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WEYL’S TYPE THEOREMS FOR ALGEBRAICALLY

(p, k)-QUASIHYPONORMAL OPERATORS

Mohammad Hussein Mohammad Rashid and Mohd Salmi Mohd Noorani

Abstract. For a bounded linear operator T we prove the following as-
sertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a-
isoloid, polaroid, reguloid and a-polaroid. (b) If T ∗ is algebraically (p, k)-

quasihyponormal, then a-Weyl’s theorem holds for f(T ) for every f ∈
Hol(σ(T )), where Hol(σ(T )) is the space of all functions that analytic
in an open neighborhoods of σ(T ) of T . (c) If T ∗ is algebraically (p, k)-

quasihyponormal, then generalized a-Weyl’s theorem holds for f(T ) for
every f ∈ Hol(σ(T )). (d) If T is a (p, k)-quasihyponormal operator,
then the spectral mapping theorem holds for semi-B-essential approxi-
mate point spectrum σ

SBF−
+
(T ), and for left Drazin spectrum σlD(T )

for every f ∈ Hol(σ(T )).

1. Introduction

Throughout this paper let B(H), denote, the algebra of bounded linear oper-
ators acting on an infinite dimensional separable Hilbert space H. If T ∈ B(H)
we shall write ker(T ) and R(T ) for the null space and range of T , respectively.
Also, let α(T ) := dimker(T ), β(T ) := dimR(T ), and let σ(T ), σa(T ), σp(T )
denote the spectrum, approximate point spectrum and point spectrum of T ,
respectively. An operator T ∈ B(H) is called Fredholm if it has closed range,
finite dimensional null space, and its range has finite codimension. The index
of a Fredholm operator is given by

i(T ) := α(T )− β(T ).

T is called Weyl if it is Fredholm of index 0, and Browder if it is Fredholm “of
finite ascent and descent”.

Recall that the ascent, a(T ), of an operator T is the smallest non-negative
integer p such that ker(T p) = ker(T p+1). If such integer does not exist we put
a(T ) = ∞. Analogously, the descent, d(T ), of an operator T is the smallest
non-negative integer q such that R(T q) = R(T q+1), and if such integer does
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not exist we put d(T ) = ∞. The essential spectrum σF (T ), the Weyl spectrum
σW (T ) and the Browder spectrum σb(T ) of T are defined by

σF (T ) = {λ ∈ C : T − λ is not Fredholm},

σW (T ) = {λ ∈ C : T − λ is not Weyl}
and

σb(T ) = {λ ∈ C : T − λ is not Browder}
respectively. Evidently

σF (T ) ⊆ σW (T ) ⊆ σb(T ) ⊆ σF (T ) ∪ accσ(T ),

where we write accK for the accumulation points of K ⊆ C.
Following [13], we say that Weyl’s theorem holds for T if σ(T ) \ σW (T ) =

E0(T ), where E0(T ) is the set of all eigenvalues λ of finite multiplicity isolated
in σ(T ). And Browder’s theorem holds for T if σ(T ) \ σW (T ) = π0(T ), where
π0 is the set of all poles of T of finite rank.

Let Φ+(H) be the class of all upper semi-Fredholm operators, Φ−
+(H) be the

class of all T ∈ Φ+(H) with i(T ) ≤ 0, and for any T ∈ B(H) let

σSF−
+
(T ) =

{
λ ∈ C : T − λI /∈ SF−

+ (H)
}
.

Let Ea
0 be the set of all eigenvalues of T of finite multiplicity which are iso-

lated in σa(T ). According to [27], we say that T satisfies a-Weyl’s theorem if
σSF−

+
(T ) = σa(T )\Ea

0 (T ). It follows from [27, Corollary 2.5] a-Weyl’s theorem

implies Weyl’s theorem.
In [12] Berkani define the class of B-Fredholm operators as follows. For each

integer n, define Tn to be the restriction of T to R(Tn) viewed as a map from
R(Tn) into R(Tn) (in particular T0 = T ). If for some n the range R(Tn) is
closed and Tn is a Fredholm (resp. semi-Fredholm) operator, then T is called
a B-Fredholm (resp. semi-B-Fredholm) operator. In this case and from [6] Tm

is a Fredholm operator and i(Tm) = i(Tn) for each m ≥ n. The index of a
B-Fredholm operator T is defined as the index of the Fredholm operator Tn,
where n is any integer such that the range R(Tn) is closed and Tn is a Fredholm
operator (see [12]).

Let BF (H) be the class of all B-Fredholm operators. In [6] Berkani has
studied this class of operators and has proved that an operator T ∈ B(H) is
B-Fredholm if and only if T = T0 ⊕ T1, where T0 is a Fredholm operator and
T1 is a nilpotent operator.

Recall that an operator T ∈ B(H) is called a B-Weyl operator (see [8]) if it
is a B-Fredholm operator of index 0. The B-Weyl spectrum σBW (T ) of T is
defined by

σBW (T ) = {λ ∈ C : T − λI is not a B-Weyl operator} .

In the case of a normal operator T acting on a Hilbert space H, Berkani [12,
Theorem 4.5] showed that σBW (T ) = σ(T ) \ E(T ), where E(T ) is the set of
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all eigenvalues of T which are isolated in the spectrum of T . This result gives
a generalization of the classical Weyl’s theorem.

Let SBF+(H) be the class of all upper semi-B-Fredholm operators, and
SBF−

+ (H) the class of all T ∈ SBF+(H) such that i(T ) ≤ 0, and

σSBF−
+
(T ) = {λ ∈ C : T − λ /∈ SBF−

+ (H)}.

Recall that an operator T ∈ B(H) satisfies the generalized a-Weyl’s theorem
if σSBF−

+
(T ) = σa(T ) \ Ea(T ), where Ea(T ) is the set of all eigenvalues of T

which are isolated in σa(T ). Note that generalized a-Weyl’s theorem implies
a-Weyl’s theorem (see [11]).

Recall that an operator T ∈ B(H) is Drazin invertible if and only if it has a
finite ascent and descent, which is also equivalent to the fact that T = T0⊕T1,
where T0 is a nilpotent operator and T1 is an invertible operator (see [23,
Proposition A]). The Drazin spectrum is given by

σD(T ) := {λ ∈ C : T − λI is not Drazin invertible}.

