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WEYL’S TYPE THEOREMS FOR ALGEBRAICALLY
(p, k)-QUASIHYPONORMAL OPERATORS

MOHAMMAD HUSSEIN MOHAMMAD RASHID AND MOHD SALMI MOHD NOORANI

ABSTRACT. For a bounded linear operator T' we prove the following as-
sertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a-
isoloid, polaroid, reguloid and a-polaroid. (b) If T* is algebraically (p, k)-
quasihyponormal, then a-Weyl’s theorem holds for f(7T) for every f €
Hol(o(T)), where Hol(o(T)) is the space of all functions that analytic
in an open neighborhoods of o(T) of T. (c) If T* is algebraically (p, k)-
quasihyponormal, then generalized a-Weyl’s theorem holds for f(7T) for
every f € Hol(o(T)). (d) If T is a (p, k)-quasihyponormal operator,
then the spectral mapping theorem holds for semi-B-essential approxi-
mate point spectrum TsprT (T'), and for left Drazin spectrum o;p(T)
for every f € Hol(o(T)).

1. Introduction

Throughout this paper let B(#), denote, the algebra of bounded linear oper-
ators acting on an infinite dimensional separable Hilbert space H. If T € B(H)
we shall write ker(T') and R(T') for the null space and range of T, respectively.
Also, let o(T) = dimker(T), B(T) := dimR(T), and let o(T),04(T),0,(T)
denote the spectrum, approximate point spectrum and point spectrum of T,
respectively. An operator T € B(H) is called Fredholm if it has closed range,
finite dimensional null space, and its range has finite codimension. The index
of a Fredholm operator is given by

i(T) = o(T) — B(T).

T is called Weyl if it is Fredholm of index 0, and Browder if it is Fredholm “of
finite ascent and descent”.

Recall that the ascent, a(T), of an operator T is the smallest non-negative
integer p such that ker(7?) = ker(TP*1). If such integer does not exist we put
a(T) = oo. Analogously, the descent, d(T'), of an operator T is the smallest
non-negative integer ¢ such that R(T?) = R(T*!), and if such integer does
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not exist we put d(T') = co. The essential spectrum o (T), the Weyl spectrum
ow (T) and the Browder spectrum o(T") of T are defined by

op(T)={A€C:T — X\ is not Fredholm},
ow(T)={A € C:T — X is not Weyl}

and
op(T) ={A € C: T — X is not Browder}
respectively. Evidently
or(T) Cow(T) Cop(T) Cop(T)Uacca(T),

where we write accK for the accumulation points of K C C.

Following [13], we say that Weyl’s theorem holds for T if o(T) \ ow (T) =
Ey(T), where Eo(T) is the set of all eigenvalues A of finite multiplicity isolated
in o(T). And Browder’s theorem holds for T if o(T) \ ow (T) = mo(T'), where
7o is the set of all poles of T' of finite rank.

Let @ (H) be the class of all upper semi-Fredholm operators, ®7 () be the
class of all T € &, (H) with ¢(T") <0, and for any T' € B(#H) let

o5p-(T) = {ANeC:T-N¢&SF;(H)}.

Let E§ be the set of all eigenvalues of T of finite multiplicity which are iso-
lated in o, (T). According to [27], we say that T satisfies a-Weyl’s theorem if
Tsp: (T) = 0, (T)\ E§(T). Tt follows from [27, Corollary 2.5] a-Weyl’s theorem
implies Weyl’s theorem.

In [12] Berkani define the class of B-Fredholm operators as follows. For each
integer n, define T, to be the restriction of T' to R(T™) viewed as a map from
R(T™) into R(T™) (in particular Tp = T'). If for some n the range R(T™") is
closed and T, is a Fredholm (resp. semi-Fredholm) operator, then T is called
a B-Fredholm (resp. semi-B-Fredholm) operator. In this case and from [6] T},
is a Fredholm operator and i(7T,,) = i(T},) for each m > n. The index of a
B-Fredholm operator T is defined as the index of the Fredholm operator T,
where n is any integer such that the range R(7™) is closed and T, is a Fredholm
operator (see [12]).

Let BF(H) be the class of all B-Fredholm operators. In [6] Berkani has
studied this class of operators and has proved that an operator T € B(H) is
B-Fredholm if and only if T' = Ty & T3, where Ty is a Fredholm operator and
Ty is a nilpotent operator.

Recall that an operator T' € B(H) is called a B-Weyl operator (see [8]) if it
is a B-Fredholm operator of index 0. The B-Weyl spectrum ogw (T) of T is
defined by

opw(T)={A e C:T — Xl isnot a B-Weyl operator} .

In the case of a normal operator T acting on a Hilbert space H, Berkani [12,
Theorem 4.5] showed that opw (T) = o(T) \ E(T), where E(T) is the set of
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all eigenvalues of T' which are isolated in the spectrum of 7. This result gives
a generalization of the classical Weyl’s theorem.

Let SBF,(H) be the class of all upper semi-B-Fredholm operators, and
SBF (M) the class of all T' € SBF, (M) such that i(T") <0, and

O'SBF;(T) ={AeC:T-X¢SBF_(H)}.

Recall that an operator T' € B(H) satisfies the generalized a-Weyl’s theorem
if TsBr; (T) = 04,(T) \ E*(T), where E*(T) is the set of all eigenvalues of T

which are isolated in o,(7"). Note that generalized a-Weyl’s theorem implies
a-Weyl’s theorem (see [11]).

