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Abstract. For a rank-1 matrix A, there is a factorization as A = abt, the product of two

vectors a and b. We characterize the linear operators that preserve rank and some equiv-

alent condition of rank-1 matrices over a chain semiring. We also obtain a linear operator

T preserves the rank of rank-1 matrices if and only if it is a form (P, Q, B)-operator with

appropriate permutation matrices P and Q, and a matrix B with all nonzero entries.

1. Introduction and preliminaries

There are many papers on linear operators that preserve the rank of matrices
over several semirings([1]-[6]). Matrices over a chain semiring also have been the
subject of research by many authors (see [2], [5]). Beasley and Pullman [1] defined
the perimeter of a Boolean rank-1 matrix in order to characterize the linear opera-
tors preserving Boolean rank. Song [5] obtained characterization of linear operators
that preserve column rank over the fuzzy scalars.

In this article, we consider the rank-1 matrices over a chain semiring and their
perimeters. We also characterize the linear operators that preserve the rank and
perimeter of the rank-1 matrices over a chain semiring.

A semiring is essentially a ring in which only the zero is required to have an
additive inverse.

Let K be any set of two or more elements. If K is totally ordered by < (i.e.,
x < y or y < x for all distinct elements x, y in K), then define x + y as max(x, y)
and xy as min(x, y) for all x, y ∈ K. If K has a universal lower bound and a
universal upper bound, then K becomes a semiring, and called a chain semiring.
The following are interesting examples of a chain semiring.

Let H be any nonempty family of sets nested by inclusion, 0 = ∩x∈H x, and
1 = ∪x∈H x. Then S = H ∪ {0, 1} is a chain semiring.

Let α, w be real numbers with α < w. Define S = {β ∈ R : α ≤ β ≤ w}. Then
S is a chain semiring. It is isomorphic to the chain semiring in the previous example
with H = {[α, β] : α ≤ β ≤ w}. Furthermore, if we choose the real numbers 0 and 1
as α and w in the previous example, then m×n matrices over F ≡ {β : 0 ≤ β ≤ 1}
is called fuzzy matrices.
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In particular, if we take H to be a singleton set, say {a}, and denote ∅ by 0 and
{a} by 1, the resulting chain semiring B = {0, 1} is called a binary Boolean algebra,
and it is a subsemiring of every chain semiring.

LetMm,n(K) denote the set of all m×n matrices with entries in a chain semiring
K. Then addition, multiplication by scalars, and product of matrices on Mm,n(K)
are defined as if K were a field.

The rank or factor rank, r(A), of a nonzero matrix A ∈ Mm,n(K) is defined
as the least integer k for which there exist m × k and k × n matrices B and C
with A = BC. The rank of a zero matrix is zero. We note that A ∈ Mm,n(K)
is a matrix with rank 1 if and only if there exist nonzero vectors a ∈ Mm,1(K)
and b ∈ Mn,1(K) such that A = abt. But the following example shows that these
vectors a and b are not uniquely determined by A.

Example 1.1. Let

A =
[
α1 α2 · · · αn

0 0 · · · 0

]

be a fuzzy matrix in M2,n(F) with n ≥ 2, where 0 < αi < 1 for all i. Then we have

A =
[
1
0

] [
α1 α2 · · · αn

]
=

[
γ
0

] [
α1 α2 · · · αn

]
= · · · ,

where αi ≤ γ < 1.

Let ∆m,n = {(i, j)| 1 ≤ i ≤ m, 1 ≤ j ≤ n} and Em,n = {Eij | (i, j) ∈ ∆m,n},
where Eij is the matrix whose (i, j)th entry is 1 and whose other entries are all 0.
We call Eij a cell.

For any vector u ∈Mm,1(K), we define |u| to be the number of nonzero entries
in u. Let A = [aij ] be any matrix in Mm,n(K). Then we define A∗ = [a∗ij ] to be
the matrix in Mm,n(B) whose (i, j)th entry is 1 if and only if aij 6= 0. It follows
from the definition that

(1.1) (AB)∗ = A∗B∗ and (B + C)∗ = B∗ +B C∗

for all A ∈Mm,n(K) and all B, C ∈Mn,r(K).
If A = [aij ] and B = [bij ] are in Mm,n(K), we say that A dominates B (written

A ≥ B or B ≤ A) if aij = 0 implies bij = 0 for all i, j. Then we can easily obtain
that A ≥ B if and only if (A + B)∗ = A∗ for all matrices A,B ∈Mm,n(K).