We observe that σD(T ) = σ(T ) \ π(T ), where π(T ) is the set of all poles.
An operator T ∈ B(H) is called left Drazin invertible if a(T ) < ∞ and

R(T a(T )+1) is closed (see [9, Definition 2.4]). The left Drazin spectrum is
given by

σLD(T ) := {λ ∈ C : T − λI is not left Drazin invertible}.

Recall [9, Definition 2.5] that λ ∈ σa(T ) is a left pole of T if T − λI is a left
Drazin invertible operator and λ ∈ σa(T ) is a left pole of finite rank if λ is
a left pole of T and α(T − λ) < ∞. We will denote πa(T ) the set of all left
poles of T , and by πa

0 (T ) the set of all left poles, of T of finite rank. We have
σLD(T ) = σa(T ) \ πa(T ).

Note that if λ ∈ πa(T ), then it is easily seen that T − λ is an operator of
topological uniform descent. Therefore it follows from ([11, Theorem 2.5]) that
λ is isolated in σa(T ). Following [9] if T ∈ B(H) and λ ∈ C is isolated in
σa(T ), then λ ∈ πa(T ) if and only if λ /∈ σSBF−

+
(T ) and λ ∈ πa

0 (T ) if and only

if λ /∈ σSF−
+
(T ).

For the sake of simplicity of notation we introduce the abbreviations gaW,
aW, gW and W to signify that an operator T ∈ B(H) obeys generalized a-
Weyl’s theorem, a-Weyl’s theorem, generalized Weyl’s theorem and Weyl’s
theorem, respectively. Analogous meaning is attached to the abbreviations
gaB, aB, gB and B with respect to Browder’s theorem.

In the following diagram, arrows signify implications between various Weyl
and Browder type theorems. It is known from [1, 3, 7, 11, 19, 20, 27] that if
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T ∈ B(H), then we have:

gW // gB // Boo
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;;xxxxxxxx
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The quasinilpotent part H0(T −λ) and the analytic core K(T −λ) of T −λ
are defined by

H0(T − λ) := {x ∈ H : lim
n−→∞

∥(T − λ)nx∥ 1
n = 0}.

and

K(T − λ) = {x ∈ H : there exists a sequence {xn} ⊂ H and δ > 0 for which

x = x0, (T − λ)xn+1 = xn and ∥xn∥ ≤ δn∥x∥ for all n = 1, 2, . . .}.
We note that H0(T −λ) and K(T −λ) are generally non-closed hyper-invariant
subspaces of T −λ such that (T −λ)−p(0) ⊆ H0(T −λ) for all p = 0, 1, . . . and
(T − λ)K(T − λ) = K(T − λ). Recall that if λ ∈ iso(σ(T )), then H0(T − λ) =
χT ({λ}), where χT ({λ}) is the glocal spectral subspace consisting of all x ∈ H
for which there exists an analytic function f : C \ {λ} −→ H that satisfies
(T − µ)f(µ) = x for all µ ∈ C \ {λ} (see [17]).

Let Hol(σ(T )) be the space of all functions that analytic in an open neigh-
borhoods of σ(T ). Following [18] we say that T ∈ B(H) has the single-valued
extension property (SVEP) at point λ ∈ C if for every open neighborhood
Uλ of λ, the only analytic function f : Uλ −→ H which satisfies the equation
(T−µ)f(µ) = 0 is the constant function f ≡ 0. It is well-known that T ∈ B(H)
has SVEP at every point of the resolvent ρ(T ) := C \ σ(T ). Moreover, from
the identity theorem for analytic function it easily follows that T ∈ B(H) has
SVEP at every point of the boundary ∂σ(T ) of the spectrum. In particular,
T has SVEP at every isolated point of σ(T ). In [25, Proposition 1.8], Laursen
proved that if T is of finite ascent, then T has SVEP.

Proposition 1.1 ([24]). Let T ∈ B(H).
(i) If T has the SVEP, then i(T − λI) ≤ 0 for every λ ∈ ρSBF (T ).
(ii) If T ∗ has the SVEP, then i(T − λI) ≥ 0 for every λ ∈ ρSBF (T ).
(iii) If T ∗ has the SVEP, then

(a) σSF−
+
(T ) = ω(T ) and (b) σSBF−

+
(T ) = σBω(T ).

In [36] H. Weyl examined the spectra of all compact perturbations of a
hermitian operator T on a Hilbert space and proved that their intersection
coincides with the isolated point of the spectrum σ(T ) which are the eigenvalues
of finite multiplicity. Weyl’s theorem has been extended to several classes of
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Hilbert space operators including seminormal operators [4, 5]. In [7] M. Berkani
introduced the concepts of the generalized Weyl’s theorem and generalized
Browder’s theorem, and they showed that T satisfies the generalized Weyl’s
theorem whenever T is a normal operator on Hilbert space. More recently, [10]
extended this result to hyponormal operators. In [32] extended this result to
log-hyponormal operators. Recently, Rashid et al. [31] showed that if T is quasi-
class A, then generalized Weyl’s theorem holds f(T ) for every f ∈ Hol(σ(T )).
More recently, in [26] Mecheri showed that generalized Weyl’s theorem holds
for algebraically (p, k)-quasihyponormal operators.

In this paper, we study generalized a-Weyl’s theorem for algebraically (p, k)-
quasihyponormal operators. Among other things, we prove that the spec-
tral mapping theorem holds for semi-B-essential approximate point spectrum
σSBF−

+
(T ), and for left Drazin spectrum for every f ∈ Hol(σ(T )).

2. Properties of algebraically (p, k)-quasihyponormal operators

Definition 2.1 ([22]). An operator T ∈ B(H) is said to be (p, k)-quasihyponor-
mal if

T k∗((T ∗T )p − (TT ∗)p)T k ≥ 0,

where 0 ≤ p ≤ 1 and k is a positive integer. Especially, when p = 1, k = 1, p =
k = 1, T is called k-quasihyponormal, p-quasihyponormal, quasihyponormal,
respectively.

Definition 2.2. An operator T ∈ B(H) is said to be algebraically (p, k)-
quasihyponormal if there exists a non-constant complex polynomial P such
that P(T ) is a (p, k)-quasihyponormal operator.

In general, the following implications hold:

p-hyponormal ⇒ p-quasihyponormal ⇒ algebraically p-quasihyponormal

⇒ algebraically (p, k)-quasihyponormal.