Recall that an operator T' € B(H) is Drazin invertible if and only if it has a
finite ascent and descent, which is also equivalent to the fact that T'= Ty ® T,
where T is a nilpotent operator and Tj is an invertible operator (see [23,
Proposition Al). The Drazin spectrum is given by

op(T):={A € C:T — X is not Drazin invertible}.

We observe that op(T) = o(T) \ 7(T), where 7(T) is the set of all poles.

An operator T € B(H) is called left Drazin invertible if a(T) < oo and
R(TT)+1) is closed (see [9, Definition 2.4]). The left Drazin spectrum is
given by

orp(T):={A € C:T — A is not left Drazin invertible}.

Recall [9, Definition 2.5] that A € 0,(T) is a left pole of T if T — AI is a left
Drazin invertible operator and A € 0,(T) is a left pole of finite rank if A is
a left pole of T and (T — A) < co. We will denote 7%(T') the set of all left
poles of T, and by 7§ (T') the set of all left poles, of T of finite rank. We have
orp(T) = oo (T)\ 7(T).

Note that if A € 7%(T), then it is easily seen that T'— A is an operator of
topological uniform descent. Therefore it follows from ([11, Theorem 2.5]) that
A is isolated in 0,(T). Following [9] if T € B(H) and A € C is isolated in
0q(T), then A € #%(T) if and only if \ ¢ TsBr: (T) and A € n§(T) if and only

if A ¢ Tspy (T).

For the sake of simplicity of notation we introduce the abbreviations gaW,
aW, gW and W to signify that an operator T' € B(H) obeys generalized a-
Weyl’s theorem, a-Weyl’s theorem, generalized Weyl’s theorem and Weyl’s
theorem, respectively. Analogous meaning is attached to the abbreviations
gaB,aB,gB and B with respect to Browder’s theorem.

In the following diagram, arrows signify implications between various Weyl
and Browder type theorems. It is known from [1, 3, 7, 11, 19, 20, 27] that if
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T € B(H), then we have:
gW ——g¢B<~— DB

S
\/

The quasinilpotent part Ho(T — )\) and the analytic core K(T — A) of T — A
are defined by

Ho(T —\) = {z € H: lim (T~ )" =0},

and
K(T — X\) = {z € H : there exists a sequence {z,} C H and 6 > 0 for which
x=2x0,(T — N&pt1 =2, and  ||z,] < 0"||z| for all n=1,2,...}.

We note that Ho(T'— \) and K (T — ) are generally non-closed hyper-invariant
subspaces of T'— X such that (T'— \)"P(0) C Ho(T —\) for all p=10,1,... and
(T—=ANK(T —X) = K(T —)\). Recall that if X € iso(o(T)), then Ho(T — \) =
x7({A}), where xr({A}) is the glocal spectral subspace consisting of all x € H
for which there exists an analytic function f : C\ {A\} — H that satisfies
(T —p)f(n) =z for all e C\ {A} (see [17]).

Let Hol(o(T)) be the space of all functions that analytic in an open neigh-
borhoods of ¢(T). Following [18] we say that 7' € B(#) has the single-valued
extension property (SVEP) at point A € C if for every open neighborhood
U, of A, the only analytic function f : Uy — H which satisfies the equation
(T'— ) f(n) = 01is the constant function f = 0. It is well-known that 7' € B(H)
has SVEP at every point of the resolvent p(T') := C\ o(T"). Moreover, from
the identity theorem for analytic function it easily follows that 7' € B(H) has
SVEP at every point of the boundary do(T') of the spectrum. In particular,
T has SVEP at every isolated point of (7). In [25, Proposition 1.8], Laursen
proved that if T is of finite ascent, then 7" has SVEP.

Proposition 1.1 ([24]). Let T € B(H).
(i) If T has the SVEP, then i(T — AI) <0 for every A € pspr(T).
(ii) If T* has the SVEP, then i(T — XI) > 0 for every A € pspr(T).
(iii) If T* has the SVEP, then

(a) (TSF;(T):(U(T) and (b) O'SBF;(T):O'BW(T).

In [36] H. Weyl examined the spectra of all compact perturbations of a
hermitian operator T" on a Hilbert space and proved that their intersection
coincides with the isolated point of the spectrum o (7) which are the eigenvalues
of finite multiplicity. Weyl’s theorem has been extended to several classes of
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Hilbert space operators including seminormal operators [4, 5]. In [7] M. Berkani
introduced the concepts of the generalized Weyl’s theorem and generalized
Browder’s theorem, and they showed that T satisfies the generalized Weyl’s
theorem whenever T is a normal operator on Hilbert space. More recently, [10]
extended this result to hyponormal operators. In [32] extended this result to
log-hyponormal operators. Recently, Rashid et al. [31] showed that if T is quasi-
class A, then generalized Weyl’s theorem holds f(T) for every f € Hol(o(T)).
More recently, in [26] Mecheri showed that generalized Weyl’s theorem holds
for algebraically (p, k)-quasihyponormal operators.

In this paper, we study generalized a-Weyl’s theorem for algebraically (p, k)-
quasihyponormal operators. Among other things, we prove that the spec-
tral mapping theorem holds for semi-B-essential approximate point spectrum
TsBE; (T), and for left Drazin spectrum for every f € Hol(o(T)).

2. Properties of algebraically (p, k)-quasihyponormal operators

Definition 2.1 ([22]). An operator T' € B(H) is said to be (p, k)-quasihyponor-
mal if

TH((T*T)? — (TT*)")T* > 0,
where 0 < p <1 and k is a positive integer. Especially, when p=1,k =1,p =
k =1, T is called k-quasihyponormal, p-quasihyponormal, quasihyponormal,
respectively.

