WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS

Mohammad Hussein Mohammad Rashid and Mohd Salmi Mohd Noorani

Abstract

For a bounded linear operator T we prove the following assertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a isoloid, polaroid, reguloid and a-polaroid. (b) If T^{*} is algebraically (p, k) quasihyponormal, then a-Weyl's theorem holds for $f(T)$ for every $f \in$ $\operatorname{Hol}(\sigma(T))$, where $\operatorname{Hol}(\sigma(T))$ is the space of all functions that analytic in an open neighborhoods of $\sigma(T)$ of T. (c) If T^{*} is algebraically (p, k) quasihyponormal, then generalized a-Weyl's theorem holds for $f(T)$ for every $f \in \operatorname{Hol}(\sigma(T))$. (d) If T is a (p, k)-quasihyponormal operator, then the spectral mapping theorem holds for semi- B-essential approximate point spectrum $\sigma_{S B F_{+}^{-}}(T)$, and for left Drazin spectrum $\sigma_{l D}(T)$ for every $f \in \operatorname{Hol}(\sigma(T))$.

1. Introduction

Throughout this paper let $\mathbf{B}(\mathcal{H})$, denote, the algebra of bounded linear operators acting on an infinite dimensional separable Hilbert space \mathcal{H}. If $T \in \mathbf{B}(\mathcal{H})$ we shall write $\operatorname{ker}(T)$ and $\mathcal{R}(T)$ for the null space and range of T, respectively. Also, let $\alpha(T):=\operatorname{dim} \operatorname{ker}(T), \beta(T):=\operatorname{dim} \mathcal{R}(T)$, and let $\sigma(T), \sigma_{a}(T), \sigma_{p}(T)$ denote the spectrum, approximate point spectrum and point spectrum of T, respectively. An operator $T \in \mathbf{B}(\mathcal{H})$ is called Fredholm if it has closed range, finite dimensional null space, and its range has finite codimension. The index of a Fredholm operator is given by

$$
i(T):=\alpha(T)-\beta(T)
$$

T is called Weyl if it is Fredholm of index 0, and Browder if it is Fredholm "of finite ascent and descent".

Recall that the ascent, $a(T)$, of an operator T is the smallest non-negative integer p such that $\operatorname{ker}\left(T^{p}\right)=\operatorname{ker}\left(T^{p+1}\right)$. If such integer does not exist we put $a(T)=\infty$. Analogously, the descent, $d(T)$, of an operator T is the smallest non-negative integer q such that $\mathcal{R}\left(T^{q}\right)=\mathcal{R}\left(T^{q+1}\right)$, and if such integer does

[^0]not exist we put $d(T)=\infty$. The essential spectrum $\sigma_{F}(T)$, the Weyl spectrum $\sigma_{W}(T)$ and the Browder spectrum $\sigma_{b}(T)$ of T are defined by
\[

$$
\begin{gathered}
\sigma_{F}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Fredholm }\}, \\
\sigma_{W}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Weyl }\}
\end{gathered}
$$
\]

and

$$
\sigma_{b}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not Browder }\}
$$

respectively. Evidently

$$
\sigma_{F}(T) \subseteq \sigma_{W}(T) \subseteq \sigma_{b}(T) \subseteq \sigma_{F}(T) \cup \operatorname{acc} \sigma(T)
$$

where we write $a c c K$ for the accumulation points of $K \subseteq \mathbb{C}$.
Following [13], we say that Weyl's theorem holds for T if $\sigma(T) \backslash \sigma_{W}(T)=$ $E_{0}(T)$, where $E_{0}(T)$ is the set of all eigenvalues λ of finite multiplicity isolated in $\sigma(T)$. And Browder's theorem holds for T if $\sigma(T) \backslash \sigma_{W}(T)=\pi_{0}(T)$, where π_{0} is the set of all poles of T of finite rank.

