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HARDY TYPE ESTIMATES FOR RIESZ TRANSFORMS

ASSOCIATED WITH SCHRÖDINGER OPERATORS ON

THE HEISENBERG GROUP

Chunfang Gao

Abstract. Let Hn be the Heisenberg group and Q = 2n + 2 be its
homogeneous dimension. Let L = −∆Hn+V be the Schrödinger operator

on Hn, where ∆Hn is the sub-Laplacian and the nonnegative potential V

belongs to the reverse Hölder class Bq1 for q1 ≥ Q/2. Let Hp
L(Hn) be the

Hardy space associated with the Schrödinger operator L for Q/(Q+δ0) <

p ≤ 1, where δ0 = min{1, 2 − Q/q1}. In this paper, we consider the

Hardy type estimates for the operator Tα = V α(−∆Hn + V )−α, and the
commutator [b, Tα], where 0 < α < Q/2. We prove that Tα is bounded

from Hp
L(Hn) into Lp(Hn). Suppose that b ∈ BMOθL(Hn), which is larger

than BMO(Hn). We show that the commutator [b, Tα] is bounded from
H1
L(Hn) into weak L1(Hn).

1. Introduction

Let Hn be the Heisenberg group, Q = 2n+2, be its homogeneous dimension.
Let L = −∆Hn + V be the Schrödinger operator on Hn, where ∆Hn is the sub-
Laplacian and the nonnegative potential V belongs to the reverse Hölder class
Bq1 for q1 ≥ Q/2 and Q ≥ 3. As generalizations of the classical Riesz transform

∇(−∆)−1/2, Riesz type operators associated to L were studied widely by many
mathematicians. On Rn, Shen [13] investigated the fundamental solution of L
under the assumption that the potential belongs to the reverse Hölder’s class.
As an application, Shen [13] obtained the Lp-boundedness of the operators
T1 = (−∆ + V )−1V and T2 = (−∆ + V )−1/2V 1/2. By a different technology,
for the operators {

T1,Hn = (−∆Hn + V )−1V ;

T2,Hn = (−∆Hn + V )−1/2V 1/2,
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Li [5] further extended the results of [13] to the Heisenberg group Hn. It is
obvious that Ti, i = 1, 2, is the special cases of the following Riesz type operator:

T ∗α := (−∆Hn + V )−αV α, α > 0.

In this paper, we consider the Hardy type estimates for the operator Tα, and
the commutator [b, Tα], where 0 < α < Q/2. The investigation of Riesz type
operators Tα on Hn with nonnegative potentials has attracted the attention of
many authors. Liu-Tang [10] proved that the dual operators T ∗1,Hn and T ∗2,Hn
are bounded from Hp

L(Hn) into Lp(Hn) for Q/(Q+ δ0) < p ≤ 1. Tang-Liu [9]
considered the Schrödinger operator L = −∆Hn + V , where ∆Hn is the sub-
Laplacian and the nonnegative potential V belongs to the reverse Hölder class
Bq1 for q1 > Q/2, and showed that the operator T ∗α := V α(−∆Hn + V )−α is
bounded from H1

L(Hn) into L1(Hn). For further information on this topic, we
refer the reader to [4, 5, 9, 10,13] and the references therein.

In the study of harmonic analysis and the partial differential equations, the
commutators related to singular integral operators play an important role. On
Rn, Bongioanni, Harboure and Salinas [1] introduced a new class of BMO type
spaces associated with Schrödinger operators denoted by BMOσ(ρ) as a gener-
alization of BMO(Rn). In [1], the authors proved the Lp(Rn)-boundedness of
[b,∇(−∆ +V )−1/2], where b ∈ BMOσ(ρ). Suppose that b ∈ BMOσ(ρ), which
is larger than BMO(Rn). Li-Wan [6] proved that the commutators [b, Tβ ] and

[b, RL] are bounded on Herz spaces, where RL = ∇(−∆ + V )−1/2 is the Riesz
transform associated to L. Hu-Wang [3] considered the Hardy type estimates
for the operator V α(−∆ + V )−α, 0 < α < n/2, and proved that the commuta-
tor [b, Tα] is bounded from H1

L(Rn) into weak L1(Rn), where b is a new BMO
function. In the Heisenberg setting, Li-Peng [5] obtained the Lp-estimates for
commutators [b, Ti], i = 1, 2, where b ∈ BMO(Hn). For further progress on
commutators related with Schrödinger operator, we refer to Li-Wan [6], [7].

Inspired by the above results, we are interested in the boundedness of Tα
and [b, Tα] on Hp

L(Hn). The results of this paper are as follows.

Theorem 1.1. Let V ∈ Bq1 with q1 > Q/2, and let 0 < α < Q/2. Suppose
Q/(Q+ δ0) < p ≤ 1. Then

‖Tαf‖Lp(Hn) ≤ C ‖f‖HpL(Hn) ,

where δ0 = min {1, 2−Q/q1}.

Theorem 1.2. Let V ∈ Bq1 with q1 > Q/2, and let 0 < α < Q/2. Suppose
b ∈ BMOθL(Hn). Then the commutator [b, Tα] is bounded from H1

L(Hn) into
weak L1(Hn).

This paper is organized as follows. In Section 2, we state some notations and
known results which will play an important role in this paper. In Section 3, we
prove that the operator Tβ1,β2

= (−∆Hn +V )−β1V β2 is bounded from Lp1(Hn)
into Lp2(Hn), where 0 ≤ β2 ≤ β1 < Q/2, 1/p2 = 1/p1 − (2β1 − 2β2)/Q. In
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Section 4, we prove that the commutator [b, Tα] is bounded on Lp(Hn) with
b ∈ BMOθL(Hn). In Section 5, we give the proofs of main results.

Throughout this paper, we use c and C to denote universal positive con-
stants. The constants are independent of the functions and may different in
different situations. If c−1A ≤ B ≤ cA, we denote A ≈ B.

Let’s review some basic facts about the Heisenberg group. The Heisenberg
group is a Lie group with basic manifold Rn × Rn × R, and its multiplication
is defined as

(x, y, t)(x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2x′y − 2xy′).

On Hn, a basis for the Lie algebra of left-invariant vector fields is defined by

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
+ 2xj

∂

∂t
, T =

∂

∂t
, j = 1, 2, . . . , n.