Definition 2.2. An operator T' € B(H) is said to be algebraically (p, k)-
quasihyponormal if there exists a non-constant complex polynomial P such
that P(T) is a (p, k)-quasihyponormal operator.

In general, the following implications hold:
p-hyponormal = p-quasihyponormal = algebraically p-quasihyponormal
= algebraically (p, k)-quasihyponormal.

An operator T' € B(H) is called isoloid if every isolated point of o(T) is an
eigenvalue of 7. An operator T € B(#) is called normaloid if »(T") = ||T|,
where r(T) is the spectral radius of T. X € B(H) is called a quasiaffinity if
it has trivial kernel and dense range. S € B(H) is said to be a quasiaffine
transform of T' € B(H) (notation: S < T') if there is a quasiaffinity X € B(H)
such that XS =TX. If both S < T and T' < S, then we say that S and T are
quasisimilar.

The following facts follow from the above definition and some well known
facts about (p, k)-quasihyponormal operators.

(i) If T € B(H) is an algebraically (p, k)-quasihyponormal operator, then so
is T'— AI for each A € C.

(ii) If T € B(H) is an algebraically (p, k)-quasihyponormal operator and
M is a closed T-invariant subspace of H, then T|ys is an algebraically (p, k)-
quasihyponormal operator.
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Lemma 2.3. Let T € B(H) be a p-quasihyponormal operator for 0 < p < 1.
Then the following assertions hold.

(1) | Tmz|)? < || T a||||T" 2| for all unit vector x € H and all positive
mleger n.

2) |T™||™ < || T || r(T™) for all positive integer n, where r(T™) denote
the spectral radius of T™. Hence T is normaloid.

(3) T is a paranormal operator.

Proof. (1) Tt is obvious that if T is p-quasihyponormal, then it is a (p,n)-
quasihyponormal operator for each positive integer n, since

(T*™(TT*PT"x, x)
= (T*"T(T*T)P ' T*T"x, x)
= ((T*T)P 1"t T L)
> |77 || 2T T e, T )P (by Hoblder-McCarthy inequality)
— T T 2

and
(T*™(T*T)PT"x, x)

= ((T*TPT"z, T"x)

< |\ T |22 (T*TT"x, T"x) (Holder-McCarthy inequality)

= [T a|*~*P T ).
But T is a p-quasihyponormal operator. Then

(T ((T*T)P — (TT*P) Tz, z) > 0.
Hence
1T 2|* < 7"~ 2| | 7" ).
(2) If T™ = 0 for some n > 1, then T'= 0, and in this case r(T") = 0. Hence

(2) is obvious. Hence we may assume 7" # 0 for all n > 1. Then

I _ 1T ™|
<<=
T N T
by (1), and we have
[ N | [ vl
n—1 S n Koo X mn—1 = n—1|| "
[T 17l T [ |

Hence . )
(i ) I T
[T =T
Now letting m — oco. We get
177" < 17| ().
Put n =1, we have ||T|| < r(T). So |T|| = r(T), i.e., T is normaloid.
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(3) Put n =1 in (1), we have ||Tz|* < ||T?z||, that is, T is paranormal. [

Definition 2.4 ([17]). An operator T' € B(H) is said to be totally hereditarily
normaloid, T € THN if every part of T (i.e., its restriction to an invariant
subspace), and Tp*1 for every invertible part 7}, of T, is normaloid.

Lemma 2.5. Let T € THN, let A\ € C. Assume that o(T) = {\}. Then
T =M.

Proof. We consider two cases:

case I. (A =0): Since T is normaloid. Therefore T' = 0.

case IL. (A # 0): Here T is invertible, and since T € THN, we see that T, T~ !
are normaloid. On the other hand o(T~') = {1}, so |T|||T7| = |Al|5] = 1.
It follows that T is convexoid, so W(T') = {A}. Therefore T = AI. O

In [14], Curto and Han proved that quasinilpotent algebraically paranormal
operators are nilpotent. We now establish a similar result for algebraically
(p, k)-quasihyponormal operators.

Proposition 2.6. Let T be a quasinilpotent (p, k)-quasihyponormal operator.
Then T s nilpotent.

Proof. Assume that p(T) is a totally hereditarily normaloid operator for some
nonconstant polynomial p. Since o(p(T)) = p(o(T)), the operator p(T') — p(0)
is quasinilpotent. Thus Lemma 2.5 would imply that

cI™(T = M) (T = And) = p(T) — p(0) =0,

where m > 1. Since T — A;I is invertible for every A; # 0, we must have
T = 0. O

Lemma 2.7. Let T be an invertible p-quasihyponormal operator. Then H =
R(T)®ker(T). Moreover Ty, the restriction of T to R(T) is one-one and onto.

Proof. Suppose that y € R(T)Nker(T) then y = Tx for some x € H and Ty =
0. It follows that T2z = 0. However, d(T) = 1 and so = € ker(T?) = ker(T).
Hence y = Tx = 0 and so R(T) Nker(T) = {0}. Also, TR(T) = R(T).

If © € H, there is u € R(T) such that Tu = Tz. Now if z = x — u, then
Tz = 0. Hence

H=TR(T) & ker(T).