Let $\Phi_{+}(\mathcal{H})$ be the class of all upper semi-Fredholm operators, $\Phi_{+}^{-}(\mathcal{H})$ be the class of all $T \in \Phi_{+}(\mathcal{H})$ with $i(T) \leq 0$, and for any $T \in \mathbf{B}(\mathcal{H})$ let

$$
\sigma_{S F_{+}^{-}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin S F_{+}^{-}(\mathcal{H})\right\} .
$$

Let E_{0}^{a} be the set of all eigenvalues of T of finite multiplicity which are isolated in $\sigma_{a}(T)$. According to [27], we say that T satisfies a-Weyl's theorem if $\sigma_{S F_{+}^{-}}(T)=\sigma_{a}(T) \backslash E_{0}^{a}(T)$. It follows from [27, Corollary 2.5] a-Weyl's theorem implies Weyl's theorem.

In [12] Berkani define the class of B-Fredholm operators as follows. For each integer n, define T_{n} to be the restriction of T to $\mathcal{R}\left(T^{n}\right)$ viewed as a map from $\mathcal{R}\left(T^{n}\right)$ into $\mathcal{R}\left(T^{n}\right)$ (in particular $T_{0}=T$). If for some n the range $\mathcal{R}\left(T^{n}\right)$ is closed and T_{n} is a Fredholm (resp. semi-Fredholm) operator, then T is called a B-Fredholm (resp. semi-B-Fredholm) operator. In this case and from [6] T_{m} is a Fredholm operator and $i\left(T_{m}\right)=i\left(T_{n}\right)$ for each $m \geq n$. The index of a B-Fredholm operator T is defined as the index of the Fredholm operator T_{n}, where n is any integer such that the range $\mathcal{R}\left(T^{n}\right)$ is closed and T_{n} is a Fredholm operator (see [12]).

Let $B F(\mathcal{H})$ be the class of all B-Fredholm operators. In [6] Berkani has studied this class of operators and has proved that an operator $T \in \mathbf{B}(\mathcal{H})$ is B-Fredholm if and only if $T=T_{0} \oplus T_{1}$, where T_{0} is a Fredholm operator and T_{1} is a nilpotent operator.

Recall that an operator $T \in \mathbf{B}(\mathcal{H})$ is called a B-Weyl operator (see [8]) if it is a B-Fredholm operator of index 0 . The B-Weyl spectrum $\sigma_{B W}(T)$ of T is defined by

$$
\sigma_{B W}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not a } B \text {-Weyl operator }\}
$$

In the case of a normal operator T acting on a Hilbert space \mathcal{H}, Berkani [12, Theorem 4.5] showed that $\sigma_{B W}(T)=\sigma(T) \backslash E(T)$, where $E(T)$ is the set of
all eigenvalues of T which are isolated in the spectrum of T. This result gives a generalization of the classical Weyl's theorem.

Let $S B F_{+}(\mathcal{H})$ be the class of all upper semi- B-Fredholm operators, and $S B F_{+}^{-}(\mathcal{H})$ the class of all $T \in S B F_{+}(\mathcal{H})$ such that $i(T) \leq 0$, and

$$
\sigma_{S B F_{+}^{-}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda \notin S B F_{+}^{-}(\mathcal{H})\right\}
$$

Recall that an operator $T \in \mathbf{B}(\mathcal{H})$ satisfies the generalized a-Weyl's theorem if $\sigma_{S B F_{+}^{-}}(T)=\sigma_{a}(T) \backslash E^{a}(T)$, where $E^{a}(T)$ is the set of all eigenvalues of T which are isolated in $\sigma_{a}(T)$. Note that generalized a-Weyl's theorem implies a-Weyl's theorem (see [11]).

Recall that an operator $T \in \mathbf{B}(\mathcal{H})$ is Drazin invertible if and only if it has a finite ascent and descent, which is also equivalent to the fact that $T=T_{0} \oplus T_{1}$, where T_{0} is a nilpotent operator and T_{1} is an invertible operator (see [23, Proposition A]). The Drazin spectrum is given by

$$
\sigma_{D}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not Drazin invertible }\}
$$

We observe that $\sigma_{D}(T)=\sigma(T) \backslash \pi(T)$, where $\pi(T)$ is the set of all poles.
An operator $T \in \mathbf{B}(\mathcal{H})$ is called left Drazin invertible if $a(T)<\infty$ and $\mathcal{R}\left(T^{a(T)+1}\right)$ is closed (see [9, Definition 2.4]). The left Drazin spectrum is given by

$$
\sigma_{L D}(T):=\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not left Drazin invertible }\}
$$