All non-trivial commutation relations are given by [Xj ,Yj ] = −4T, j = 1, 2,
. . . , n. The sub-Laplacian ∆Hn is defined by ∆Hn =

∑n
j=1(X2

j + Y2
j ) and the

gradient operator ∇Hn is defined by ∇Hn = (X1,X2, . . . ,Xn,Y1,Y2, . . . ,Yn).
on Hn, the dilations have the form δλ(x, y, t) = (λx, λy, λ2t), λ > 0. The Haar
measure on Hn coincides with the Lebesgue measure on Rn × Rn × R. |E|
presents the measure of any measurable set E. Then |δλE| = λQ|E|, where
Q = 2n+ 2 is called the homogeneous dimension of Hn.

On Hn, a homogeneous norm function is defined by |g| = ((|x|2 + |y|2)2 +
|t|2)1/4, g = (x, y, t) ∈ Hn. This norm satisfies the triangular inequality and
leads to a left-invariant distant function d(g, h) = |g−1h|. Then the ball of
radius r centered at g is defined by B(g, r) = {h ∈ Hn :

∣∣g−1h
∣∣ < r}. The ball

B(g, r) is the left translation by g of B(0, r) and we have |B(g, r)| = α1rQ,
where α1 = |B(0, 1)|, but it is not important for us.

2. Preliminaries

2.1. Schrödinger operator and the auxiliary function

In this paper, we consider the Schrödinger differential operator L = −∆Hn +
V on Hn, where the potential V ∈ Bq1 , q1 ≥ Q/2, is defined as follows.

Definition. A nonnegative locally Lq1 integrable function V on Hn is said to
belong to Bq1 , 1 < q1 < ∞, if there exists C > 0 such that the reverse Hölder
inequality ( 1

|B|

∫
B

V (g)q1dg
)1/q1

≤ C

|B|

∫
B

V (g)dg

holds for every ball B in Hn.

Suppose that V ∈ Bq1 for some q1 > Q/2. The definition of the auxiliary
function m(g, V ) is given as follows.
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Definition. For g ∈ Hn, the auxiliary function m(g, V ) is defined by

ρ(g) =
1

m(g, V )
= sup

r>0

{
r :

1

rQ−2

∫
B(g,r)

V (h)dh ≤ 1
}
.

Next we give some related lemmas about the auxiliary function. We assume
that the potential V is nonnegative and belongs to Bq1 for q1 ≥ Q/2. Lemmas
2.1-2.5 below have been proved in [11].

Lemma 2.1. There exists a constant C > 0 such that for 0 < r < R <∞,

1

rQ−2

∫
B(g,r)

V (h)dh ≤ C
(R
r

)Q/q1−2 1

RQ−2

∫
B(g,R)

V (h)dh.

Lemma 2.2. If r = ρ(g), then 1
rQ−2

∫
B(g,r)

V (h)dh = 1. 1
rQ−2

∫
B(g,r)

V (h)dh ∼
1 if and only if r ∼ ρ(g).

Lemma 2.3. There exist C > 0 and k0 > 0 such that

(2.1)

1

C

(
1 +m(g, V )|g−1h|

)−k0
≤ m(h, V )

m(g, V )

≤ C
(

1 + |g−1h|m(g, V )
)k0/(k0+1)

.

In particular, ρ(g) ≈ ρ(h) if |g−1h| < Cρ(g).

A ball centered at g and with radius ρ(g) is called critical. In this paper,
we use the symbol B(g, ρ(g)) to denote the critical ball. The inequality (2.1)
implies that if g, h ∈ Q = B(g, ρ(g)), then ρ(g) ≤ C0ρ(h), where the constant
C0 depends on the constants C and k0 in (2.1).

Lemma 2.4. There exist C > 0 and l0 > 0 such that∫
B(g,R)

V (h)

|g−1h|Q−2
dh ≤ C

RQ−2

∫
B(g,R)

V (h)dh ≤ C (1 +Rm(g, V ))
l0 .

Lemma 2.5. The measure V (h)dh is a doubling measure. Namely, there exists
a constant C such that∫

B(g,2r)

V (h)dh ≤ C
∫
B(g,r)

V (h)dh

for all balls B(g, r) in Hn.

Lemma 2.6. Suppose that V ∈ Bq1 with q1 > Q/2. Let k ∈ N and g ∈
2k+1B(g0, r) \ 2kB(g0, r). Then

1

(1 + 2kr/ρ(g))
N
≤ C

(1 + 2kr/ρ(g0))
N/(k0+1)

.

Proof. Via a simple computation, for g ∈ 2k+1B(g0, r) \ 2kB(g0, r) and h ∈
B(g0, r), we can deduce that |g−1h| ≈ 2kr. By (2.1), we can get

ρ(g) ≤ Cρ(g0)
(

1 + |g−1h|/ρ(g0)
)k0/(k0+1)

≤ Cρ(g0)
(

1 + 2kr/ρ(g0)
)k0/(k0+1)

.
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This gives

1

(1 + 2kr/ρ(g))
N
≤ C(

1 + 2kr

ρ(g0)

(
1+2kr/ρ(g0)

)k0/(k0+1)

)N
≤ C(

1 + 2kr/ρ(g0)
)N/(k0+1)

.

This completes the proof of Lemma 2.6. �

2.2. New BMO type spaces BMOθL(Hn)

According to [1], we define the new BMO type space BMOθL(Hn) on Hn.

Definition. The new BMO type space BMOθL(Hn) with 0 ≤ θ <∞ is defined
as the set of all locally integrable functions b such that

1

|B(g, r)|

∫
B(g,r)

|b(h)− bB | dh ≤ C
(

1 +
r

ρ(g)

)θ
(2.2)

for all g ∈ Hn and r > 0, where bB = 1
|B|
∫
B
b(h)dh. A norm for b ∈

BMOθL(Hn), denoted by [b]θ, is given by the infimum of the constants in (2.2).
Clearly, BMO(Hn) ⊆ BMOθL(Hn).

We give some lemmas concerning the function b which will play an important
role to obtain the main results.

Lemma 2.7. Let θ > 0 and 1 ≤ s <∞. If b ∈ BMOθL(Hn), then(
1

|B|

∫
B

|b(h)− bB |sdh
)1/s

≤ C[b]θ

(
1 +

r

ρ(g)

)θ′
(2.3)

for all B = B(g, r) with g ∈ Hn and r > 0, where θ′ = (k0 + 1)θ and k0 is the
constant appearing in Lemma 2.3.