Lemma 1.2. For any factorization abt of a rank-1 matrix A ∈Mm,n(K), |a| and
|b| are uniquely determined by A.

Proof. It follows from (1.1) that A∗ = a∗(b∗)t is a rank-1 matrix inMm,n(B). Then
we can easily show that |a∗| and |b∗| are uniquely determined by A∗. Therefore |a|
and |b| are uniquely determined by A. ¤

For any rank-1 matrix A ∈ Mm,n(K), define the perimeter of A, P (A), as
|a| + |b| for arbitrary factorization A = abt. Even though the factorizations of
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A are not unique, Lemma 1.2 shows that the perimeter of A is unique, and that
P (A) = P (A∗).

2. Rank and perimeter preservers

A mapping T : Mm,n(K) → Mm,n(K) is called a linear operator if T (αA +
βB) = αT (A) + βT (B) for all A,B ∈Mm,n(K) and for all α, β ∈ K.

In this article, we characterize the set of linear operators preserving the rank
and the perimeter of every rank-1 matrix over any chain semiring. These are moti-
vated by analogous results for the set of linear operators that preserve all ranks in
Mm,n(K). However, we obtain results and proofs in view of the perimeter analog.

For matrices A = [aij ] and B = [bij ] in Mm,n(K), the Hadamard (or Schur)
product A ◦B of A and B is the m by n matrix whose (i, j)-entry equals aij bij .

Suppose that T is a linear operator on Mm,n(K). Then

(1) T is a (P, Q, B)-operator if there exist m×m and n×n permutation matrices
P and Q, respectively and a matrix B ∈ Mm,n(K) with all nonzero entries
and r(B) = 1 such that T (A) = P (A ◦B)Q for all A in Mm,n(K), or m = n
and T (A) = P (At ◦B)Q for all A in Mm,n(K).

(2) T preserve rank 1 if r(T (A)) = 1 whenever r(A) = 1 for all A ∈Mm,n(K).

(3) T preserve perimeter k of rank-1 matrices if P (T (A)) = k whenever P (A) = k
for all A ∈Mm,n(K) with r(A) = 1.

Theorem 2.1. If T is a (P, Q, B)-operator on Mm,n(K), then T preserves both
rank and perimeter of rank-1 matrices.

Proof. If T is a (P,Q, B)-operator on Mm,n(K), there exist m × m and n × n
permutation matrices P and Q, respectively such that T (A) = P (A ◦ B)Q, or
m = n and T (A) = P (At ◦ B)Q for all A in Mm,n(K), where B ∈ Mm,n(K) is
a matrix with all nonzero entries and r(B) = 1. Then we can write B = cdt,
where none of entries c or d is zero. Let A be a rank-1 matrix in Mm,n(K) with a
factorization A = abt. For the case T (A) = P (A ◦B)Q, we have the following :

T (A) = P (abt ◦ cdt)Q = P (a ◦ c)(b ◦ d)tQ =
(
P (a ◦ c)

)(
Qt(b ◦ d)

)t
. (2.1)

Thus (2.1) implies that

r(T (A)) = r
((

P (a ◦ c)
)(

Qt(b ◦ d)
)t

)
= 1

and

P (T (A)) = |P (a ◦ c)|+ |Qt(b ◦ d)| = |a ◦ c|+ |b ◦ d| = |a|+ |b| = P (A).

For the case m = n and T (A) = (At ◦B)Q, we can show that r(T (A)) = 1 and
P (T (A)) = P (A) by the similar method as above. ¤
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Furthermore, the converse of Theorem 2.1 is also true. We will show its proof
in Theorem 2.7(below). Also Example 2.3(below) shows that a linear operator
preserving ranks of all rank-1 matrices need not be (P, Q,B)-operator.