An operator T ∈ B(H) is called isoloid if every isolated point of σ(T ) is an
eigenvalue of T . An operator T ∈ B(H) is called normaloid if r(T ) = ∥T∥,
where r(T ) is the spectral radius of T . X ∈ B(H) is called a quasiaffinity if
it has trivial kernel and dense range. S ∈ B(H) is said to be a quasiaffine
transform of T ∈ B(H) (notation: S ≺ T ) if there is a quasiaffinity X ∈ B(H)
such that XS = TX. If both S ≺ T and T ≺ S, then we say that S and T are
quasisimilar.

The following facts follow from the above definition and some well known
facts about (p, k)-quasihyponormal operators.

(i) If T ∈ B(H) is an algebraically (p, k)-quasihyponormal operator, then so
is T − λI for each λ ∈ C.

(ii) If T ∈ B(H) is an algebraically (p, k)-quasihyponormal operator and
M is a closed T -invariant subspace of H, then T |M is an algebraically (p, k)-
quasihyponormal operator.
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Lemma 2.3. Let T ∈ B(H) be a p-quasihyponormal operator for 0 < p ≤ 1.
Then the following assertions hold.

(1) ∥Tnx∥2 ≤ ∥Tn−1x∥∥Tn+1x∥ for all unit vector x ∈ H and all positive
integer n.

(2) ∥Tn∥n ≤ ∥Tn−1∥nr(Tn) for all positive integer n, where r(Tn) denote
the spectral radius of Tn. Hence T is normaloid.

(3) T is a paranormal operator.

Proof. (1) It is obvious that if T is p-quasihyponormal, then it is a (p, n)-
quasihyponormal operator for each positive integer n, since

⟨T ∗n(TT ∗)pTnx, x⟩
= ⟨T ∗nT (T ∗T )p−1T ∗Tnx, x⟩
= ⟨(T ∗T )p+1Tn−1x, Tn−1x⟩
≥ ∥Tn−1x∥−2p⟨T ∗TTn−1x, Tn−1x⟩p+1 (by Hölder-McCarthy inequality)

= ∥Tn−1x∥−2p∥Tnx∥2p+2

and
⟨T ∗n(T ∗T )pTnx, x⟩

= ⟨(T ∗T )pTnx, Tnx⟩
≤ ∥Tnx∥2−2p⟨T ∗TTnx, Tnx⟩ (Hölder-McCarthy inequality)

= ∥Tnx∥2−2p∥Tn+1x∥2p.
But T is a p-quasihyponormal operator. Then

⟨T ∗n((T ∗T )p − (TT ∗)p)Tnx, x⟩ ≥ 0.

Hence

∥Tnx∥2 ≤ ∥Tn−1x∥∥Tn+1x∥.
(2) If Tn = 0 for some n > 1, then T = 0, and in this case r(T ) = 0. Hence

(2) is obvious. Hence we may assume Tn ̸= 0 for all n ≥ 1. Then

∥Tn∥
∥Tn−1∥

≤ ∥Tn+1∥
∥Tn∥

≤ · · · ≤ ∥Tmn∥
∥Tmn−1∥

by (1), and we have(
∥Tn∥

∥Tn−1∥

)mn−n−1

≤ ∥Tn+1∥
∥Tn∥

× · · · × ∥Tmn∥
∥Tmn−1∥

=
∥Tmn∥
∥Tn−1∥

.

Hence (
∥Tn∥

∥Tn−1∥

)n− n
m− 1

n

≤ ∥Tmn∥ 1
m

∥Tmn−1∥ 1
m

.

Now letting m −→ ∞. We get

∥Tn∥n ≤ ∥Tn−1∥nr(Tn).

Put n = 1, we have ∥T∥ ≤ r(T ). So ∥T∥ = r(T ), i.e., T is normaloid.
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(3) Put n = 1 in (1), we have ∥Tx∥2 ≤ ∥T 2x∥, that is, T is paranormal. □
Definition 2.4 ([17]). An operator T ∈ B(H) is said to be totally hereditarily
normaloid, T ∈ THN if every part of T (i.e., its restriction to an invariant
subspace), and T−1

p for every invertible part Tp of T , is normaloid.

Lemma 2.5. Let T ∈ THN , let λ ∈ C. Assume that σ(T ) = {λ}. Then
T = λI.

Proof. We consider two cases:
case I. (λ = 0): Since T is normaloid. Therefore T = 0.
case II. (λ ̸= 0): Here T is invertible, and since T ∈ THN , we see that T, T−1

are normaloid. On the other hand σ(T−1) = { 1
λ}, so ∥T∥∥T−1∥ = |λ|| 1λ | = 1.

It follows that T is convexoid, so W (T ) = {λ}. Therefore T = λI. □
In [14], Curto and Han proved that quasinilpotent algebraically paranormal

operators are nilpotent. We now establish a similar result for algebraically
(p, k)-quasihyponormal operators.

Proposition 2.6. Let T be a quasinilpotent (p, k)-quasihyponormal operator.
Then T is nilpotent.

Proof. Assume that p(T ) is a totally hereditarily normaloid operator for some
nonconstant polynomial p. Since σ(p(T )) = p(σ(T )), the operator p(T )− p(0)
is quasinilpotent. Thus Lemma 2.5 would imply that

cTm(T − λ1I) · · · (T − λnI) ≡ p(T )− p(0) = 0,

where m ≥ 1. Since T − λjI is invertible for every λj ̸= 0, we must have
Tm = 0. □
Lemma 2.7. Let T be an invertible p-quasihyponormal operator. Then H =
R(T )⊕ker(T ). Moreover T1, the restriction of T to R(T ) is one-one and onto.

Proof. Suppose that y ∈ R(T )∩ker(T ) then y = Tx for some x ∈ H and Ty =
0. It follows that T 2x = 0. However, d(T ) = 1 and so x ∈ ker(T 2) = ker(T ).
Hence y = Tx = 0 and so R(T ) ∩ ker(T ) = {0}. Also, TR(T ) = R(T ).

If x ∈ H, there is u ∈ R(T ) such that Tu = Tx. Now if z = x − u, then
Tz = 0. Hence

H = R(T )⊕ ker(T ).