Since a(T) = 1, T maps R(T) onto itself. If y € R(T) and Ty = 0, then
y € R(T) Nker(T) = {0}. Hence T3 is one-one and onto. O

Observe that {A\o} is a clopen subset of o(T). Let T € B(H). The Ry\(T') =
(T — X\)~! is analytic on p(T), and an isolated point \g of o(T') is an isolated
singular point of the resolvent of T. Here there is a Laurent expansion of this
function in powers of A — A\g. We write this in the form

(T -\t = i (A= o)A, + i (A= Xo) " B,.

n=0 n=1
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The coefficients A,, and B,, are members of B(H) and given by the standard
formulas

1

2.1 Ap=— [ A=) N =T)"1a),
(21) s [ =2 =)
(2.2) Bo=—— [ (x =2 '(A—T)dr
' " 2w Jr 0 ’
where T' is any circle |\ — Ag] = p with 0 < p < ¢ described once counter-

clockwise.
The function f, defined by

Fa3) = {éA T
is in Hol(o(T)) and moreover
B, = fulT), n=1,2,....

For each positive integer n, we have

(A =20)fn(A) = fay1-
So
(2.3) (T~ 20)Bu = Buy
and by induction
(2.4) (T'—Xo)"B1 = Bp1.
We note in passing that
(2.5) By = (M)

the spectral projection corresponding to the clopen set A\ of o(T).
Consider for each non-negative integer n the function g, defined by

i) = (A= Xo)" "L, otherwise.

is in Hol(o(T)). Moreover,

A, = _gn(T)
for each non-negative integer n. We have
(2.6) (A= 20)gn+1(A) = gn(N)
and so
(2.7) A=Xo)Ant1 = A,

Similarly (A — Ag)go(A) + f1(A) = 1 and so
(2.8) (T —N)Ag =By — 1.
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Recall that if T € B(H) and A is an isolated point of o(T), then )\ is called a
pole of order m if and only if E(\g)(Ao —T)™ = 0 and E(\g)(Ag —T)™ L # 0.

Lemma 2.8. Let T be a (p, k)-quasihyponormal operator and Ny € isoo(T).
Let 7 = o(T) \ {Xo}. Then Ao is an eigenvalue of T. The ascent and descent
of T — Ao are both equal to k. Also

R(E(Xo)) = ker((T' — Xo)*),
R(E(7)) = R((T - Xo)").

Proof. For convenience we denote the null-space and range of (Ao —T)* by kery,
and Ry, respectively. If = € kery, where k > 1, we see by (2.7), induction and
(2.8) that

0= Ak_l(T — Ao)kx = (T — )\Q)kAk_1$ = (T — /\0)14033‘ = Bll‘ — X.

So that by (2.5), we have © = Byz € R(E(Xg)). Thus kery, C R(E(X)) if
k > 1. On the other hand, it follows from (2.4) that if x € R(E(Xo)), then
r = Bz and (T — \o)*x = Bjy12. Since B, 12 = 0 if n > k. Tt follows that
R(E(Xo)) C kery, and ker,, = R(E(Xo)) if n > k. However, kery_ is a proper
subset of kery because By # 0. The equations kery_1 = kery = R(E(X\o))
imply that By = 0 in view of the relation By = (T — X\o)*~'B;. We have now
proved that the ascent of A\g — T is k and kery, = R(E(Xo)). In particular, since
k >0, Ag is an eigenvalue of T

Now let T} and T, be the restrictions of T to R(E(7)) and R(E(Xo)), re-
spectively. g € o(T) but A\g ¢ o(T1). Hence, the descent of \g — T3 is 0
and R((A\g — T1)*) = R(E(7)) when k > 1. Thus R(E(7)) C Ri. Now if
n > k, the only point common to R, and ker, is 0. For, if x € R, N ker,,
then (Ao — T")"z = 0 and there is y € H such that z = (Ao — T)"y. Hence
y € kerg, = ker and so x = 0. Now suppose that n > k and z € R,,. Let
21 = E(7)x and 2o = E()\g), then 29 = x — 21 € R,, because R(E(7)) C R
However, zo € R(E(\)) = kerp,, and so 3 = 0 whence z = 21 € R(E(7)).
Thus R, C R(E(7)) if n > k and therefore that the descent of \g — T is less
that or equal to k. Then by [15, Proposition 1.49] shows that the descent is
exactly k, which know to be the ascent. (I

Corollary 2.9. Let T € B(H) be a (p, k)-quasihyponormal operator. Then T
is of finite ascent.

An operator T' € B(H) is said to be polaroid if isoo(T) C «(T), where m(T)
is the set of all poles of T'. In general, if T is polaroid, then it is isoloid. However,
the converse is not true. Consider the following example. Let T € ¢2(N) be

defined by

Ty T
T(Jtl,l‘g,. ) = (32, 33,)

Then T is a compact quasinilpotent operator with «(T") = 1, and so T is isoloid.
However, since T does not have finite ascent, 7" is not polaroid.
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Proposition 2.10. Let T be an algebraically (p, k)-quasihyponormal operator.
Then T is polaroid.

Proof. Suppose T is an algebraically (p, k)-quasihyponormal operator. Then
p(T) is (p, k)-quasihyponormal for some nonconstant polynomial p. Let A €
iso(o(T)). Using the spectral projection P := 5— [, (n—T)~"dp, where D
is a closed disk of center A which contains no other points of o(T"), we can
represent 1" as the direct sum

T(% ﬁz ) and o(T1) ={\} and o(Tz) =o(T)\{\}.

Since T} is algebraically (p, k)-quasihyponormal and o(77) = {\}. But o(7T} —
AI) = {0} it follows from Proposition 2.6 that 77 — AI is nilpotent. Therefore
T7 — X has finite ascent and descent. On the other hand, since To — AI is
invertible, clearly it has finite ascent and descent. Therefore T'— AI has finite
ascent and descent. Therefore A is a pole of the resolvent of 1. Thus if \ €
1so(o(T)) implies A € 7(T), and so iso(c(T)) C «(T'). Hence T is polaroid. [

Corollary 2.11. Let T be an algebraically (p, k)-quasihyponormal operator.
Then T is isoloid.