Proof. From the standard John-Nirenberg inequality, given a ball B0 and a
function f ∈ BMO(B0), for each 1 ≤ s <∞, we have( 1

|B|

∫
B

|f(h)− fB |sdh
)1/s

≤ C‖f‖BMO(B0)(2.4)

for every ball B ⊂ B0, where the constant C is independent of the ball B0.
Therefore, to prove (2.3), we only need to show the claim: if R ≥ 1 and Q

is a critical ball, then we have b ∈ BMO(RQ) and

‖b‖BMO(RQ) ≤ C[b]θ(1 +R)(k0+1)θ.

If this is true, an application of (2.4) implies that for any ball B ⊂ RQ,(
1

|B|

∫
B

|b(h)− bB |sdh
)1/s

≤ C[b]θ(1 +R)(k0+1)θ.(2.5)
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Now, let B = B(g, r) and Q = B(g, ρ(g)) with g ∈ Hn and r > 0. If r ≤ ρ(g),
choose R = 1. We may apply (2.5) to get (2.3). In the case r > ρ(g), we notice
that B = (r/ρ(g))Q. Then we apply (2.5) with R = r/ρ(g) which yields (2.3).

Next we prove the claim. Let B = B(z, r) ⊂ RQ with z ∈ Hn and r > 0.
Due to (2.1), we have ρ(g)(1+R)−k0 ≤ Cρ(z). Since r < Rρ(g), then r/ρ(z) ≤
C(1 +R)k0+1. By b ∈ BMOθL(Hn), it leads to

1

|B|

∫
B

|b(h)− bB |dh ≤ C[b]θ(1 +R)(k0+1)θ.

This completes the proof of Lemma 2.7. �

Lemma 2.8. Let b ∈ BMOθL(Hn), B = B(g, r) and s ≥ 1. Then( 1

|2kB|

∫
2kB

|b(h)− bB |sdh
)1/s

≤ C[b]θk
(

1 +
2kr

ρ(g)

)θ′
for all k ∈ N with r > 0, where θ′ = (k0 + 1)θ and k0 is the constant appearing
in Lemma 2.3.

Proof. Following standard arguments and Lemma 2.7, we have( 1

|2kB|

∫
2kB

|b(h)− bB |sdh
)1/s

≤ C
( 1

|2kB|

∫
2kB

|b(h)− b2kB |sdh
)1/s

+

k∑
j=1

|b2jB − b2j−1B |

≤ C[b]θ

k∑
j=1

(
1 +

2jr

ρ(g)

)θ′
≤ C[b]θk

(
1 +

2kr

ρ(g)

)θ′
.

This completes the proof of Lemma 2.8. �

2.3. Hardy space Hp
L(Hn) associated with the Schrödinger

operator L

We recall the Hardy space Hp
L(Hn) associated with the Schrödinger operator

L = −∆Hn + V on Hn established in [10]. When p = 1, H1
L(Hn) has been

studied in [8].
Let {Ts : s > 0} = {es4Hn : s > 0} be the heat semigroup with the

convolution kernel Hs(g). We know 0 < Hs(g) ≤ Cs−
Q
2 e−A0s

−1|g|2 , where A0

is a positive constant. The Schrödinger operator L generates a (C0) contraction
semigroup. Let KLs (g, h) denote the kernel of TLs , 0 ≤ KLs (g, h) ≤ Hs(g, h) =
Hs(h

−1g).
Let us consider the maximal functions with respect to the semigroups {Ts :

s > 0} and {TLs : s > 0} defined by Mf(g) = sup
s>0
|Tsf(g)|, MLf(g) =

sup
s>0
|TLs f(g)|. It is well known that the maximal function Mf characterizes
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the Hardy space H1(Hn), that is, f ∈ H1(Hn) if and only if Mf ∈ L1(Hn),
and ‖f‖H1 ∼ ‖Mf‖L1 .

In [8], the Hardy space H1
L(Hn) associated with the Schrödinger operator L

is defined as follows.

Definition. A function f ∈ L1(Hn) is said to be in H1
L(Hn) if the maximal

function MLf belongs to L1(Hn). The norm of such a function is defined by
‖f‖H1

L(Hn) =
∥∥MLf∥∥

L1(Hn)
.

In [10], Liu and Tang introduced the Campanato type space on Hn in order
to define the dual space of the Hardy space associated with the Schrödinger
operator L. Let f be a locally integrable function on Hn. Set

fB =
1

|B|

∫
B

f(h)dh

and

f(B, V ) =

{
fB , r < ρ(g),
0, r ≥ ρ(g),

where B = B(g, r). Let δ0 = min {1, 2−Q/q1}, Q/(Q + δ0) < p < 1 and
1 ≤ q′ ≤ ∞. A locally integrable function f is said to be in the Campanato
type space ΛL1/p−1,q′(H

n) if

‖f‖ΛL
1/p−1,q′ (H

n) = sup
B⊆Hn

{
|B|1−1/p

(∫
B

|f − f(B, V )|q
′ dh

|B|

)1/q′}
<∞.

The spaces ΛL1/p−1,q′(H
n) are mutually coincident with equivalent norms and

they are the dual space of Hp
L(Hn). Thus it will be simply denoted by

ΛL1/p−1(Hn).

They concluded that, for every t > 0,

sup
h⊆Hn

∥∥HLt (·, h)
∥∥

ΛL
1/p−1

(Hn)
< Ct−Q/2p.(2.6)

Thus by (2.6), Liu and Tang concluded that the maximal function MLf is well

defined for f ∈
(

ΛL1/p−1(Hn)
)∗

. The Hardy space Hp
L(Hn) is defined as follows

for Q/(Q+ δ0) < p < 1.

Definition. Let δ0 = min {1, 2−Q/q1}. For Q/(Q + δ0) < p < 1, we say

that f ∈
(

ΛL1/p−1(Hn)
)∗

is an element of Hp
L(Hn) if the maximal function

MLf belongs to Lp(Hn). The quasi-norm of f is defined by ‖f‖pHpL(Hn) =∥∥MLf∥∥p
Lp(Hn)

.

Definition. Let Q/(Q+δ0) < p ≤ 1 ≤ q ≤ ∞ and p 6= q. A function a is called
an Hp,q

L (Hn)-atom associated to a ball B(g0, r) if r < ρ(g0) and a satisfies the
following conditions:

(i) suppa ⊂ B(g0, r),
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(ii) ‖a‖Lq(Hn) ≤ |B(g0, r)|1/q−1/p,

(iii) If r < ρ(g0)/4, then
∫
B(g0,r)

a(g)dg = 0.