Since a(T ) = 1, T maps R(T ) onto itself. If y ∈ R(T ) and Ty = 0, then
y ∈ R(T ) ∩ ker(T ) = {0}. Hence T1 is one-one and onto. □

Observe that {λ0} is a clopen subset of σ(T ). Let T ∈ B(H). The Rλ(T ) =
(T − λ)−1 is analytic on ρ(T ), and an isolated point λ0 of σ(T ) is an isolated
singular point of the resolvent of T . Here there is a Laurent expansion of this
function in powers of λ− λ0. We write this in the form

(T − λ)−1 =
∞∑

n=0

(λ− λ0)
nAn +

∞∑
n=1

(λ− λ0)
−nBn.
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The coefficients An and Bn are members of B(H) and given by the standard
formulas

(2.1) An =
1

2πi

∫
Γ

(λ− λ0)
−n−1(λ− T )−1 dλ,

(2.2) Bn =
1

2πi

∫
Γ

(λ− λ0)
n−1(λ− T )−1 dλ,

where Γ is any circle |λ − λ0| = ρ with 0 < ρ < δ described once counter-
clockwise.
The function fn defined by

fn(λ) =

{
(λ− λ0)

n−1, if |λ− λ0| ≤ ρ < δ,

0, otherwise.

is in Hol(σ(T )) and moreover

Bn = fn(T ), n = 1, 2, . . . .

For each positive integer n, we have

(λ− λ0)fn(λ) = fn+1.

So

(2.3) (T − λ0)Bn = Bn+1

and by induction

(2.4) (T − λ0)
nB1 = Bn+1.

We note in passing that

(2.5) B1 = E(λ0)

the spectral projection corresponding to the clopen set λ0 of σ(T ).
Consider for each non-negative integer n the function gn defined by

gn(λ) =

{
0, if |λ− λ0| ≤ ρ < δ,

(λ− λ0)
−n−1, otherwise.

is in Hol(σ(T )). Moreover,

An = −gn(T )

for each non-negative integer n. We have

(2.6) (λ− λ0)gn+1(λ) = gn(λ)

and so

(2.7) (λ− λ0)An+1 = An.

Similarly (λ− λ0)g0(λ) + f1(λ) = 1 and so

(2.8) (T − λ)A0 = B0 − 1.
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Recall that if T ∈ B(H) and λ0 is an isolated point of σ(T ), then λ0 is called a
pole of order m if and only if E(λ0)(λ0 −T )m = 0 and E(λ0)(λ0 − T )m−1 ̸= 0.

Lemma 2.8. Let T be a (p, k)-quasihyponormal operator and λ0 ∈ isoσ(T ).
Let τ = σ(T ) \ {λ0}. Then λ0 is an eigenvalue of T . The ascent and descent
of T − λ0 are both equal to k. Also

R(E(λ0)) = ker((T − λ0)
k),

R(E(τ)) = R((T − λ0)
k).

Proof. For convenience we denote the null-space and range of (λ0−T )k by kerk
and Rk, respectively. If x ∈ kerk, where k ≥ 1, we see by (2.7), induction and
(2.8) that

0 = Ak−1(T − λ0)
kx = (T − λ0)

kAk−1x = (T − λ0)A0x = B1x− x.

So that by (2.5), we have x = B1x ∈ R(E(λ0)). Thus kerk ⊆ R(E(λ0)) if
k ≥ 1. On the other hand, it follows from (2.4) that if x ∈ R(E(λ0)), then
x = B1x and (T − λ0)

kx = Bk+1x. Since Bn+1x = 0 if n ≥ k. It follows that
R(E(λ0)) ⊆ kerk and kern = R(E(λ0)) if n ≥ k. However, kerk−1 is a proper
subset of kerk because Bk ̸= 0. The equations kerk−1 = kerk = R(E(λ0))
imply that Bk = 0 in view of the relation Bk = (T − λ0)

k−1B1. We have now
proved that the ascent of λ0−T is k and kerk = R(E(λ0)). In particular, since
k > 0, λ0 is an eigenvalue of T .

Now let T1 and T2 be the restrictions of T to R(E(τ)) and R(E(λ0)), re-
spectively. λ0 ∈ σ(T2) but λ0 /∈ σ(T1). Hence, the descent of λ0 − T1 is 0
and R((λ0 − T1)

k) = R(E(τ)) when k ≥ 1. Thus R(E(τ)) ⊆ Rk. Now if
n ≥ k, the only point common to Rn and kern is 0. For, if x ∈ Rn ∩ kern,
then (λ0 − T )nx = 0 and there is y ∈ H such that x = (λ0 − T )ny. Hence
y ∈ ker2n = ker and so x = 0. Now suppose that n ≥ k and x ∈ Rn. Let
x1 = E(τ)x and x2 = E(λ0), then x2 = x − x1 ∈ Rn because R(E(τ)) ⊆ Rn.
However, x2 ∈ R(E(λ0)) = kern, and so x2 = 0 whence x = x1 ∈ R(E(τ)).
Thus Rn ⊆ R(E(τ)) if n ≥ k and therefore that the descent of λ0 − T is less
that or equal to k. Then by [15, Proposition 1.49] shows that the descent is
exactly k, which know to be the ascent. □

Corollary 2.9. Let T ∈ B(H) be a (p, k)-quasihyponormal operator. Then T
is of finite ascent.

An operator T ∈ B(H) is said to be polaroid if isoσ(T ) ⊆ π(T ), where π(T )
is the set of all poles of T . In general, if T is polaroid, then it is isoloid. However,
the converse is not true. Consider the following example. Let T ∈ ℓ2(N) be
defined by

T (x1, x2, . . .) =
(x2

2
,
x3

3
, . . .

)
.

Then T is a compact quasinilpotent operator with α(T ) = 1, and so T is isoloid.
However, since T does not have finite ascent, T is not polaroid.
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Proposition 2.10. Let T be an algebraically (p, k)-quasihyponormal operator.
Then T is polaroid.

Proof. Suppose T is an algebraically (p, k)-quasihyponormal operator. Then
p(T ) is (p, k)-quasihyponormal for some nonconstant polynomial p. Let λ ∈
iso(σ(T )). Using the spectral projection P := 1

2iπ

∫
∂D

(µ − T )−1 dµ, where D
is a closed disk of center λ which contains no other points of σ(T ), we can
represent T as the direct sum

T =

(
T1 0
0 T2

)
, and σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ} .

