (AB)* = A*B* and (B+C)* = B* 45 C*

for all A € M,, »(K) and all B, C € M,, ,(K).

If A =[a;;] and B = [b;;] are in M,,, ,(K), we say that A dominates B (written
A > Bor B < A)if a;; =0 implies b;; = 0 for all ¢,j. Then we can easily obtain
that A > B if and only if (A + B)* = A* for all matrices A, B € M, ,,(K).

Lemma 1.2. For any factorization ab® of a rank-1 matriz A € M,, ,(K), |a| and
|b| are uniquely determined by A.

Proof. Tt follows from (1.1) that A* = a*(b*)" is a rank-1 matrix in M, ,,(B). Then
we can easily show that |a*| and |b*| are uniquely determined by A*. Therefore |a|
and |b| are uniquely determined by A. O

For any rank-1 matrix A € M,, ,(K), define the perimeter of A, P(A), as
la| 4+ |b| for arbitrary factorization A = ab’. Even though the factorizations of
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A are not unique, Lemma 1.2 shows that the perimeter of A is unique, and that
P(A) = P(A*).

2. Rank and perimeter preservers

A mapping T : M, »,(K) — M,, ,(K) is called a linear operator if T(aA +
BB) = oT(A) + T (B) for all A, B € M, »,(K) and for all a, § € K.

In this article, we characterize the set of linear operators preserving the rank
and the perimeter of every rank-1 matrix over any chain semiring. These are moti-
vated by analogous results for the set of linear operators that preserve all ranks in
Mm,n(K). However, we obtain results and proofs in view of the perimeter analog.

For matrices A = [a;;] and B = [b;;] in My, ,,(K), the Hadamard (or Schur)
product A o B of A and B is the m by n matrix whose (4, j)-entry equals a;; b;;.

Suppose that T is a linear operator on M, ,(K). Then

(1) T isa (P,Q, B)-operator if there exist m xm and n xn permutation matrices
P and @, respectively and a matrix B € M,, ,(K) with all nonzero entries
and r(B) = 1 such that T(A) = P(Ao B)Q for all A in M, ,(K), or m =n
and T(A) = P(A' o B)Q for all A in M, ,(K).

(2) T preserve rank 1 if r(T'(A)) = 1 whenever r(A4) =1 for all A € M,,_,(K).
(3) T preserve perimeter k of rank-1 matrices if P(T'(A)) = k whenever P(A) = k
for all A € M, (K) with 7(A) = 1.

Theorem 2.1. If T is a (P, Q, B)-operator on M, ,(K), then T preserves both
rank and perimeter of rank-1 matrices.

Proof. If T is a (P, Q, B)-operator on M, ,,(K), there exist m x m and n x n
permutation matrices P and @, respectively such that T(A) = P(A4 o B)Q, or
m = n and T(A) = P(A' o B)Q for all A in M,, ,(K), where B € M,, ,(K) is
a matrix with all nonzero entries and r(B) = 1. Then we can write B = cd,
where none of entries ¢ or d is zero. Let A be a rank-1 matrix in M,, ,(K) with a
factorization A = ab’. For the case T(A) = P(A o B)Q, we have the following:

T(A) = P(ab’ o cd")Q = P(acc)(bod)'Q = (P(acc))(Q'(bo d))t. (2.1)

Thus (2.1) implies that

H(1(4) = r((Pao ) (Q'bod)) =1
and
P(T(A)) = |P(acc)| + |Q(bod)| = Jacc| + [bod| = |a] + |b| = P(A).

For the case m = n and T(A) = (A! o B)Q, we can show that r(T'(A)) = 1 and
P(T(A)) = P(A) by the similar method as above. O
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Furthermore, the converse of Theorem 2.1 is also true. We will show its proof
in Theorem 2.7(below). Also Example 2.3(below) shows that a linear operator
preserving ranks of all rank-1 matrices need not be (P, Q, B)-operator.

We note that a matrix has perimeter 2 if and only if it is a cell with nonzero
scalar multiplication. We say that A € M,, ,,(K) is a row (or column) matric if A
has nonzero entries only in one row (column, respectively). A line matriz is a row
matrix or a column matrix. Thus we have the following Lemma:

Lemma 2.2. Let T be a linear operator on My, n(K). If T preserves rank and
perimeter 2 of every rank-1 matriz, then the following statements hold:

(1) T maps a cell into a cell with nonzero scalar multiplication;

(2) T maps a line matriz into a line matriz.

Proof. (1) follows from the property that T preserves perimeter 2. (2) If not, there
exist two distinct cells E and F' in same row (or column) such that T'(E) and T'(F)
lie in two different rows and different columns. Then we have r(E + F') = 1, while
r(T'(E+F))=r(T(FE)+T(F))=2. This contradicts to the fact that T preserves
rank 1. O

The following is an example of a linear operator that preserves rank and perime-
ter 2 of rank-1 matrices, but it does not preserve perimeter 2n(n > 2) and is not a
(P, Q, B)-operator.