The atomic quasi-norm is defined by

‖f‖Hp,qL (Hn) ∼ inf{(
∑
j

|λj |p)1/p},

where the infimum is taken over all atomic decompositions f =
∑
j λjaj , where

aj are Hp,q
L (Hn)-atoms and λj are scalars.

Proposition 2.9 ([10, Proposition 1]). Let δ0 = min {1, 2−Q/q1}, Q/(Q +
δ0) < p ≤ 1 ≤ q ≤ ∞, p 6= q. Then f ∈ Hp

L(Hn) if and only if f can be written
as f =

∑
j λjaj, where aj are Hp,q

L (Hn)-atoms and
∑
j |λj | <∞, and the sum

converges in the Hp
L(Hn) quasi-norm.

2.4. Estimates of fundamental solutions for the Schrödinger operator

We recall the estimates of fundamental solutions of the operator −∆Hn +
V + λ and the estimates of the kernels of Riesz transforms. Let Γ(g, h, λ) be
the fundamental solution of the operator −∆Hn + V + λ, where λ ∈ [0,∞).
Obviously, Γ(g, h, λ) = Γ(h, g, λ).

Lemma 2.10 ([10, Lemma 5]). Suppose V ∈ Bq1 , q1 > Q/2. For any integer
N > 0, there exists CN > 0 such that for g 6= h,

|Γ(g, h, λ)| ≤ CN{
1 + |g−1h||λ|1/2

}N {1 + |g−1h|ρ(g)−1}N
· 1

|g−1h|Q−2
.

Let Kα be the kernel of the operator (−∆Hn + V )−α. The operator Tα =
V α(−∆Hn + V )−α is defined by

Tαf(g) =

∫
Hn
V α(g)Kα(g, h)f(h)dh.

Lemma 2.11 ([9, Lemma 3.2]). Suppose V ∈ Bq1 , q1 > Q/2. For any integer
N > 0, there exists CN > 0 such that

|Kα(g, h)| ≤ CN

{1 + |g−1h|ρ(g)−1}N
· 1

|g−1h|Q−2α

and

|Kα(g, ξh)−Kα(g, h)| ≤ CN

{1 + |g−1h|ρ(g)−1}N
· |ξ|δ

|g−1h|Q−2α+δ

for any g, h ∈ Hn, |ξ| ≤ |g−1h|/2 and for some δ > 0.

3. Schrödinger type operators on Lp(Hn)

In this section, we consider the Schrödinger type operator Tβ1,β2
and its

duality on Hn, where the potential V ∈ Bq1 , q1 ≥ Q/2, Tβ1,β2
= (−∆Hn +

V )−β1V β2 . We show that the operator Tβ1,β2
is bounded from Lp1(Hn) into
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Lp2(Hn). Moreover, when β1 = β2 = α, we obtain the Lp(Hn)-boundedness of
Tα = V α(−∆Hn + V )−α.

Definition. Let f ∈ Lqloc(Hn). The Hardy-Littlewood maximal function Mf
and its variant Mσ,γf are defined by

Mf(g) = sup
g∈B

1
|B|
∫
B
|f(h)|dh,

Mσ,γf(g) = sup
g∈B

(
1

|B|1−σγ/Q
∫
B
|f(h)|γdh

)1/γ

.

If σ = 0, then M0,γf(g) will be denoted by Mγf(g).

Lemma 3.1 ([2]). Suppose 1 < γ < p1 < Q/σ and 1/p2 = 1/p1 − σ/Q. Then

‖Mσ,γf‖Lp2 (Hn) ≤ C ‖f‖Lp1 (Hn) .

Theorem 3.2. Suppose that V ∈ Bq1 for q1 > Q/2. Let 0 ≤ β2 ≤ β1 < Q/2.
Then

|(−∆Hn + V )−β1(V β2f)(g)| ≤ CM2(β1−β2),(q1/β2)′f(g),

where (q1/β2)′ is the conjugate of (q1/β2).

Proof. Let r = ρ(g), B = B(g0, r). With the help of Lemma 2.11, we use
Hölder’s inequality to deduce that

I := |(−∆Hn + V )−β1(V β2f)(g)|

≤ C
+∞∑

k=−∞

∫
2kB\2k−1B

1

(1 + |g−1h|ρ(g)−1)N
· 1

|g−1h|Q−2β1
· V β2(h)|f(h)|dh

≤ C
+∞∑

k=−∞

(2kr)2β2

(1 + 2k)N
·
( 1

|2kB|

∫
2kB

|V (h)|dh
)β2

·M2(β1−β2),(q1/(q1−β2))f(g).

For k ≥ 1, because V (h)dh is a doubling measure, we have

(2kr)2

|2kB|

∫
2kB

V (h)dh ≤ C (2kr)2

(2kr)Q

∫
2kB

V (h)dh ≤ C(1 + 2k)l0 .

Taking N large enough such that N − l0β > 0, we can get

+∞∑
k=1

(1 + 2k)l0β

(1 + 2k)N
·M2(β1−β2),q1/(q1−β2)f(g) ≤ CM2(β1−β2),q1/(q1−β2)f(g).

For k ≤ 0, Lemma 2.1 implies that

(2kr)2

|2kB|

∫
2kB

V (h)dh ≤ C 1

(2kr)Q−2

∫
2kB

V (h)dh ≤ C(2k)2−Q/q1 .

Take N large enough, we obtain

0∑
k=−∞

(2k)2−Q/q1

(1 + 2k)N
·M2(β1−β2),q1/(q1−β2)f(g) ≤ CM2(β1−β2),q1/(q1−β2)f(g).



244 C. GAO

Finally, it holds

|(−∆Hn + V )−β1(V β2f)(g)| ≤ CM2(β1−β2),(q1/β2)′f(g). �

By Theorem 3.2 and the duality, we can obtain:

Corollary 3.3. Suppose V ∈ Bq1 for q1 > Q/2.
(1) If 1 < (q1/β2)′ < p1 < Q/(2β1− 2β2) and 1/p2 = 1/p1− (2β1− 2β2)/Q,

then ∥∥(−∆Hn + V )−β1V β2f
∥∥
Lp2 (Hn)

≤ C ‖f‖Lp1 (Hn) ,

where q1/β2 + (q1/β2)′ = 1.
(2) If 1 < p2 < q1/β2 and 1/p2 = 1/p1 − (2β1 − 2β2)/Q, then∥∥V β2(−∆Hn + V )−β1f

∥∥
Lp2 (Hn)

≤ C ‖f‖Lp1 (Hn) .