We note that a matrix has perimeter 2 if and only if it is a cell with nonzero
scalar multiplication. We say that A ∈ Mm,n(K) is a row (or column) matrix if A
has nonzero entries only in one row (column, respectively). A line matrix is a row
matrix or a column matrix. Thus we have the following Lemma:

Lemma 2.2. Let T be a linear operator on Mm,n(K). If T preserves rank and
perimeter 2 of every rank-1 matrix, then the following statements hold :

(1) T maps a cell into a cell with nonzero scalar multiplication ;

(2) T maps a line matrix into a line matrix.

Proof. (1) follows from the property that T preserves perimeter 2. (2) If not, there
exist two distinct cells E and F in same row (or column) such that T (E) and T (F )
lie in two different rows and different columns. Then we have r(E + F ) = 1, while
r(T (E + F )) = r(T (E) + T (F )) = 2. This contradicts to the fact that T preserves
rank 1. ¤

The following is an example of a linear operator that preserves rank and perime-
ter 2 of rank-1 matrices, but it does not preserve perimeter 2n(n ≥ 2) and is not a
(P,Q, B)-operator.

Example 2.3. Let T be a linear operator on Mn,n(K) with n ≥ 2 defined by

T (A) =
( n∑

i,j=1

aij

)
Ekk = max{aij | i, j = 1, · · · , n}Ekk

for all A = [aij ] ∈ Mn,n(K), where k is a fixed integer in {1, 2, · · · , n}. Then it
is easy to verify that T is a linear operator and preserves rank and perimeter 2 of
each rank-1 matrix. But T does not preserve perimeter 2n: for, if J ∈Mn,n(K) is a
matrix whose entries are all 1, then J has rank 1 and perimeter 2n, but T (J) = Ekk

has rank 1 and perimeter 2. Hence T is not a (P,Q, B)-operator by Theorem 2.1.

Let Ri = {Eij | 1 ≤ j ≤ n}, Cj = {Eij | 1 ≤ i ≤ m}, R = {Ri| 1 ≤ i ≤ m} and
C = {Cj | 1 ≤ j ≤ n}. For a linear operator T on Mm,n(K), define T ∗(A) = [T (A)]∗

for all A in Mm,n(K). Let T ∗(Ri) = {T ∗(Eij)| 1 ≤ j ≤ n} for each i = 1, · · · ,m
and T ∗(Cj) = {T ∗(Eij)| 1 ≤ i ≤ m} for each j = 1, · · · , n.

Lemma 2.4. Let T be a linear operator on Mm,n(K). Suppose that T preserves
rank and perimeters 2 and p (≥ 3) of rank-1 matrices. Then

(1) T maps two distinct cells in a row (column) into two distinct cells in a row
or in a column with nonzero scalar multiplication ;

(2) if T maps a row matrix into a row (or column if m = n) matrix then T maps
every row matrix into a row (or column if m = n) matrix, and if T maps a
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column matrix into a column (or row if m = n) matrix then T maps every
column matrix into a column (or row if m = n) matrix.

Proof. (1) Suppose T (Eij) = αErl and T (Eih) = βErl for some distinct pairs
(i, j), (i, h) ∈ ∆m,n and some nonzero scalars α, β ∈ K. Then T maps the ith row
matrix into rth row or lth column matrix by Lemma 2.2. Thus for any rank-1
matrix A with perimeter p (≥ 3) which dominates Eij + Eih, we can easily show
that T (A) has perimeter at most p− 1, a contradiction. Thus T maps two distinct
cells in a row into two distinct cells in a row or in a column with nonzero scalar
multiplication.

(2) If not, then there exist rows Ri and Rj such that T ∗(Ri) ⊆ Rr and
T ∗(Rj) ⊆ Cs for some (r, s) ∈ ∆m,n. Consider a rank-1 matrix D = Eip + Eiq +
Ejp + Ejq with p 6= q. Then we have

T (D) = T (Eip + Eiq) + T (Ejp + Ejq)
= (α1Erp′ + α2Erq′) + (β1Ep′′s + β2Eq′′s)

for some p′ 6= q′ and p′′ 6= q′′ and some nonzero scalars αi, βi ∈ K by (1). Therefore
r (T (D)) 6= 1 and T does not preserve rank 1, a contradiction. Hence T maps each
row matrix into a row (or column if m = n) matrix. Similarly, T maps each column
matrix into a column (or row if m = n) matrix. ¤

For a linear operator T on Mm,n(K) preserving rank and perimeter 2 of rank-1
matrices, we define the corresponding mapping T ′ : ∆m,n → ∆m,n by T ′(i, j) =
(k, l) whenever T (Eij) = bijEkl for some nonzero scalar bij ∈ K. Then T ′ is well-
defined by Lemma 2.2-(1).