Example 2.3. Let T be a linear operator on M,, ,,(K) with n > 2 defined by

n

T(A) = ( Z az’j)Ekk = max{aij| 5,7 =1,--- ,n}Ekk

ij=1

for all A = [a;;] € M, »(K), where k is a fixed integer in {1,2,---,n}. Then it
is easy to verify that T is a linear operator and preserves rank and perimeter 2 of
each rank-1 matrix. But T" does not preserve perimeter 2n: for, if J € M, ,(K) is a
matrix whose entries are all 1, then J has rank 1 and perimeter 2n, but T'(J) = Ejg
has rank 1 and perimeter 2. Hence T is not a (P, Q, B)-operator by Theorem 2.1.

C ={Cj|1 < j <n}. For a linear operator T' on M,y ,,(K), define T*(A) = [T'(A)]*
for all A in M,, ,(K). Let T*(R;) = {T*(E;;)|1 < j < n} foreachi=1,--- ,m
and T*(C;) = {T*(E)|1 <i<m} foreach j=1,--- ,n.

Lemma 2.4. Let T be a linear operator on My, ,,(K). Suppose that T preserves

rank and perimeters 2 and p (> 3) of rank-1 matrices. Then

(1) T maps two distinct cells in a row (column) into two distinct cells in a row
or in a column with nonzero scalar multiplication ;

(2) if T maps a row matriz into a row (or column if m = n) matrix then T maps
every row matriz into a row (or column if m = n) matriz, and if T maps a
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column matriz into a column (or row if m = n) matriz then T maps every
column matriz into a column (or row if m = n) matriz.

Proof. (1) Suppose T(E;;) = aFE, and T(E;,) = [E,; for some distinct pairs
(1,7), (i, h) € Ay, and some nonzero scalars o, 3 € K. Then T maps the ith row
matrix into rth row or Ith column matrix by Lemma 2.2. Thus for any rank-1
matrix A with perimeter p (> 3) which dominates E;; + E;5, we can easily show
that T(A) has perimeter at most p — 1, a contradiction. Thus T" maps two distinct
cells in a row into two distinct cells in a row or in a column with nonzero scalar
multiplication.

(2) If not, then there exist rows R; and R; such that T%(R;) € R, and
T*(R;) C C, for some (r,s) € A, . Consider a rank-1 matrix D = E;, + E;q +
Ej, + E;q with p # ¢q. Then we have

T(D) = T(Eip + Eiq) + T(Ejp + qu)
= (OllErp/ + agErq/) -+ (ﬁlEp”s =+ ﬂ2Eq”s)

for some p’ # ¢’ and p”’ # ¢ and some nonzero scalars a;, 3; € K by (1). Therefore
r(T(D)) # 1 and T does not preserve rank 1, a contradiction. Hence T' maps each
row matrix into a row (or column if m = n) matrix. Similarly, 7" maps each column
matrix into a column (or row if m = n) matrix. O

For a linear operator T on M, ,,(K) preserving rank and perimeter 2 of rank-1
matrices, we define the corresponding mapping 17" : A, — App by T7(4,5) =
(k,1) whenever T'(E;;) = b;jEy; for some nonzero scalar b;; € K. Then 7" is well-
defined by Lemma 2.2-(1).

Lemma 2.5. Let T be a linear operator preserving both rank and perimeters 2 and
k(k >4,k #n+ 1) of rank-1 matrices. Then T' is a bijection on Ay, .

Proof. By Lemma 2.2, we have that for any E;; € Ky, ,, there exist £, € Ey, p,
and nonzero b;; € K such that T'(E;;) = b;; Er;. Without loss of generality, we may
assume that 7" maps the ith row of a matrix into the rth row with nonzero scalar
multiplication. Suppose that T7(i,7) = T"(p, q) for some distinct pairs (i, 7), (p,q) €
Ay, . By the definition of 17, we have T'(E;;) = bj; E; and T(Epq) = byqEy for
some nonzero scalars b;;,b,; € K. Lemma 2.4 implies that ¢ # p and j # g.
Furthermore T maps the ith row and the pth row of a matrix into the rth row.

Case 1. 4 < k < n: Claim: we can choose a 2 x (k — 2) submatrix A from ith
and pth row, but T'(A4) is a 1 X k submatrix in the rth row. If the claim is true,
then P(A) = k, while P(T'(A)) = k + 1, a contradiction.

Proof of the claim. By Lemma 2.4, T maps distinct cells in each row (or column)
to distinct cells with nonzero scalar multiplication. Now, choose E;;, E,; but do
not choose E;q, Epq. Since there is a cell Eyp, (hi # j,q) in the pth row such that
T (p,h1) =T'(i,q) but T'(i,h1) # T'(p, j), we can choose a 2 x (4 — 2) submatrix
Eij + Ein, + Epj + Epp, whose image under 7" is an 1 x 4 submatrix in the rth row.
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Therefore the claim is satisfied for K = 4. Assume that for k = s with4 < s <n-—1,
the claim is true. Then there is a 2 x (s — 2) submatrix

s—3 s—3

X =Eij+Y En, +Ep+ Y Ep,
t=1 t=1

such that T'(X) is an 1 x s submatrix in the rth row, where {j, ¢, h1,--- ,hs_3} is the
set of distinct indices. Now, we can choose a cell Epp,, , (hs—2 # j,q,h1, -+, hs—3)
such that T'(i, hs—2) # T'(p,7), T (p,q), T'(p, h1), - , T'(p, hs—3). Then we have a

s—2 s—2
2x ((s+1)—2) submatrix A= E;; + > Eijn, + Epj + > Epp, such that T'(A) is
i=1 i=1

an 1 x (s + 1) submatrix in the rth row. Thus the claim is satisfied for k = s + 1.
By the mathematical induction, the claim is true.