Since T1 is algebraically (p, k)-quasihyponormal and σ(T1) = {λ}. But σ(T1 −
λI) = {0} it follows from Proposition 2.6 that T1 − λI is nilpotent. Therefore
T1 − λ has finite ascent and descent. On the other hand, since T2 − λI is
invertible, clearly it has finite ascent and descent. Therefore T − λI has finite
ascent and descent. Therefore λ is a pole of the resolvent of T . Thus if λ ∈
iso(σ(T )) implies λ ∈ π(T ), and so iso(σ(T )) ⊂ π(T ). Hence T is polaroid. □
Corollary 2.11. Let T be an algebraically (p, k)-quasihyponormal operator.
Then T is isoloid.

For T ∈ B(H), λ ∈ σ(T ) is said to be a regular point if there exists S ∈ B(H)
such that T − λI = (T − λI)S(T − λI). T is is called reguloid if every isolated
point of σ(T ) is a regular point. It is well known [19, Theorems 4.6.4 and 8.4.4]
that T − λI = (T − λI)S(T − λI) for some S ∈ B(H) ⇐⇒ T − λI has a closed
range.

Theorem 2.12. Let T be an algebraically (p, k)-quasihyponormal operator.
Then T is reguloid.

Proof. Suppose T is an algebraically (p, k)-quasihyponormal operator. Then
p(T ) is a (p, k)-quasihyponormal operator for some nonconstant polynomial p.
Let λ ∈ iso(σ(T )). Using the spectral projection P := 1

2iπ

∫
∂D

(µ − T )−1 dµ,
where D is a closed disk of center λ which contains no other points of σ(T ),
we can represent T as the direct sum

T =

(
T1 0
0 T2

)
, and σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ} .

Since T1 is algebraically (p, k)-quasihyponormal and σ(T1) = {λ}, it follows
from Lemma 2.5 that T1 = λI. Therefore by [34, Theorem 6],

(2.9) H = E(H)⊕ E(H)⊥ = ker(T − λI)⊕ ker(T − λI)⊥.

Relative to decomposition 2.9, T = λI ⊕ T2. Therefore T − λI = 0 ⊕ T − λI
and hence ran(T − λI) = (T − λI)(H) = 0 ⊕ (T2 − λI)(ker(T − λI)⊥). Since
T2 − λI is invertible, T − λI has closed range. □
Theorem 2.13. Let T ∗ ∈ B(H) be an algebraically (p, k)-quasihyponormal
operator. Then T is a-isoloid.
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Proof. Suppose T ∗ is algebraically (p, k)-quasihyponormal. Since T ∗ has SVEP,
then σ(T ) = σa(T ). Let λ ∈ iso(σa(T )) = iso(σ(T )). But T ∗ is polaroid, hence
T is also polaroid. Therefore it is isoloid, and hence λ ∈ σp(T ). Thus T is a-
isoloid. □

3. Weyl’s type theorem

Lemma 3.1. If T is a (p, k)-quasihyponormal operator and S ≺ T , then S has
SVEP.

Proof. Since T is a (p, k)-quasihyponormal operator, then it has a SVEP. So
the result follows from [14, Lemma 3.1]. □
Theorem 3.2. Let S, T ∈ B(H). If T has SVEP and S ≺ T, then f(S) ∈ gaB
for every f ∈ Hol(σ(T )). In particular, if T has SVEP, then T ∈ gaB.

Proof. Suppose that T has SVEP. Since S ≺ T, it follows from the proof of [14]
that S has SVEP. We now show that S ∈ gaB. Let λ ∈ σa(S) \ σSBF−

+
(S);

then S − λI ∈ SBF−
+ (S) but not bounded below. Since S − λI ∈ SBF−

+ (S),
it follows from from [11, Corollary 2.10] that S − λI = S1 ⊕ S2, where S1 is an
upper semi-Fredholm operator with i(S1) ≤ 0, and S2 is nilpotent. Since S has
SVEP, S1 and S2 also have SVEP. Therefore a-Browder’s theorem holds for S1,
and hence σab(S1) = σSF−

+
(S1). Since S1 is semi-Fredholm with i(S1) ≤ 0, S1

is a-Browder’s. Hence λ is an isolated point of σa(S). It follows that S ∈ gaB.
Now let f ∈ Hol(σ(T )). Since the SVEP is stable under the functional

calculus, then f(S) has the SVEP. Therefore f(S) ∈ gaB, by the first part of
the proof. □

We now recall that the generalized a-Weyl’s theorem may not hold for
quasinilpotent operators, and that it does not necessarily transfer to or from
adjoints.

Example 3.3. Let T ∈ B(H) defined on ℓ2 by

T (x1, x2, . . .) =
(x2

2
,
x3

3
, . . .

)
.

Then T is a quasinilpotent operator and σ(T ) = σSBF−
+
(T ) = Ea(T ) = {0} .

Thus T does not obey generalized a-Weyl’s theorem.
Now σ(T ∗) = σSBF−

+
(T ∗) = {0} and Ea(T ∗) = ∅. Therefore T ∗ ∈ gaW.

As a consequence of [17, Theorem 2.4] and [16, Lemma 2.5] we have:

Theorem 3.4. Let T ∈ B(H) be a (p, k)-quasihyponormal operator. Then T
is of stable index.

Let T ∈ B(H). It is well known that the inclusion σSF−
+
(f(T )) ⊆ f(σSF−

+
(T ))

holds for every f ∈ Hol(σ(T )) with no restriction on T [29]. The next theorem
shows that the spectral mapping theorem holds for the essential approximate
point spectrum for algebraically (p, k)-quasihyponormal operator.
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Theorem 3.5. Suppose T ∗ or T is an algebraically (p, k)-quasihyponormal
operator. Then

σSF−
+
(f(T )) = f(σSF−

+
(T )).

Proof. Assume first that T is an algebraically (p, k)-quasihyponormal operator
and let f ∈ Hol(σ(T )). It suffices to show that σSF−

+
(f(T )) ⊇ f(σSF−

+
(T )).