For T € B(H), A € o(T) is said to be a regular point if there exists S € B(H)
such that T'— A = (T — A\I)S(T — XI). T is is called reguloid if every isolated
point of o(T') is a regular point. It is well known [19, Theorems 4.6.4 and 8.4.4]
that T — A = (T — X )S(T — X ) for some S € B(H) <= T — AI has a closed

range.

Theorem 2.12. Let T be an algebraically (p, k)-quasihyponormal operator.
Then T 1is reguloid.

Proof. Suppose T is an algebraically (p, k)-quasihyponormal operator. Then
p(T) is a (p, k)-quasihyponormal operator for some nonconstant polynomial p.
Let A € iso(o(T)). Using the spectral projection P := zi— [, (u — T)~ " dy,
where D is a closed disk of center A which contains no other points of o(T),
we can represent T’ as the direct sum

T:(j(;l :;)2) and o(T1) = {\} and o(Th) = o(T)\ {\}.

Since Ty is algebraically (p, k)-quasihyponormal and o(Ty) = {A}, it follows
from Lemma 2.5 that Ty = AI. Therefore by [34, Theorem 6],

(2.9) H=FEH)® EH)" =ker(T — M) @ ker(T — \I)*.

Relative to decomposition 2.9, T' = Al ® Ty. Therefore T — A\ = 0H T — I
and hence ran(T — A) = (T — M )(H) = 0@ (Ty — M) (ker(T — AI)*). Since
Ty — M is invertible, T'— AI has closed range. (I

Theorem 2.13. Let T* € B(H) be an algebraically (p, k)-quasihyponormal
operator. Then T is a-isoloid.
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Proof. Suppose T™* is algebraically (p, k)-quasihyponormal. Since T* has SVEP,
then o(T) = 04(T). Let A € iso(04(T)) = iso(c(T)). But T* is polaroid, hence
T is also polaroid. Therefore it is isoloid, and hence A € ¢,(T). Thus T is a-
isoloid. (]

3. Weyl’s type theorem

Lemma 3.1. If T is a (p, k)-quasihyponormal operator and S < T, then S has
SVEP.

Proof. Since T is a (p, k)-quasihyponormal operator, then it has a SVEP. So
the result follows from [14, Lemma 3.1]. O

Theorem 3.2. Let S,T € B(H). If T has SVEP and S < T, then f(S) € gaB
for every f € Hol(a(T)). In particular, if T has SVEP, then T € gaB.

Proof. Suppose that T has SVEP. Since S < T, it follows from the proof of [14]
that S has SVEP. We now show that S € gaB. Let A € 0,(5) \ O’SBF;(S);
then S — Al € SBF, (S) but not bounded below. Since S — Al € SBF(S),
it follows from from [11, Corollary 2.10] that S — AI = Sy @ Sa, where S is an
upper semi-Fredholm operator with ¢(S1) < 0, and Sy is nilpotent. Since S has
SVEP, S; and S5 also have SVEP. Therefore a-Browder’s theorem holds for S,
and hence 04,(51) = Osk; (S1). Since S; is semi-Fredholm with (S7) < 0, S;
is a-Browder’s. Hence A is an isolated point of ¢,(.5). It follows that S € gaB.

Now let f € Hol(o(T)). Since the SVEP is stable under the functional
calculus, then f(S) has the SVEP. Therefore f(S) € gaB, by the first part of
the proof. O

We now recall that the generalized a-Weyl’s theorem may not hold for
quasinilpotent operators, and that it does not necessarily transfer to or from
adjoints.

Example 3.3. Let T € B(H) defined on ¢? by
— (%2 T8
T(.rl,.’l,‘g,...) = ( B , 3 7)
Then T is a quasinilpotent operator and o(T") = TsBr; (T) = E«(T) = {0}.
Thus T" does not obey generalized a-Weyl’s theorem.
Now o(T™*) = TsBE; (T*) = {0} and E*(T*) = (). Therefore T* € gaW.
As a consequence of [17, Theorem 2.4] and [16, Lemma 2.5] we have:

Theorem 3.4. Let T € B(H) be a (p, k)-quasihyponormal operator. Then T
is of stable index.
Let T € B(H). It is well known that the inclusion Tor: (f(T)) C f(USFJ: (1))

holds for every f € Hol(o(T)) with no restriction on T' [29]. The next theorem
shows that the spectral mapping theorem holds for the essential approximate
point spectrum for algebraically (p, k)-quasihyponormal operator.
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Theorem 3.5. Suppose T* or T is an algebraically (p, k)-quasihyponormal
operator. Then

e (FT) = F0sy (D)

Proof. Assume first that T is an algebraically (p, k)-quasihyponormal operator
and let f € Hol(o(T)). It suffices to show that Tor- (f(T)) 2 f(aSF; (T)).