Let β1 = β2. By Theorem 3.2, we can obtain the following results.

Corollary 3.4. Suppose that V ∈ Bq1 with q1 > Q/2. Let 1 < α < Q/2.
(1) For q1/(q1 − α) < p ≤ ∞, T ∗α is bounded on Lp(Hn).
(2) For 1 ≤ p < q1/α, Tα is bounded on Lp(Hn).

4. Boundedness of the commutators on Lp(Hn)

In this section, let b ∈ BMOθL(Hn). We consider the boundedness of the
commutator [b, Tβ ] and its duality on Lp(Hn), where Tβ = (−∆Hn + V )−βV β ,
β > 0.

Proposition 4.1 ([8]). There exists a sequence of points {gk}∞k=1 ⊂ Hn such
that the family of critical balls {Qk = B(gk, ρ(gk))}∞k=1 satisfies:

(i) Hn = ∪kQk.
(ii) There exists N such that for every k ∈ N, card {j : 4Qj∩4Qk 6= ∅} ≤ N .

Definition. Let γ > 0 and Bρ,γ = {B(h, r) : h ∈ Hn, r ≤ γρ(h)}. For
f ∈ L1

loc(Hn) and g ∈ Hn, define the following two maximal functions:
Mρ,γ(f)(g) = sup

g∈B∈Bρ,γ

1
|B|
∫
B
|f(h)|dh,

M ]
ρ,γ(f)(g) = sup

g∈B∈Bρ,γ

1
|B|
∫
B
|f(h)− fB |dh.

Definition. Let S(Q) = {B(h, r) : h ∈ Q, r > 0} and let Q be a ball in Hn.
For f ∈ L1

loc(Hn) and h ∈ Q, define
MQ(f)(g) = sup

g∈B∈S(Q)

1
|B∩Q|

∫
B∩Q

|f(h)|dh,

M ]
Q(f)(g) = sup

g∈B∈S(Q)

1
|B∩Q|

∫
B∩Q

|f(h)− fB∩Q|dh.
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Lemma 4.2 (Fefferman-Stein type inequality). For 1 < p < ∞, there exist ξ
and γ such that if {Qk}∞k=1 is a sequence of the balls as those in Proposition
4.1, then for all f ∈ L1

loc(Hn),∫
Hn
|Mρ,ξ(f)(g)|pdg

≤ C
{∫

Hn
|M ]

ρ,γ(f)(g)|pdg +
∑
k

|Qk|
( 1

|Qk|

∫
2Qk
|f(g)|dg

)p}
.

Proof. If Q = (g, ρ(g)) is a critical ball and g ∈ Q, we can see that

Mρ,ξf(g) ≤M2Q(fχ2Q)(g)(4.1)

with ξ = 1/2C2
0 (C0 is the constant appearing in Lemma 2.3), and for g ∈ 2Q,

M ]
2Q(fχ2Q)(g) ≤ CM ]

ρ,2f(g).(4.2)

Now we prove (4.2). In fact, given a ball B = B(h, r) ∈ S(2Q), we divide
the argument according to r greater or less than 3−k0/(k0+1)ρ(g0)/C, where
C and k0 are the constants appearing in Lemma 2.3. In the first case, r >
3−k0/(k0+1)ρ(g0)/C, B ∩ 2Q has the measure comparable to 2Q which belongs
to Bρ,2. In the other case, r < 3−k0/(k0+1)ρ(g0)/C, we apply B ∈ Bρ,1 ⊂ Bρ,2
to deduce that |B ∩ 2Q| is comparable with |B|.

Next we use the decomposition of Hn given by Proposition 4.1, Proposition
3.4 in [12], and inequalities (4.1) and (4.2) to obtain∫

Hn
|Mρ,ξ(f)|p dh ≤

∑
k

∫
Qk
|M2Qk(fχ2Qk)|p dh

≤ C
∑
k

∫
2Qk

∣∣∣M ]
2Qk(fχ2Qk)

∣∣∣p dh
+ C

∑
k

|2Qk|
( 1

|2Qk|

∫
2Qk
|f(h)|dh

)p
≤ C

∫
Hn

∣∣∣M ]
ρ,4(f)

∣∣∣p dh+
∑
k

|Qk|
( 1

|Qk|

∫
2Qk
|f(h)|dh

)p
.

This completes the proof of Lemma 4.2. �

Theorem 4.3. Suppose that V ∈ Bq1 , q1 ≥ Q/2, and b ∈ BMOθL(Hn), 0 <
θ < ∞. If q1/(q1 − β) < p < ∞, there exists a constant C > 0 such that, for
all f ∈ Lploc(Hn) and every critical ball Q = B(g0, ρ(g0)),

1

|Q|

∫
Q
|[b, Tβ ]f(g)|dg ≤ C[b]θ

{
inf
g∈Q

Mpf(g) + inf
g∈Q

Mp(Tβf)(g)
}
.

Proof. For any constant a, b(g)− b(h) = (b(g)− a)− (b(h)− a). Then we have
[b, Tβ ]f(g) := I + II, where{

I := (b(g)− a)Tβf(g),
II := Tβ((b(g)− a)f)(g).
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Let f ∈ Lp(Hn) and Q = B(g0, ρ(g0)) with a = b2Q. We deal with the average
of I and II on Q, respectively. For I, using Lemma 2.7 and Hölder’s inequality
with p > q1/(q1 − β), we can get

1

|Q|

∫
Q
|I|dg ≤

( 1

|Q|

∫
Q
|b(g)− b2Q|p

′
dg
)1/p′( 1

|Q|

∫
Q
|Tβf(g)|pdg

)1/p

≤ C[b]θ inf
g∈Q

Mp(Tβf)(g).

For II, we set f = f1+f2, where f1(g) = f(g)χ2Q(g) and f2(g) = f(g)χ(2Q)c(g).
Take p1 ∈ (q1/(q1−β), p) and denote m = p/(p−p1). By Corollary 3.4, Lemma
2.7 and Hölder’s inequality, we have

1

|Q|

∫
Q
|Tβ((b− b2Q)f1)(g)|dg

≤ C
( 1

|Q|

∫
2Q
|b(g)− b2Q|mp1dg

)1/mp1( 1

|Q|

∫
2Q
|f(g)|pdg

)1/p

≤ C[b]θ inf
g∈Q

Mp(f)(g).

Now we consider the term

1

|Q|

∫
Q
|Tβ((b− b2Q)f2)(g)|dg.