Suppose that λ /∈ σSF−
+
(f(T )). Then f(T )− λI ∈ SF−

+ (H) and

f(T )− λI = c(T − µ1I)(T − µ2I) · · · (T − µnI)g(T ),

where c, µ1, µ2, . . . , µn ∈ C, and g(T ) is invertible. Since T is an algebraically
(p, k)-quasihyponormal operator, it has SVEP. It follows from [2, Theorem 2.6]
that i(T − µj) ≤ 0 for each j = 1, 2, . . . , n. Therefore λ /∈ f(σSF−

+
(T )), and

hence σSF−
+
(f(T )) = f(σSF−

+
(T )). Suppose now that T ∗ is an algebraically

(p, k)-quasihyponormal operator. Then T ∗ has SVEP, and so by [2, Theorem
2.6] i(T − µjI) ≥ 0 for each j = 1, 2, . . . , n. Since

0 ≤
n∑

j=1

i(T − µjI) = i(f(T )− λI) ≤ 0,

T − µjI is Weyl for each j = 1, 2, . . . , n. Hence λ /∈ f(σSF−
+
(T )), and so

σSF−
+
(f(T )) = f(σSF−

+
(T )). This completes the proof. □

Theorem 3.6. Suppose T ∗ is an algebraically (p, k)-quasihyponormal operator.
Then a-Weyls theorem holds for f(T ) for every f ∈ Hol(σ(T )).

Proof. Suppose T ∗ is an algebraically (p, k)-quasihyponormal operator. We
first show that a-Weyls theorem holds for T . Suppose that λ ∈ σa(T )\σSF−

+
(T ).

Then T − λI is upper semi-Fredholm and i(T − λI) ≤ 0. Since T ∗ is an
algebraically (p, k)-quasihyponormal operator, T ∗ has SVEP. Therefore by [2,
Theorem 2.6] that i(T − λI) ≥ 0, and hence T − λI is Weyl. Since T ∗ has
SVEP, it follows from [18, Corollary 7] that σa(T ) = σ(T ). Also, since Weyls
theorem holds for T by [26], λ ∈ πa

0 (T ).
Conversely, suppose that λ ∈ πa

0 (T ). Since T
∗ has SVEP, it follows from [18,

Corollary 7] that σa(T ) = σ(T ). Therefore λ is an isolated point of σ(T ),
and hence λ̄ is an isolated point of σ(T ∗). But T ∗ is an algebraically (p, k)-
quasihyponormal operator, hence by Proposition 2.10 that λ̄ ∈ π(T ∗) . There-
fore there exists a natural number n0 such that n0 = a(T ∗− λ̄I) = d(T ∗− λ̄I).
Hence we have H = ker((T ∗ − λ̄I)n0)⊕ ran((T ∗ − λ̄I)n0) and ran((T ∗ − λ̄I)n0)
is closed. Therefore ran((T − λI)n0) is closed and H = ker((T ∗ − λ̄I)n0)⊥ ⊕
ran((T ∗ − λ̄I)n0)⊥ = ker((T − λI)n0) ⊕ ran((T − λI)n0). So λ ∈ σp(T ), and
hence T − λI is Weyl. Consequently, λ ∈ σa(T ) \ σSF−

+
(T ). Thus a-Weyls

theorem holds for T .
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Now we show that T is a-isoloid. Let λ be an isolated point of σa(T ). Since
T ∗ has SVEP, λ is an isolated point of σ(T ). But T ∗ is polaroid, hence T is
also polaroid. Therefore it is isoloid, and hence λ ∈ σp(T ). Thus T is a-isoloid.

Finally, we shall show that a-Weyls theorem holds for f(T ) for every f ∈
Hol(σ(T )). Let f ∈ Hol(σ(T )). Since a-Weyls theorem holds for T , it satisfies
a-Browders theorem. Therefore σab(T ) = σSF−

+
(T ). It follows from Theo-

rem 3.5 that

σab(f(T )) = f(σab(T )) = f(σSF−
+
(T )) = σSF−

+
(f(T )),

and hence a-Browders theorem holds for f(T ). So σa()f(T ) \ σSF−
+
(f(T )) ⊂

πa
0 (T ). Conversely, suppose that λ ∈ πa

0 (f(T )). Then λ is an isolated point of
σa(f(T )) and 0 < α(f(T )− λI) < 1. Since λ is an isolated point of f(σa(T )),
if µj ∈ σa(T ), then µj is an isolated point of σa(T ). Since T is a-isoloid, 0 <
α(T−µj) < 1 for each j = 1, 2, . . . , n. Since a-Weyls theorem holds for T , T−µj

is upper semi-Fredholm and i(T − µj) ≤ 0 for each j = 1, 2, . . . , n. Therefore
f(T )−λI is upper semi-Fredholm and f(T )−λI =

∑n
j=1 i(T−µjI) ≤ 0. Hence

λ ∈ σa()f(T ) \ σSF−
+
(f(T )), and so a-Weyls theorem holds for f(T ) for each

f ∈ Hol(σ(T )). This completes the proof. □

Theorem 3.7. Let T be an algebraically (p, k)-quasihyponormal operator. Then
σlD(T ) = σSBF−

+
(T ) ∪ acc(σa(T )).

Proof. Suppose that λ ∈ σa(T ) \ σlD(T ). Then T − λI is left Drazin invertible
but not bounded below. In particular, T − λI is semi-B-Fredholm. Therefore
d = a(T − λ) < ∞ and ran((T − λI)d+1) is closed. On the other hand, since
d = a(T − λI) < ∞ and (ran(T − λ)d+1) is closed, λ is an isolated point of
σa(T ). Hence λ ∈ σa(T ) \ (σSBF−

+
(T ) ∪ acc(σa(T ))).

Conversely, suppose that λ ∈ σa(T ) \ (σSBF−
+
(T ) ∪ acc(σa(T ))). Then T −

λI is semi-B-Fredholm and λ is an isolated point of σa(T ). Since T − λI is
upper semi-Fredholm, it follows from [11, Corollary 2.10] that T − λI can be
decompose as T − λI = T1 ⊕ T2, where T1 is an upper semi-Fredholm operator
with i(T1) ≤ 0 and T2 is nilpotent. We consider two cases.

Case I. Suppose that T1 is bounded below. Then T − λI is left Drazin
invertible, and so λ /∈ σlD(T ).

Case II. Suppose that T1 is not bounded below. Then 0 is an isolated
point of σa(T1). But T1 is an upper semi-Fredholm operator, hence it follows
from the punctured neighborhood theorem that T1 is a-Browder. Therefore
there exists a finite rank operator S1 such that T1 + S1 is bounded below and
T1S1 = S1T1. Put F := S1 ⊕ 0. Then F is a finite rank operator, TF = FT
and T − λI + F = T1 ⊕ T2 + S1 ⊕ 0 = (T1 + S1)⊕ T2 is left Drazin invertible.
Hence λ /∈ σlD(T ). □
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As shown in [12] that the spectral mapping theorem holds for the Drazin
spectrum. We prove here the spectral mapping theorem holds for left Drazin
spectrum.