Case 2. k=n+a > n+ 2: Consider a matrix

n n a—=2 n
Y=Y Eis+Y Byt Y Eng
s=1 t=1 h=1g=1

with rank 1 and perimeter k. Then T maps the ith and pth row of Y into the rth
row with nonzero scalar multiplication by Lemma 2.4. Thus the perimeter of T'(Y)
is less than k, a contradiction.

Hence T"(i,j) # T (p, q) for any two distinct pairs (¢,7), (p,q) € Ay pn. There-
fore T" is a bijection on A, ,. O

The condition of £ # n + 1 in Lemma 2.5 must be necessary. The following
example shows that T is a linear operator preserving both rank and perimeters 2
and n + 1 of rank-1 matrices, but 7" is not a bijection on A, .

Example 2.6. Consider a linear operator 7' on My 3(K) defined by

7l @ b ¢ _la+e b+ f cH+d
d e fl)] | 0 0 0 |-
Then we can easily show that T preserves both rank and perimeters 2 and 4 of

rank-1 matrices. But 7" is not a bijection on A 3.

Theorem 2.7. Let T be a linear operator on My, ,(K). Then the following are
equivalent :

(1) T is a (P,Q, B)-operator;
(2) T preserves both rank and perimeter of rank-1 matrices;

(3) T preserves both rank and perimeters 2 and k(k > 4,k # n + 1) of rank-1
matrices.
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Proof. (1) = (2): clear by Proposition 2.1. (2) = (3): it is obvious. (3) = (1):
Assume (3). Then the corresponding mapping T : A, , — Ay, is & bijection by
Lemma 2.5. Furthermore, there are two cases: (a) T* maps R onto R and maps C
onto C, or (b) T* maps R onto C and maps C onto R.

Case (a): We note that T*(R;) = R,(;) and T*(C;) = Crjy for all i = 1,--- ,m
and j = 1,--- ,n, where o and 7 are permutations of {1,---,m} and {1,--- ,n},
respectively. Let P and @ be the permutation matrices corresponding to ¢ and T,
respectively. Then for any E;; € E, ,,, we can write T'(Ei;) = b;j Ey(;)-(;) for some
nonzero scalar b;; € K. Now we claim that B = [b;;] € M, ,(K) has rank 1. For,
consider an m X n matrix J, all of whose entries are 1. Then we have

m

1) =T( 3D By ) = 3D T(Ey) = 3 byt = PBQ.

i=1 j=1 i=1 j=1 i=1 j=1

Since J has rank 1, it follows that »(7'(J)) = 1, and hence r(B) = r(PBQ) =
r(T'(J)) = 1. Therefore for any A = [a;;] € My, »(K), we have

T(A) = T(iiaijEz‘j):iiaijT(‘Eij)

i=1j=1 i=1 j=1
= > > aijbijEeiyr(j) = P(Ao B)Q.
i=1 j=1

Thus T is a (P, @, B)-operator.
Case (b): We note that m = n and T*(R;) = C,(;) and T*(Cj) = R,(;) for all

i,7, where o and 7 are some permutations of {1,--- ,m}. By an argument similar
to case (a), we obtain that T'(A) is of the form T'(A) = P(A! o B)Q, and thus T is
a (P, Q, B)-operator. a

We say that a linear operator 7' on M, ,(K) strongly preserves perimeter k of
rank-1 matrices if P (T(A)) =k if and only if P(A4) = k.
Consider a linear operator T on M,, ,(K) with n > 2 defined by

T(4) = ( zn: aij ) B

i,j=1
for all A = [a;;] € M, »(K). Then T preserves both rank and perimeter 2 of rank-1

matrices but does not strongly preserve perimeter 2 because p( > Eij> = 2n,
ij=1
n

ij=1

Corollary 2.8. Let T be a linear operator on M, ,(K). Then T preserves both
rank and perimeter of rank-1 matrices if and only if it preserves perimeter 3 and
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strongly preserves perimeter 2 of rank-1 matrices.

Proof. Suppose T preserves perimeter 3 and strongly preserves perimeter 2 of
rank-1 matrices. Then T maps each row of a matrix into a row or a column(if
m = n) with nonzero scalar multiplication. Since T strongly preserves perimeter
2, T maps each cell onto a cell with nonzero scalar multiplication. This means
that the corresponding mapping 7" is a bijection. Thus T preserves both rank and
perimeter of rank-1 matrices by the similar method in the proof of Theorem 2.7.
The converse is immediate. g

Thus we have characterizations of the linear operators that preserve both rank
and perimeter of rank-1 matrices over any chain semiring.
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