Suppose that \ ¢ Tsp- (f(T)). Then f(T) — X € SF_ (H) and
FT) =M =T = mI)(T = pol) -+ - (T = pn D) g(T),

where ¢, p1, pa, ..., n, € C, and ¢g(7') is invertible. Since T is an algebraically
(p, k)-quasihyponormal operator, it has SVEP. It follows from [2, Theorem 2.6]
that ¢(T — p;) < 0 for each j = 1,2,...,n. Therefore A ¢ f(O'SF; (1)), and

hence oo (f(T)) = f(ogr-(T)). Suppose now that T* is an algebraically
SF SF

(p, k)-quasihyponormal operator. Then T* has SVEP, and so by [2, Theorem
2.6] (T — p;I) > 0 for each j =1,2,...,n. Since

0< 3T — 1) = i(F(T) — AT) < 0

T — p;I is Weyl for each j = 1,2,...,n. Hence \ ¢ f(O‘SF;(T)), and so
Tsp (f(T)) = f(aSF; (T)). This completes the proof. O

Theorem 3.6. Suppose T* is an algebraically (p, k)-quasihyponormal operator.
Then a-Weyls theorem holds for f(T) for every f € Hol(o(T)).

Proof. Suppose T* is an algebraically (p, k)-quasihyponormal operator. We
first show that a-Weyls theorem holds for T'. Suppose that A € o, (T)\USF; (T).

Then T — Al is upper semi-Fredholm and (T — AI) < 0. Since T* is an
algebraically (p, k)-quasihyponormal operator, T* has SVEP. Therefore by |2,
Theorem 2.6] that ¢(T"— AI) > 0, and hence T' — Al is Weyl. Since T* has
SVEP, it follows from [18, Corollary 7] that o,(T) = o(T). Also, since Weyls
theorem holds for T' by [26], A € n&(T).

Conversely, suppose that A € 7§(T). Since T* has SVEP, it follows from [18,
Corollary 7] that o,(T) = o(T). Therefore X is an isolated point of o(T),
and hence ) is an isolated point of o(7*). But T* is an algebraically (p, k)-
quasihyponormal operator, hence by Proposition 2.10 that A € 7(T*) . There-
fore there exists a natural number ng such that ng = a(T* — \I) = d(T* — \I).
Hence we have H = ker((T* — A\I)™) @ran((T* — AI)™) and ran((T* — \)™)
is closed. Therefore ran((T — AI)™) is closed and H = ker((T* — A\I)™)*+ &
ran((T* — M)™)L = ker((T — AI)") @ ran((T' — AI)™). So A € 0,(T), and
hence T — AI is Weyl. Consequently, A € o,(T) \ Tsp- (T"). Thus a-Weyls

theorem holds for 7.
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Now we show that T is a-isoloid. Let A be an isolated point of o, (7). Since
T* has SVEP, ) is an isolated point of o(T). But T* is polaroid, hence T is
also polaroid. Therefore it is isoloid, and hence A € ¢, (T"). Thus T is a-isoloid.

Finally, we shall show that a-Weyls theorem holds for f(T") for every f €
Hol(o(T)). Let f € Hol(o(T')). Since a-Weyls theorem holds for T', it satisfies
a-Browders theorem. Therefore o4,(T) = Tsp- (T). Tt follows from Theo-

rem 3.5 that
oar(f(T)) = flow(T)) = f(USF; (1)) = USF; (f(T)),

and hence a-Browders theorem holds for f(T). So o,()f(T) \ Tsp- (f(1) c

7§(T). Conversely, suppose that A € #§(f(T")). Then A is an isolated point of
0o(f(T)) and 0 < a(f(T) — M) < 1. Since A is an isolated point of f(cq(T)),
if u; € 0q(T), then p; is an isolated point of o, (7). Since T is a-isoloid, 0 <
a(T—p;) < lforeach j =1,2,...,n. Since a-Weyls theorem holds for T, T'— 1,
is upper semi-Fredholm and (7" — p;) < 0 for each j = 1,2,...,n. Therefore
f(T)— A is upper semi-Fredholm and f(T) — A = Z?=1 (T —p;I) <0. Hence
A€o, ()f(T) \USF; (f(T)), and so a-Weyls theorem holds for f(T) for each
f € Hol(o(T)). This completes the proof. O

Theorem 3.7. Let T be an algebraically (p, k)-quasihyponormal operator. Then
op(T) = TsBE; (T) Uacc(oq(T)).

Proof. Suppose that A\ € 0,(T) \ oyp(T). Then T — AI is left Drazin invertible
but not bounded below. In particular, T'— AI is semi-B-Fredholm. Therefore
d = a(T — \) < oo and ran((T — AI)¥*1) is closed. On the other hand, since
d = a(T — M) < co and (ran(T — \)4*1) is closed, A is an isolated point of
04(T). Hence A € 0,(T) \ (O’SBF; (T) Uacc(oa(T))).

Conversely, suppose that A € o,(T) \ (JSBF; (T) Uacc(oa(T))). Then T —

Al is semi-B-Fredholm and A is an isolated point of o,(T). Since T — A is
upper semi-Fredholm, it follows from [11, Corollary 2.10] that T'— AI can be
decompose as T'— A\l =T ® T, where T} is an upper semi-Fredholm operator
with 4(Ty) < 0 and T is nilpotent. We consider two cases.

Case I. Suppose that T} is bounded below. Then T — AI is left Drazin
invertible, and so A € o;p(T).

Case II. Suppose that 77 is not bounded below. Then 0 is an isolated
point of o,(77). But 77 is an upper semi-Fredholm operator, hence it follows
from the punctured neighborhood theorem that 77 is a-Browder. Therefore
there exists a finite rank operator S; such that 77 + S; is bounded below and
T,51 = S1Ty. Put F := S; ® 0. Then F is a finite rank operator, TF = FT
and T— AN+ F=T1®Ty+ 5 ®0= (T + 51) ® T3 is left Drazin invertible.
Hence A\ ¢ o;p(T). O
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As shown in [12] that the spectral mapping theorem holds for the Drazin
spectrum. We prove here the spectral mapping theorem holds for left Drazin
spectrum.