Theorem 3.8. Let T be an algebraically (p, k)-quasihyponormal operator and
let f ∈ Hol(σ(T )). Then σlD(f(T )) = f(σlD(T )).

Proof. Suppose that µ /∈ f(σlD(T )) and set h(λ) = f(λ) − µI. Then h has no
zeros in σlD(T ). Since σlD(T ) = σSBF−

+
(T ) ∪ acc(σa(T )) by Theorem 3.7, we

conclude that h has finitely many zeros in σa(T ). Now we consider two cases.
Case I. Suppose that h has no zeros in σa(T ). Then h(T ) = f(T ) − µI is

bounded below, and so µ /∈ σlD(f(T )).
Case II. Suppose that h has at least one zero in σa(T ). Then

h(λ) = c(λ− λ1)(λ− λ2) · · · (λ− λn)g(λ),

where c, λ1, λ2, . . . , λn ∈ C and g(λ) is a nonvanishing analytic function on an
open neighborhood. Therefore

h(T ) = c(T − λ1I)(T − λ2I) · · · (T − λnI)g(T ),

where g(T ) is bounded below. Since µ /∈ f(σlD(T )), λ1, λ2, . . . , λn /∈ σlD(T ).
Therefore T−λjI is left Drazin invertible, and hence each T−λjI ∈ SBF−

+ (r), j
= 1, 2, . . . , n. But each λj is an isolated point of σa(T ), it follows from [11,
Theorem 2.8] that each λj is a left pole of the resolvent of T . Therefore a(T −
λjI) = d < ∞ and ran(T − λjI)

d+1 is closed (j = 1, 2, . . . , n), so a((T −
λ1)(T −λ2) · · · (T −λn)) = s < ∞ and ran((T −λ1)(T −λ2) · · · (T −λn))

s+1 is
closed. Since g(T ) is bounded below, a(h(T )) = t < ∞ and ran((h(T )t+1)) is
closed. Therefore h(T ) is left Drazin invertible, and so 0 /∈ σlD(h(T )). Hence
µ /∈ σlD(f(T )). It follows from Cases I and II that σlD(f(T )) ⊆ f(σlD(T )).

Conversely, suppose that λ /∈ σlD(f(T )). Then f(T ) − λI is left Drazin
invertible. We again consider two cases.

Case I. Suppose that f(T ) − λI is bounded below. Then λ /∈ σa(f(T )) =
f(σa(T )), and hence λ /∈ f(σlD(T )).

Case II. Suppose that λ ∈ σa(f(T )) \ σlD(f(T )). Write

f(T ) = c(T − λ1I)(T − λ2I) · · · (T − λnI)g(T ),

where c, λ1, λ2, . . . , λn ∈ C and g(T ) is bounded below. Since f(T ) − λI is
left Drazin invertible, f(T ) = c(T − λ1I)(T − λ2I) · · · (T − λnI)g(T ) has finite
ascent say r and ran(f(T ))r+1 is closed. Hence T −λjI has finite ascent say rj
and ran(T − λj)

rj+1 is closed for every j = 1, 2, . . . , n. Therefore each T − λjI
is left Drazin invertible, and so λ1, . . . , λn /∈ σlD(T ).

We now wish to prove that λ /∈ f(σlD(T )). Assume not; then there exists
µ ∈ σaD(T ) such that f(µ) = λ. Since g(µ) ̸= 0, we must have µ = µj

for some j = 1, 2, . . . , n, which implies µj ∈ σlD(T ), a contradiction. Hence
λ /∈ f(σlD(T )), and so f(σlD(T )) ⊆ σlD(f(T )). This completes the proof. □
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Theorem 3.9. Suppose T or T ∗ is an algebraically (p, k)-quasihyponormal
operator. Then f(σSBF−

+
(T )) = σSBF−

+
(f(T )) for all f ∈ Hol(σ(T )).

Proof. Let λ /∈ σSBF−
+
(f(T )). Then f(T )− λI ∈ SBF−

+ (T ) and

f(T )− λI =
m∏
j=1

(T − λjI)g(T ),

where λ1, . . . , λm ∈ C and g(T ) is invertible. Since f(T )−λI is an upper semi-
B-Fredholm operator, it follows from [7, Theorem 3.2] that T − λjI is upper
semi-B-Fredholm for each 1 ≤ j ≤ m. Hence

i(f(T )− λI) =

m∑
j=1

i(T − λjI) ≤ 0.

Now from [7, Remark A] there exists some integer k such that for each, 1 ≤ j ≤
m, T −(λj+

1
k )I is an upper semi-B-Fredholm operator and i(T −(λj+

1
k )I) =

i(T − λjI). If T is an algebraically (p, k)-quasihyponormal operator, then it
follows from Proposition 1.1 that i(T − λjI) ≤ 0. Hence λ /∈ f(σSBF−

+
(T )).

Now if T ∗ is an algebraically (p, k)-quasihyponormal operator, then we have
from Proposition 1.1 that i(T − λjI) = 0 and so T − λjI is a B-Fredholm
operator of index 0. Thus λ /∈ f(σSBF−

+
(T )).

For the converse inclusion. Let λ ∈ σSBF−
+
(f(T )) \ f(σSBF−

+
(T )). Suppose

that

f(T )− λI =
m∏
j=1

(T − λjI)g(T ),

where λ1, . . . , λm ∈ C \ σSBF−
+
(T ) and g(T ) is invertible. Hence f(T ) − λI is

upper semi-B-Fredholm and i(f(T ) − λI) =
∑m

j=1 i(T − λjI) ≤ 0. Therefore

λ /∈ σSBF−
+
(f(T )), so a contradiction. □

Lemma 3.10. Suppose that T ∈ B(H) is algebraically (p, k)-quasihyponor-
mal. Then for any f ∈ Hol(σ(T )) we have

σa(f(T )) \ Ea(f(T )) = f(σa(T )) \ Ea(T )).

Proof. Let λ ∈ σa(f(T )) \ Ea(f(T )). Then λ ∈ σa(f(T )) = f(σa(T )). We
distinguish two cases:

Case I. λ /∈ iso(f(σa(T ))), then there is an infinite sequence {ηn}n∈N ∈
σa(T ) such that λ = f(η0) and ηn −→ η0. But f ∈ Hol(σ(T )), therefore
f(ηn) −→ f(η0) = λ and λ ∈ f(σa(T ) \ Ea(T )).