Recall [9, Definition 2.5] that $\lambda \in \sigma_{a}(T)$ is a left pole of T if $T-\lambda I$ is a left Drazin invertible operator and $\lambda \in \sigma_{a}(T)$ is a left pole of finite rank if λ is a left pole of T and $\alpha(T-\lambda)<\infty$. We will denote $\pi^{a}(T)$ the set of all left poles of T, and by $\pi_{0}^{a}(T)$ the set of all left poles, of T of finite rank. We have $\sigma_{L D}(T)=\sigma_{a}(T) \backslash \pi^{a}(T)$.

Note that if $\lambda \in \pi^{a}(T)$, then it is easily seen that $T-\lambda$ is an operator of topological uniform descent. Therefore it follows from ([11, Theorem 2.5]) that λ is isolated in $\sigma_{a}(T)$. Following [9] if $T \in \mathbf{B}(\mathcal{H})$ and $\lambda \in \mathbb{C}$ is isolated in $\sigma_{a}(T)$, then $\lambda \in \pi^{a}(T)$ if and only if $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$ and $\lambda \in \pi_{0}^{a}(T)$ if and only if $\lambda \notin \sigma_{S F_{+}^{-}}(T)$.

For the sake of simplicity of notation we introduce the abbreviations $g a W$, $a W, g W$ and W to signify that an operator $T \in \mathbf{B}(\mathcal{H})$ obeys generalized a Weyl's theorem, a-Weyl's theorem, generalized Weyl's theorem and Weyl's theorem, respectively. Analogous meaning is attached to the abbreviations $g a B, a B, g B$ and B with respect to Browder's theorem.

In the following diagram, arrows signify implications between various Weyl and Browder type theorems. It is known from $[1,3,7,11,19,20,27]$ that if
$T \in \mathbf{B}(\mathcal{H})$, then we have:

The quasinilpotent part $H_{0}(T-\lambda)$ and the analytic core $K(T-\lambda)$ of $T-\lambda$ are defined by

$$
H_{0}(T-\lambda):=\left\{x \in \mathcal{H}: \lim _{n \longrightarrow \infty}\left\|(T-\lambda)^{n} x\right\|^{\frac{1}{n}}=0\right\}
$$

and

$$
\begin{aligned}
K(T-\lambda) & =\left\{x \in \mathcal{H}: \text { there exists a sequence }\left\{x_{n}\right\} \subset \mathcal{H} \text { and } \delta>0\right. \text { for which } \\
x & \left.=x_{0},(T-\lambda) x_{n+1}=x_{n} \text { and } \quad\left\|x_{n}\right\| \leq \delta^{n}\|x\| \text { for all } n=1,2, \ldots\right\} .
\end{aligned}
$$

We note that $H_{0}(T-\lambda)$ and $K(T-\lambda)$ are generally non-closed hyper-invariant subspaces of $T-\lambda$ such that $(T-\lambda)^{-p}(0) \subseteq H_{0}(T-\lambda)$ for all $p=0,1, \ldots$ and $(T-\lambda) K(T-\lambda)=K(T-\lambda)$. Recall that if $\lambda \in \operatorname{iso}(\sigma(T))$, then $H_{0}(T-\lambda)=$ $\chi_{T}(\{\lambda\})$, where $\chi_{T}(\{\lambda\})$ is the glocal spectral subspace consisting of all $x \in \mathcal{H}$ for which there exists an analytic function $f: \mathbb{C} \backslash\{\lambda\} \longrightarrow \mathcal{H}$ that satisfies $(T-\mu) f(\mu)=x$ for all $\mu \in \mathbb{C} \backslash\{\lambda\}$ (see [17]).