Lemma 2.5. Let T be a linear operator preserving both rank and perimeters 2 and
k(k ≥ 4, k 6= n + 1) of rank-1 matrices. Then T ′ is a bijection on ∆m,n.

Proof. By Lemma 2.2, we have that for any Eij ∈ Em,n, there exist Erl ∈ Em,n

and nonzero bij ∈ K such that T (Eij) = bijErl. Without loss of generality, we may
assume that T maps the ith row of a matrix into the rth row with nonzero scalar
multiplication. Suppose that T ′(i, j) = T ′(p, q) for some distinct pairs (i, j), (p, q) ∈
∆m,n. By the definition of T ′, we have T (Eij) = bijErl and T (Epq) = bpqErl for
some nonzero scalars bij , bpq ∈ K. Lemma 2.4 implies that i 6= p and j 6= q.
Furthermore T maps the ith row and the pth row of a matrix into the rth row.

Case 1. 4 ≤ k ≤ n: Claim: we can choose a 2× (k − 2) submatrix A from ith
and pth row, but T (A) is a 1 × k submatrix in the rth row. If the claim is true,
then P (A) = k, while P (T (A)) = k + 1, a contradiction.

Proof of the claim. By Lemma 2.4, T maps distinct cells in each row (or column)
to distinct cells with nonzero scalar multiplication. Now, choose Eij , Epj but do
not choose Eiq, Epq. Since there is a cell Eph1 (h1 6= j, q) in the pth row such that
T ′(p, h1) = T ′(i, q) but T ′(i, h1) 6= T ′(p, j), we can choose a 2 × (4 − 2) submatrix
Eij +Eih1 +Epj +Eph1 whose image under T is an 1× 4 submatrix in the rth row.
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Therefore the claim is satisfied for k = 4. Assume that for k = s with 4 ≤ s ≤ n−1,
the claim is true. Then there is a 2× (s− 2) submatrix

X = Eij +
s−3∑
t=1

Eiht
+ Epj +

s−3∑
t=1

Epht

such that T (X) is an 1×s submatrix in the rth row, where {j, q, h1, · · · , hs−3} is the
set of distinct indices. Now, we can choose a cell Ephs−2 (hs−2 6= j, q, h1, · · · , hs−3)
such that T ′(i, hs−2) 6= T ′(p, j), T ′(p, q), T ′(p, h1), · · · , T ′(p, hs−3). Then we have a

2× ((s + 1)− 2) submatrix A = Eij +
s−2∑
t=1

Eiht
+ Epj +

s−2∑
t=1

Epht
such that T (A) is

an 1× (s + 1) submatrix in the rth row. Thus the claim is satisfied for k = s + 1.
By the mathematical induction, the claim is true.

Case 2. k = n + α ≥ n + 2: Consider a matrix

Y =
n∑

s=1

Eis +
n∑

t=1

Ep t +
α−2∑

h=1

n∑
g=1

Ehg

with rank 1 and perimeter k. Then T maps the ith and pth row of Y into the rth
row with nonzero scalar multiplication by Lemma 2.4. Thus the perimeter of T (Y )
is less than k, a contradiction.

Hence T ′(i, j) 6= T ′(p, q) for any two distinct pairs (i, j), (p, q) ∈ ∆m,n. There-
fore T ′ is a bijection on ∆m,n. ¤

The condition of k 6= n + 1 in Lemma 2.5 must be necessary. The following
example shows that T is a linear operator preserving both rank and perimeters 2
and n + 1 of rank-1 matrices, but T ′ is not a bijection on ∆m,n.

Example 2.6. Consider a linear operator T on M2,3(K) defined by

T

([
a b c
d e f

])
=

[
a + e b + f c + d

0 0 0

]
.