Theorem 3.8. Let T be an algebraically (p, k)-quasihyponormal operator and
let f € Hol(o(T)). Then oip(f(T)) = f(oip(T)).

Proof. Suppose that p ¢ f(o1p(T)) and set h(A) = f(A) — pd. Then h has no
zeros in o;p(T). Since o;p(T) = ISBF; (T') Uacc(oq(T)) by Theorem 3.7, we
conclude that h has finitely many zeros in o,(T"). Now we consider two cases.
Case I. Suppose that h has no zeros in 04(7"). Then h(T) = f(T) — pl is
bounded below, and so p ¢ o;p(f(T)).
Case II. Suppose that h has at least one zero in ¢, (7). Then

B = eA = A) (A= A) -+ (A= Aa)g (),

where ¢, A1, A2, ..., A, € C and g(\) is a nonvanishing analytic function on an
open neighborhood. Therefore

W(T) = e(T — MI)(T = AoI) -+ (T — \I)g(T),

where ¢g(T") is bounded below. Since p ¢ f(op(T)), A1, A2, ..., An & oip(T).
Therefore T'—\; I is left Drazin invertible, and hence each T—\;I € SBF (), j
= 1,2,...,n. But each \; is an isolated point of o, (T"), it follows from [11,
Theorem 2.8] that each A; is a left pole of the resolvent of T'. Therefore a(T —
MNI) = d < oo and ran(T — N\ 1) is closed (j = 1,2,...,n), so a((T —
M) (T =X2) - (T—M\,)) =8 <ooand ran((T — A\ )(T — A2) -+ (T — A\p))* L is
closed. Since g(T') is bounded below, a(h(T)) =t < oo and ran((h(T)**1)) is
closed. Therefore h(T) is left Drazin invertible, and so 0 ¢ o;p(h(T')). Hence
wét op(f(T)). It follows from Cases I and II that o;p(f(T)) C f(o1p(T)).

Conversely, suppose that A ¢ o;p(f(T)). Then f(T) — Al is left Drazin
invertible. We again consider two cases.

Case 1. Suppose that f(T) — Al is bounded below. Then A ¢ o,(f(T)) =

f(oa(T)), and hence A ¢ f(o;p(T)).
Case II. Suppose that A € o,(f(T)) \ oip(f(T)). Write

f(T) = (T = MI)(T = Aod) - (T = Aud)g(T),

where ¢, A1, Aa,..., A, € C and ¢(T) is bounded below. Since f(T) — A is
left Drazin invertible, f(T) = ¢(T — M I)(T — XoI) -+ (T — A\ D)g(T) has finite
ascent say r and ran(f(7))" ! is closed. Hence T — A;I has finite ascent say r;
and ran(7T — )\j)7'j+1 is closed for every j = 1,2,...,n. Therefore each 1" — A;I
is left Drazin invertible, and so A1,..., A, & op(T).

We now wish to prove that A ¢ f(o;p(T)). Assume not; then there exists
€ oup(T) such that f(u) = A. Since g(p) # 0, we must have p = py;
for some j = 1,2,...,n, which implies u; € o;p(T), a contradiction. Hence
A ¢ f(oup(T)), and so f(o1p(T)) C oyp(f(T)). This completes the proof. O
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Theorem 3.9. Suppose T or T* is an algebraically (p, k)-quasihyponormal
operator. Then f(aSBF; (7)) = TsBr; (f(T)) for all f € Hol(a(T)).

Proof. Let X\ ¢ USBF;(f(T))- Then f(T) — M € SBF; (T) and

F(T) =M =TT(T = \Dg(T),
j=1

where A1,..., A\, € C and g(T) is invertible. Since f(T") — Al is an upper semi-
B-Fredholm operator, it follows from [7, Theorem 3.2] that T'— A;I is upper
semi- B-Fredholm for each 1 < j < m. Hence

i(f(T) = AI) =Y i(T = M\I) <0.
j=1

Now from [7, Remark A] there exists some integer k such that for each, 1 < j <
m, T — (\;+ £)I is an upper semi-B-Fredholm operator and i(T — (A\; + 1 )I) =
i(T — X\;I). If T is an algebraically (p, k)-quasihyponormal operator, then it
follows from Proposition 1.1 that ¢(T" — A;I) < 0. Hence X ¢ f(USBF; (T)).

Now if T* is an algebraically (p, k)-quasihyponormal operator, then we have
from Proposition 1.1 that i(T — A\;I) = 0 and so T — A;I is a B-Fredholm
operator of index 0. Thus \ ¢ f(aSBF; (T)).

For the converse inclusion. Let \ € Tspr; (f(TH\ f(aSBF; (T')). Suppose
that

(1) = AL =TT = XDg(T),
j=1
where Aj,..., Ay € C\ TsBF; (T') and g(T) is invertible. Hence f(T) — AI is
upper semi-B-Fredholm and i(f(T) — M) = 37, i(T — A1) < 0. Therefore
A ¢ Tspr: (f(T)), so a contradiction. O

Lemma 3.10. Suppose that T € B(H) is algebraically (p, k)-quasihyponor-
mal. Then for any f € Hol(o(T')) we have

aa(f(T)) \ E*(f(T)) = f(0a(T)) \ E*(T)).

Proof. Let A € a,(f(T)) \ E*(f(T)). Then A € o,(f(T)) = f(ca(T)). We
distinguish two cases:

Case I. A ¢ iso(f(04(T))), then there is an infinite sequence {n,}nen €
04(T) such that A\ = f(n) and 1, — no. But f € Hol(c(T)), therefore
F(1) —> f(10) = A and A € floa(T) \ B*(T)).