Since g ∈ B(g0, ρ(g0)) and z ∈ 2j+1B \ 2jB, then |g−1z| ≈ |g−1
0 z| ≈ 2jρ(g0).

With the help of Lemma 2.6 and Lemma 2.8, we use Hölder’s inequality to
obtain

1

|Q|

∫
Q
|Tβ((b− b2Q)f2)(g)|dg

≤ C

∞∑
j=1

1

(1 + 2j)N/(k0+1)

|2j+1ρ(g0)|Q

|2jρ(g0)|Q−2β

(
1

|2j+1Q|

∫
2j+1Q

|V (z)|q1dz
)β/q1

×
(

1

|2j+1Q|

∫
2j+1Q

|f(z)|pdz
)1/p(

1

|2j+1Q|

∫
2j+1Q

|b(z)− b2Q|p0dz
)1/p0

≤ C

∞∑
j=1

j

(1 + 2j)N/(k0+1)−l0β−θ′
[b]θ inf

h∈Q
Mp(f)(h)

≤ C[b]θ inf
h∈Q

Mp(f)(h),

where β/q1 + 1/p+ 1/p0 = 1. Taking N large enough such that N/(k0 + 1)−
l0β − θ′ > 0, we complete the proof of Theorem 4.3. �

Remark 4.4. It is easy to check that if the critical ball Q is replaced by 2Q,
Theorem 4.3 also holds.

Lemma 4.5. Let V ∈ Bq1 , q1 ≥ Q/2, and b ∈ BMOθL(Hn), 0 < θ <∞. Then
for any p > q1/(q1 − β) and γ ≥ 1, there exists a constant C such that for all
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f and g, h ∈ B = B(g0, r) with r < γρ(g0),∫
(2B)c

|K(g, z)− k(h, z)|V β(z)|b(z)− bB ||f(z)|dz ≤ C[b]θ inf
u∈B

Mpf(u).

Proof. Because g ∈ B(g0, r) and z ∈ 2j+1B \ 2jB, we deduce that |g−1z| ≈
|g−1

0 z|. Using Lemmas 2.6, 2.8, and 2.11, we have∫
(2B)c

|K(g, z)− k(h, z)|V β(z)|b(z)− bB ||f(z)|dz

≤ C

∞∑
j=1

1(
1 + 2jr

ρ(g0)

)N/(k0+1)

|r|δ

(2jr)Q−2β+δ

∫
2j+1B

V β(z)|b(z)− bB ||f(z)|dz

≤ C

∞∑
j=1

[b]θ inf
u∈Q

Mp(f)(u)(
1 + 2jr

ρ(g0)

)N/(k0+1)−l0β−θ′
j

2jδ
≤ C[b]θ inf

u∈Q
Mp(f)(u),

where we take N sufficiently large. Thus this completes the proof of Lemma
4.5. �

Theorem 4.6. Let V ∈ Bq1 , q1 ≥ Q/2, and let b ∈ BMOθL(Hn), 0 < θ <∞.
(i) If 1 < β < Q/2, q1/(q1 − β) < p <∞, then

‖[b, Tβ ]f‖Lp(Hn) ≤ C[b]θ‖f‖Lp(Hn).

(ii) If 1 < β < Q/2, 1 < p < q1/β, then

‖[b, T ∗β ]f‖Lp(Hn) ≤ C[b]θ‖f‖Lp(Hn).

Proof. We only prove (i), and (ii) follows by duality. For f ∈ Lp(Hn), q1/(q1−
β) < p <∞, by Theorem 4.3, we can see that [b, Tβ ]f ∈ L1

loc(Hn). By Theorem
4.3, Lemma 4.5, and Remark 4.4, we get

‖[b, Tβ ]f‖qLq(Hn) ≤ C
∫
Hn
|M ]

ρ,γ([b, Tβ ]f)(g)|qdg

+
∑
k

|Qk|
( 1

|Qk|

∫
2Qk
|[b, Tβ ]f(g)|dg

)q
≤ C

∫
Hn
|M ]

ρ,γ([b, Tβ ]f)(g)|qdg

+ [b]θ

(∑
k

∫
2Qk
|Mpf(g)|qdg+

∑
k

∫
2Qk
|Mp(Tβf)(g)|qdg

)
≤ C

∫
Hn
|M ]

ρ,γ([b, Tβ ]f)(g)|qdg + [b]θ‖f‖qLq(Hn).

Now we consider the term∫
Hn
|M ]

ρ,γ

(
[b, Tβ ]f

)
(g)|qdg.



248 C. GAO

We write [b, Tβ ]f(g) = B1(g)−B2(g), where{
B1(g) := (b(g)− bB)Tβf(g),
B2(g) := Tβ((b− bB)f)(g).

This gives

1

|B|

∫
B

∣∣∣[b, Tβ ]f(g)−
(

[b, Tβ ]f
)
B

∣∣∣dg ≤ CI + II,

where {
I := 1

|B|
∫
B
|B1(g)− (B1)B | dg,

II := 1
|B|
∫
B
|B2(g)− (B2)B | dg.

For I, let p > q1/(q1 − β). Because r < γρ(g0), it follows from Hölder’s
inequality and Lemma 2.7 that

I ≤ C
( 1

|B|
|b(g)− bB |p

′
)1/p′( 1

|B|
|Tβf(g)|p

)1/p′

≤ C[b]θMp(Tβf)(g).

For II, let g ∈ Hn and B = B(g0, r) with r < γρ(g0) such that g ∈ B. We
split f = f1 + f2 with f1 = fχ2B . Hence we can divide II into two parts as
II = II1 + II2, where{

II1 := 1
|B|
∫
B
|Tβ((b− bB)f1)(g)− (Tβ(b− bB)f1)B | dg,

II2 := 1
|B|
∫
B
|Tβ((b− bB)f2)(g)− (Tβ(b− bB)f2)B | dg.

For II1, take p1 ∈ (q1/(q1 − β), p) and let m = p/(p − p1). By Corollary 3.4,
we apply Hölder’s inequality to obtain

II1 ≤ C
( 1

|B|

∫
2B

|b− bB |mp1dg
)1/mp1( 1

|B|

∫
2B

|f(g)|pdg
)1/p

≤ C[b]θMp(f)(g).

For II2, we can use Lemma 4.5 to get

II2 ≤
C

|B|2

∫
B

∫
B

|Tβ((b− bB)f2)(h)− (Tβ(b− bB)f2)(u)| dhdu

≤ C[b]θMp(f)(g).