Then we can easily show that T preserves both rank and perimeters 2 and 4 of
rank-1 matrices. But T ′ is not a bijection on ∆2,3.

Theorem 2.7. Let T be a linear operator on Mm,n(K). Then the following are
equivalent :

(1) T is a (P, Q, B)-operator ;

(2) T preserves both rank and perimeter of rank-1 matrices ;

(3) T preserves both rank and perimeters 2 and k (k ≥ 4, k 6= n + 1) of rank-1
matrices.
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Proof. (1) ⇒ (2): clear by Proposition 2.1. (2) ⇒ (3): it is obvious. (3) ⇒ (1):
Assume (3). Then the corresponding mapping T : ∆m,n → ∆m,n is a bijection by
Lemma 2.5. Furthermore, there are two cases: (a) T ∗ maps R onto R and maps C
onto C, or (b) T ∗ maps R onto C and maps C onto R.

Case (a): We note that T ∗(Ri) = Rσ(i) and T ∗(Cj) = Cτ(j) for all i = 1, · · · ,m
and j = 1, · · · , n, where σ and τ are permutations of {1, · · · ,m} and {1, · · · , n},
respectively. Let P and Q be the permutation matrices corresponding to σ and τ ,
respectively. Then for any Eij ∈ Em,n, we can write T (Eij) = bijEσ(i)τ(j) for some
nonzero scalar bij ∈ K. Now we claim that B = [bij ] ∈ Mm,n(K) has rank 1. For,
consider an m× n matrix J , all of whose entries are 1. Then we have

T (J) = T
( m∑

i=1

n∑

j=1

Eij

)
=

m∑

i=1

n∑

j=1

T (Eij) =
m∑

i=1

n∑

j=1

bijEσ(i)τ(j) = PBQ.

Since J has rank 1, it follows that r(T (J)) = 1, and hence r(B) = r(PBQ) =
r(T (J)) = 1. Therefore for any A = [aij ] ∈Mm,n(K), we have

T (A) = T
( m∑

i=1

n∑

j=1

aijEij

)
=

m∑

i=1

n∑

j=1

aijT (Eij)

=
m∑

i=1

n∑

j=1

aijbijEσ(i)τ(j) = P (A ◦B)Q.

Thus T is a (P, Q,B)-operator.
Case (b): We note that m = n and T ∗(Ri) = Cσ(i) and T ∗(Cj) = Rτ(j) for all

i, j, where σ and τ are some permutations of {1, · · · ,m}. By an argument similar
to case (a), we obtain that T (A) is of the form T (A) = P (At ◦B)Q, and thus T is
a (P, Q,B)-operator. ¤

We say that a linear operator T on Mm,n(K) strongly preserves perimeter k of
rank-1 matrices if P (T (A)) = k if and only if P (A) = k.

Consider a linear operator T on Mn,n(K) with n ≥ 2 defined by

T (A) =
( n∑

i,j=1

aij

)
E11

for all A = [aij ] ∈Mn,n(K). Then T preserves both rank and perimeter 2 of rank-1

matrices but does not strongly preserve perimeter 2 because p
( n∑

i,j=1

Eij

)
= 2n,

while p
(
T

( n∑
i,j=1

Eij

))
= p(E11) = 2.

Corollary 2.8. Let T be a linear operator on Mm,n(K). Then T preserves both
rank and perimeter of rank-1 matrices if and only if it preserves perimeter 3 and
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strongly preserves perimeter 2 of rank-1 matrices.

Proof. Suppose T preserves perimeter 3 and strongly preserves perimeter 2 of
rank-1 matrices. Then T maps each row of a matrix into a row or a column(if
m = n) with nonzero scalar multiplication. Since T strongly preserves perimeter
2, T maps each cell onto a cell with nonzero scalar multiplication. This means
that the corresponding mapping T ′ is a bijection. Thus T preserves both rank and
perimeter of rank-1 matrices by the similar method in the proof of Theorem 2.7.

The converse is immediate. ¤
Thus we have characterizations of the linear operators that preserve both rank

and perimeter of rank-1 matrices over any chain semiring.
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