Case II. λ ∈ iso(f(σa(T ))), since λ /∈ Ea(f(T )) then λ is not an eigenvalue
of f(T ). Then

f(T )− λI = (T − η1I)
t1(T − η2I)

t2 · · · (T − ηmI)tmg(T ),
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where η1, . . . , ηm are scalars and g is invertible. Since λ is not an eigenvalue
of f(T ), then for each j ∈ {1, . . . ,m}, ηj is not an eigenvalue of T . Hence
ηj ∈ σa(T ) \ Ea(T ) and λ = f(ηj) ∈ f(σa(T ) \ Ea(T )).

Conversely, Let λ ∈ f(σa(T ) \ Ea(T )) then λ ∈ σa(f(T )) = f(σa(T )).
Assume that λ ∈ Ea(f(T )). Then

f(T )− λI = (T − η1I)
t1(T − η2I)

t2 · · · (T − ηmI)tmg(T ),

where η1, . . . , ηm are scalars and g is invertible. If ηj ∈ σa(T ), then ηj ∈
iso(σa(T )). Since T is a-isoloid, ηj is an eigenvalue of T . Hence ηj ∈ Ea(T ).
So λ = f(ηj) this leads a contraction to the fact that λ ∈ f(σa(T )\Ea(T )). □

Theorem 3.11. Let T ∗ ∈ B(H) be algebraically (p, k)-quasihyponormal. Then
generalized a-Weyl’s theorem holds for f(T ), for every f ∈ Hol(σ(T )).

Proof. If T ∗ is an algebraically (p, k)-quasihyponormal operator, then T ∗ has
SVEP σ(T ) = σa(T ) and consequently E(T ) = Ea(T ).

Let λ /∈ σSBF−
+
(T ) be given. Then T −λ is semi-B-Fredholm and i(T −λ) ≤

0. Then Proposition 1.1 implies that i(T − λ) = 0 and consequently T − λ
is B-Weyl’s. Hence λ /∈ σBω(T ). Hence it follows from [37, Theorem3.1] that
λ ∈ E(T ) = Ea(T ).

For the converse, let λ ∈ Ea(T ). Then λ ∈ isoσa(T ). Since T ∗ has SVEP,
we have σ(T ) = σa(T ). Hence λ ∈ σ(T ∗). Now we represent T ∗ as the direct
sum T ∗ = T1⊕T2, where σ(T1) = {λ} and σ(T2) = σ(T )\{λ}. Since T ∈ Υ(H)
then so does T1, and so we have two cases:

Case I. (λ = 0): then T1 is quasinilpotent. Hence it follows that T1 is
nilpotent. Since T2 is invertible, Then T ∗ is B-Weyl’s.

Case II. (λ ̸= 0): Since σ(T1) =
{
λ̄
}
, then T1 − λ is nilpotent and T2 − λ is

invertible, it follows from [37, Theorem 3.1] that T ∗ − λ is B-Weyl’s. Thus in
any case λ ∈ σa(T ) \ σSBF−

+
(T ).

Let f ∈ Hol(σ(T )). Since T is a-isoloid, then it follows from Theorem 3.9
that σSBF−

+
(f(T )) = f(σSBF−

+
(T )) = f(σa(T )\Ea(T )) = σa(f(T ))\Ea(f(T )).

Thus generalized a-Weyl’s theorem holds for f(T ). □

Corollary 3.12. Let T ∗ ∈ B(H) be an algebraically (p, k)-quasihyponormal.
Then Ea(T ) = πa(T ).

Proof. If T ∗ is an algebraically (p, k)-quasihyponormal operator, then σa(T ) \
σSBF−

+
(T ) = Ea(T ). Let λ ∈ Ea(T ). Then λ is isolated in σa(T ), and λ /∈

σSBF−
+
(T ). So T −λI is in SBF−

+ (H). It follows from [11, Theorem 2.8] that λ

is a left pole of T , and so λ ∈ πa(T ). As we have always πa(T ) ⊂ Ea(T ), then
Ea(T ) = πa(T ). □

Definition 3.13. Let T ∈ B(H) and let k ∈ N. Then T has a uniform descent
for n ≥ k if R(T ) + ker(Tn) = R(T ) + ker(T k) for all n ≥ k. If, in addition,
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R(T ) + ker(T k) is closed, then T is said to have a topological uniform descent
for n ≥ k.

An operator T ∈ B(H) is called a-polaroid if isoσa(T ) ⊂ πa(T ). In gen-
eral, if T is a-polaroid, then it is polaroid. However, the converse is not true.
Consider the following example.

Example 3.14. Let R be the unilateral right shift on ℓ2(N) and define

U(x1, x2, . . .) := (0, x2, x3, . . .) for all xn ∈ ℓ2(N).

Clearly, U is a quasi-nilpotent operator. Let T := R ⊕ U. We have σ(T ) = D,
D is the unit disc of C, so iso(σ(T )) = E0(T ) = ∅ and hence T is polaroid.
Moreover, σa(T ) = ∂D ∪ {0} . Since σa(T ) does not cluster at 0, then T has
the SVEP at 0, as well as at the points λ /∈ σa(T ). Since T has SVEP at all
points λ ∈ ∂σ(T ) it then follows that T has SVEP. Finally, σSBF−

+
(T ) = ∂σ(T )

so σa(T ) \ σSBF−
+
(T ) = {0} . Hence T is not a-polaroid.

Theorem 3.15. Let T ∗ ∈ B(H) be an algebraically (p, k)-quasihyponormal
operator. Then T is a-polaroid.

Proof. Suppose T ∗ is algebraically (p, k)-quasihyponormal. Since T ∗ has the
SVEP, then σa(T ) = σ(T ). Let λ ∈ iso(σa(T )) = iso(σ(T )). Since a-Weyl’s
theorem holds for T by Theorem 3.6, then λ is a left pole of finite rank of T .
Therefore T −λI has a finite ascent k = a(T −λI) and R(T −λI)k+1 is closed.
Since T − λI is also an operator of topological uniform descent for n ≥ 0, then
it follows from [9, Lemma 2.8] that T − λI is injective. So a(T − λI) = 0 and
R(T − λI) is closed. Since πa(T ) = Ea(T ), we see that λ is a left pole of T .
That is, all isolated points of the approximate point spectrum of T are left
poles of the resolvent of T . □
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