Finally, the Lp(Hn) boundedness of Mp implies that

|M ]
ρ,γ([b, Tβ ]f)(g)| ≤ C[b]θ

(
Mp(Tβf)(g) +Mp(f)(g)

)
≤ C[b]θ ‖f‖Lq(Hn) .

This completes the proof of Theorem 4.6. �

By Theorem 4.6, we get the following proposition.

Proposition 4.7. Suppose that V ∈ Bq1 with q1 > Q/2. Let 1 < α < Q/2, and
b ∈ BMOθL(Hn). Then for 1 < p <∞, ‖[b, Tα](f)‖Lp(Hn) ≤ C[b]θ ‖f‖Lp(Hn).
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5. The proof of main results

In this section, we prove that Tα is bounded from Hp
L(Hn) into Lp(Hn) for

Q/(Q + δ0) < p ≤ 1. Moreover, we also prove that the commutator [b, Tα] is
bounded from H1

L(Hn) into weak L1(Hn).
In order to prove Theorem 1.1, we only need to prove the following lemma.

Lemma 5.1. Let q1 > Q/2. There is a number q with 1 < q < q1/α such that
‖Tαa‖Lp(Hn) ≤ C holds for any Hp,q

L (Hn)-atom a, where the constant C > 0 is

independent of a.

Proof. Since 0 < α < Q/2 < q1, we select q such that 1 < q < q1/α. Assume
that suppa ⊂ B(g0, r), r < ρ(g0). Then ‖Tαa(g)‖Lp(Hn) ≤ I1 + I2, where{

I1 := ‖χ2BTαa(g)‖Lp(Hn) ,

I2 :=
∥∥χ(2B)cTαa(g)

∥∥
Lp(Hn)

.

For I1, the Hölder inequality implies that

I1 ≤ |2B|1/p−1/q ·
(∫

2B

|Tαa(g)|qdg
)1/q

≤ |2B|1/p−1/q · ‖a(g)‖Lq(Hn) ≤ C.

For I2, we divide into two case: r ≥ ρ(g0)/4 and r < ρ(g0)/4.
Case 1: in this case, r ≥ ρ(g0)/4, then r ≈ ρ(g0). Applying Lemma 2.11

and Lemma 2.6, we can get

I2 ≤ C
(∑
k≥1

∫
2k+1B\2kB

V (g)αp
(∫

B

(2kr)2α−Q

(1 + (2kr)ρ(g)−1)
N
· |a(h)|dh

)p
dg
)1/p

≤ C
(∑
k≥1

∫
2k+1B

V (g)αpdg(
1 + 2kr/ρ(g0)

)Np/(k0+1)

(2kr)(Q−2α)p

(∫
B

|a(h)|dh
)p)1/p

.

We pick a number s such that Q/2 < s < q1, then αp < s. With the help of
Lemma 2.4, we use Hölder’s inequality to deduce that

1

|2k+1B|

∫
2k+1B

V (g)αpdg ≤ C(2kr)−2αp
(
1 + 2kr/ρ(g0)

)l0αp
.(5.1)

Notice r ≈ ρ(g0) and ∫
B

|a(h)|dh ≤ rQ−Q/p.(5.2)

Thus, we have the estimate of I2.

I2 ≤ C
(∑
k≥1

1

(2k)Np/(k0+1)−l0αp−Q+Qp

)1/p

≤ C,

where we take N large enough such that Np/(k0 + 1)− l0αp−Q+Qp > 0.
Case 2: in this case, r < ρ(g0)/4.
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When p = 1, by Lemma 2.11, (5.1), (5.2) and the vanishing condition of a,
we have

I2 ≤ C
∑
k≥1

1

(1 + 2kr/ρ(g0))
N/(k0+1)

· rδ

(2kr)Q−2α+δ

∫
2k+1B

V (g)αdg

∫
B

|a(h)|dh

≤ C
∑
k≥1

2−kδ
1

(1 + 2kr/ρ(g0))
N/(k0+1)−l0α

.

Take N large enough, we get I2 ≤ C
∑
k≥1 2−kδ ≤ C.

When Q/(Q + δ0) < p < 1, for any p0 such that Q/(Q + δ0) < p0 < p < 1.
Using Lemma 2.11, (5.1) and (5.2), we can get

I2 ≤ C
(∑
k≥1

rpQ−Q+δp

(1 + 2kr/ρ(g0))Np/(k0+1)−l0p
· (2kr)Q

(2kr)(Q+δ)p

)1/p

≤ C
(∑
k≥1

2kQ

2k(Q+δ)p

)1/p

≤ C,

where we choose N sufficiently large. Thus this completes the proof of Lemma
5.1. �

Next we give the proof of Theorem 1.2.

Proof. Let f ∈ H1
L(Hn). We write f =

∑∞
j=−∞ λjaj , where each aj is an H1,q

L −
atom, 1 < q < q1/α and

∑∞
j=−∞ |λj | ≤ C ‖f‖H1

L(Hn). Suppose that suppaj ⊂
Bj = B(gj , rj) with rj < ρ(gj). Write [b, Tα] f(g) =

∑4
i=1

∑∞
j=−∞ λjAij(g),

where 
A1j := [b, Tα]aj(g)χ8Bj (g),
A2j := (b(g)− bBj )Tαaj(g)χ(8Bj)c(g),
A3j := (b(g)− bBj )Tαaj(g)χ(8Bj)c(g),
A4j := Tα((b− bBj )aj)(g)χ(8Bj)c(g).

Note that
( ∫

Bj
|aj(g)|qdg

)1/q

≤ |Bj |1/q−1. We use Hölder’s inequality and

Proposition 4.7 to obtain

‖A1j(g)‖L1(Hn) ≤ C|Bj |
1/q′ ·

(∫
8Bj

|[b, Tα]aj(g)|qdg
)1/q

≤ C[b]θ|Bj |1/q
′+1/q−1 ≤ C[b]θ,

which leads to∥∥∥ ∞∑
j=−∞

λjA1j(g)
∥∥∥
L1(Hn)

≤
∞∑

j=−∞
|λj |
∥∥∥A1j(g)

∥∥∥
L1(Hn)

≤ C
∞∑

j=−∞
|λj |[b]θ ≤ C[b]θ ‖f‖H1

L(Hn) .
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Then we have∣∣∣{g ∈ Hn :
∣∣∣ ∞∑
j=−∞

λjA1j(g)
∣∣∣ > λ

4

}∣∣∣ ≤ C

λ

∥∥∥ ∞∑
j=−∞

λjA1j(g)
∥∥∥
L1(Hn)

≤ C[b]θ
λ
‖f‖H1

L(Hn) .