Case II. X € iso(f(04(T))), since A ¢ E*(f(T)) then A is not an eigenvalue
of f(T). Then

F(T) =M = (T =)™ (T = n2D)" -+ (T = 1) g(T),
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where 71, ...,n,, are scalars and g is invertible. Since A is not an eigenvalue
of f(T), then for each j € {1,...,m}, n; is not an eigenvalue of 7. Hence
0y € 0a(T) \ E4(T) and A = f(17) € floa(T)\ E*(T)).

Conversely, Let A € f(o,(T) \ E*(T)) then A € o,(f(T)) = f(o.(T)).
Assume that A € E*(f(T)). Then

F(T) = A = (T = mI)" (T = n20)" -+ (T = )" g(T),

where 71,...,n, are scalars and g is invertible. If n; € 0,(T), then n; €
iso(oq(T)). Since T is a-isoloid, n; is an eigenvalue of T'. Hence n; € E*(T).
So A = f(n;) this leads a contraction to the fact that A € f(o,(T)\E*(T)). O

Theorem 3.11. Let T* € B(H) be algebraically (p, k)-quasihyponormal. Then
generalized a-Weyl’s theorem holds for f(T), for every f € Hol(a(T)).

Proof. If T* is an algebraically (p, k)-quasihyponormal operator, then 7% has
SVEP o(T) = 0,(T) and consequently E(T) = E*(T).

Let A ¢ Tspr: (T) be given. Then T — A is semi-B-Fredholm and (T — \) <
0. Then Proposition 1.1 implies that (T — A) = 0 and consequently T — A
is B-Weyl’s. Hence A ¢ op,(T). Hence it follows from [37, Theorem3.1] that
A€ E(T) = E“(T).

For the converse, let A € E%(T). Then A € isoo,(T). Since T* has SVEP,
we have o(T) = 04(T). Hence A € o(T*). Now we represent T* as the direct
sum T* = Ty & Ty, where o(T1) = {A\} and o(Tz) = o(T)\{)\}. Since T € Y(H)
then so does T7, and so we have two cases:

Case I. (A = 0): then T is quasinilpotent. Hence it follows that 7} is
nilpotent. Since 7% is invertible, Then T* is B-Weyl’s.

Case II. (X # 0): Since o(Ty) = {A}, then Ty — X is nilpotent and T — X is
invertible, it follows from [37, Theorem 3.1] that T* — X is B-Weyl’s. Thus in
any case A € g,(T) \JSBF; (T).

Let f € Hol(o(T)). Since T is a-isoloid, then it follows from Theorem 3.9
that o pp(f(T)) = flogpp- (1)) = f(oa(T)\E(T)) = au(F(T)\E*(F(T))-
Thus generalized a-Weyl’s theorem holds for f(T). O

Corollary 3.12. Let T* € B(H) be an algebraically (p, k)-quasihyponormal.
Then E*(T) = n*(T).

Proof. If T* is an algebraically (p, k)-quasihyponormal operator, then o, (T) \
TsBE; (T) = E*(T). Let A € E*(T). Then X is isolated in o,(7T), and A ¢
Tspr; (T). So T — Al is in SBF (H). It follows from [11, Theorem 2.8] that A
is a left pole of T, and so A € 7*(T'). As we have always 7#%(T) C E%(T), then
E*(T) = 7*(T). O

Definition 3.13. Let T' € B(#H) and let £ € N. Then T has a uniform descent
for n > k if R(T) + ker(T™) = R(T) + ker(T*) for all n > k. If, in addition,
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R(T) + ker(T*) is closed, then T is said to have a topological uniform descent
for n > k.

An operator T' € B(H) is called a-polaroid if isoo,(T) C n%(T). In gen-
eral, if T' is a-polaroid, then it is polaroid. However, the converse is not true.
Consider the following example.

Example 3.14. Let R be the unilateral right shift on ¢?(N) and define
U(xy,22,...) = (0,29,23,...) for all z,, € £*(N).

Clearly, U is a quasi-nilpotent operator. Let T := R @ U. We have o(T) = D,
D is the unit disc of C, so iso(c(T)) = Eo(T) = 0 and hence T is polaroid.
Moreover, 04(T") = 0D U {0} . Since 0,(T") does not cluster at 0, then 7" has
the SVEP at 0, as well as at the points A ¢ 0,(T"). Since T has SVEP at all
points A € do(T) it then follows that T has SVEP. Finally, Tspr: (T) =00(T)

50 04(T) \O'SBF_; (T) = {0} . Hence T is not a-polaroid.

Theorem 3.15. Let T* € B(H) be an algebraically (p, k)-quasihyponormal
operator. Then T is a-polaroid.

Proof. Suppose T* is algebraically (p, k)-quasihyponormal. Since T™* has the
SVEP, then o,(T) = o(T). Let A € iso(c4(T)) = iso(c(T)). Since a-Weyl’s
theorem holds for 7" by Theorem 3.6, then X is a left pole of finite rank of 7'
Therefore T'— I has a finite ascent k = a(T — M) and R(T — A\I)**! is closed.
Since T'— A is also an operator of topological uniform descent for n > 0, then
it follows from [9, Lemma 2.8] that T — AI is injective. So a(T' — AI) = 0 and
R(T — M) is closed. Since 7*(T) = E%(T), we see that X is a left pole of T.
That is, all isolated points of the approximate point spectrum of T' are left
poles of the resolvent of T'. O
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