For A2j(g), note that h ∈ Bj(gj , rj), g ∈ 2k+1Bj \ 2kBj , then |g−1h| ≈ 2krj .
Applying Lemma 2.6, we can get

‖A2j(g)‖L1(Hn)

≤ C
∑
k≥3

∫
2k+1Bj\2kBj

|b(g)− bBj |V α(g)

∫
Bj

|g−1h|2α−Q

(1 + |g−1h|ρ(g)−1)N
|aj(h)|dhdg

≤ C
∑
k≥3

(2krj)
2α−Q

(1 + 2krj/ρ(gj))N/(k0+1)

∫
2k+1Bj

|b(g)− bBj |V α(g)dg

∫
Bj

|aj(h)|dh.

Since α < Q/2 < q1, we choose a number s such that α < Q/2 < s < q1. Then

1

|2k+1Bj |

∫
2k+1Bj

|b(g)− bBj |V α(g)dg

≤ Ck[b]θ(2
krj)

−2α
(

1 + 2krj/ρ(gj)
)θ′+l0α

.

Note that
∫
Bj
|aj(h)| ≤ C, and rj/ρ(gj) ≥ 1/4. A direct computation gives

‖A2j(g)‖L1(Hn) ≤ C
∑
k≥3

k[b]θ
1(

1 + 2krj/ρ(gj)
)N/(k0+1)−θ′−l0α

≤ C
∑
k≥1

[b]θ
k

(2k)
N/(k0+1)−θ′−l0α

≤ C[b]θ,

which implies that∥∥∥ ∑
j:rj≥ρ(gj)/4

λjA2j(g)
∥∥∥
L1(Hn)

≤
∑

j:rj≥ρ(gj)/4

|λj | ‖A2j(g)‖L1(Hn)

≤ C
∞∑

j=−∞
|λj |[b]θ ≤ C[b]θ ‖f‖H1

L(Hn) ,

and subsequently, we obtain∣∣∣{g ∈ Hn :
∣∣∣ ∑
j:rj≥ρ(gj)/4

λjA2j(g)
∣∣∣ > λ

4

}∣∣∣ ≤ C

λ

∥∥∥ ∑
j:rj≥ρ(gj)/4

λjA2j(g)
∥∥∥
L1(Hn)

≤ C[b]θ
λ
‖f‖H1

L(Hn) .
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By the vanishing condition of aj and Lemma 2.11, we have

‖A3j(g)‖L1(Hn) ≤ C
∑
k≥3

∫
2k+1Bj\2kBj

|b(g)− bBj |V α(g)

×
∫
Bj

|aj(h)|
(1 + |g−1h|ρ(g)−1)N

· |h−1gj |δ

|g−1h|Q−2α+δ
dhdg.

Since h ∈ Bj(gj , rj) and g ∈ 2k+1Bj \2kBj , then |g−1h| ≈ 2krj . With the help
of Lemma 2.6, we can deduce that

‖A3j(g)‖L1(Hn) ≤ C
∑
k≥3

∫
2k+1Bj

|b(g)− bBj |V α(g)dg

(1 + 2krj/ρ(gj))N/(k0+1)
·
rδj
∫
Bj
|aj(h)|dh

(2krj)Q−2α+δ

≤ C
∑
k≥3

[b]θ
k

2kδ
≤ C[b]θ,

which gives∥∥∥ ∑
j:rj<ρ(gj)/4

λjA3j(g)
∥∥∥
L1(Hn)

≤
∑

j:rj<ρ(gj)/4

|λj |
∥∥∥A3j(g)

∥∥∥
L1(Hn)

≤ C
∞∑

j=−∞
|λj |[b]θ ≤ C[b]θ ‖f‖H1

L(Hn) .

The above estimate implies that∣∣∣{g ∈ Hn :
∣∣∣ ∑
j:rj<ρ(gj)/4

λjA3j(g)
∣∣∣ > λ

4

}∣∣∣
≤ C

λ

∥∥∥ ∑
j:rj<ρ(gj)/4

λjA3j(g)
∥∥∥
L1(Hn)

≤ C[b]θ
λ
‖f‖H1

L(Hn) .

For
∑∞
j=−∞ λjA4j(g), we have∣∣∣ ∞∑
j=−∞

λjA4j(g)
∣∣∣ ≤ ∣∣∣Tα(

+∞∑
j=−∞

∣∣∣λj(b(g)− bBj )aj(g)
∣∣∣χ(8Bj)c(g))

∣∣∣.
Thus ∣∣∣{g ∈ Hn :

∣∣∣ +∞∑
j=−∞

λjA4j(g)
∣∣∣ > λ

4

}∣∣∣
≤
∣∣∣{g ∈ Hn :

∣∣∣Tα(

+∞∑
j=−∞

∣∣∣λj(b(g)− bBj )aj(g)
∣∣∣χ(8Bj)c(g))

∣∣∣ > λ

4

}∣∣∣
≤ C

λ

∞∑
k=−∞

∣∣∣λj∣∣∣∥∥∥(b(g)− bBj
)
aj(g)

∥∥∥
L1(Hn)

.
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Note that rj ≤ ρ(gj). Applying Lemma 2.7, we use Hölder’s inequality to
deduce that∥∥∥(b(g)− bBj

)
aj(g)

∥∥∥
L1(Hn)

≤
(∫

Bj

∣∣b(g)− bBj
∣∣q′ dg)1/q′(∫

Bj

|aj(g)|q dg
)1/q

≤ C[b]θ,

which implies that∣∣∣{g ∈ Hn :
∣∣∣ ∞∑
j=−∞

λjA4j(g)
∣∣∣ > λ

4

}∣∣∣ ≤ C

λ

∞∑
k=−∞

|λj | [b]θ ≤
C[b]θ
λ
‖f‖H1

L(Hn) .

Finally, it holds∣∣∣{g ∈ Hn :
∣∣∣ 4∑
i=1

∞∑
j=−∞

λjAij(g)
∣∣∣ > λ

4

}∣∣∣
≤ C

4∑
i=1

∣∣∣{g ∈ Hn :
∣∣∣ ∞∑
j=−∞

λjAij(g)
∣∣∣ > λ

4

}∣∣∣ ≤ C[b]θ
λ
‖f‖H1

L(Hn) .

This completes the proof of Theorem 1.2. �
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