Let $\operatorname{Hol}(\sigma(T))$ be the space of all functions that analytic in an open neighborhoods of $\sigma(T)$. Following [18] we say that $T \in \mathbf{B}(\mathcal{H})$ has the single-valued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if for every open neighborhood U_{λ} of λ, the only analytic function $f: U_{\lambda} \longrightarrow \mathcal{H}$ which satisfies the equation $(T-\mu) f(\mu)=0$ is the constant function $f \equiv 0$. It is well-known that $T \in \mathbf{B}(\mathcal{H})$ has SVEP at every point of the resolvent $\rho(T):=\mathbb{C} \backslash \sigma(T)$. Moreover, from the identity theorem for analytic function it easily follows that $T \in \mathbf{B}(\mathcal{H})$ has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of $\sigma(T)$. In [25, Proposition 1.8], Laursen proved that if T is of finite ascent, then T has SVEP.
Proposition 1.1 ([24]). Let $T \in \mathbf{B}(\mathcal{H})$.
(i) If T has the SVEP, then $i(T-\lambda I) \leq 0$ for every $\lambda \in \rho_{S B F}(T)$.
(ii) If T^{*} has the SVEP, then $i(T-\lambda I) \geq 0$ for every $\lambda \in \rho_{S B F}(T)$.
(iii) If T^{*} has the SVEP, then
(a) $\quad \sigma_{S F_{+}^{-}}(T)=\omega(T) \quad$ and
(b) $\quad \sigma_{S B F_{+}^{-}}(T)=\sigma_{B \omega}(T)$.

In [36] H . Weyl examined the spectra of all compact perturbations of a hermitian operator T on a Hilbert space and proved that their intersection coincides with the isolated point of the spectrum $\sigma(T)$ which are the eigenvalues of finite multiplicity. Weyl's theorem has been extended to several classes of

Hilbert space operators including seminormal operators [4, 5]. In [7] M. Berkani introduced the concepts of the generalized Weyl's theorem and generalized Browder's theorem, and they showed that T satisfies the generalized Weyl's theorem whenever T is a normal operator on Hilbert space. More recently, [10] extended this result to hyponormal operators. In [32] extended this result to log-hyponormal operators. Recently, Rashid et al. [31] showed that if T is quasiclass A, then generalized Weyl's theorem holds $f(T)$ for every $f \in \operatorname{Hol}(\sigma(T))$. More recently, in [26] Mecheri showed that generalized Weyl's theorem holds for algebraically (p, k)-quasihyponormal operators.

In this paper, we study generalized a-Weyl's theorem for algebraically (p, k) quasihyponormal operators. Among other things, we prove that the spectral mapping theorem holds for semi- B-essential approximate point spectrum $\sigma_{S B F_{+}^{-}}(T)$, and for left Drazin spectrum for every $f \in \operatorname{Hol}(\sigma(T))$.

2. Properties of algebraically (p, k)-quasihyponormal operators

Definition 2.1 ([22]). An operator $T \in \mathbf{B}(\mathcal{H})$ is said to be ($p, k)$-quasihyponormal if

$$
T^{k *}\left(\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p}\right) T^{k} \geq 0
$$

where $0 \leq p \leq 1$ and k is a positive integer. Especially, when $p=1, k=1, p=$ $k=1, T$ is called k-quasihyponormal, p-quasihyponormal, quasihyponormal, respectively.

Definition 2.2. An operator $T \in \mathbf{B}(\mathcal{H})$ is said to be algebraically (p, k) quasihyponormal if there exists a non-constant complex polynomial \mathcal{P} such that $\mathcal{P}(T)$ is a (p, k)-quasihyponormal operator.

In general, the following implications hold:

$$
\begin{aligned}
p \text {-hyponormal } & \Rightarrow p \text {-quasihyponormal } \Rightarrow \text { algebraically } p \text {-quasihyponormal } \\
& \Rightarrow \text { algebraically }(p, k) \text {-quasihyponormal. }
\end{aligned}
$$

An operator $T \in \mathbf{B}(\mathcal{H})$ is called isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T. An operator $T \in \mathbf{B}(\mathcal{H})$ is called normaloid if $r(T)=\|T\|$, where $r(T)$ is the spectral radius of $T . X \in \mathbf{B}(\mathcal{H})$ is called a quasiaffinity if it has trivial kernel and dense range. $S \in \mathbf{B}(\mathcal{H})$ is said to be a quasiaffine transform of $T \in \mathbf{B}(\mathcal{H})$ (notation: $S \prec T$) if there is a quasiaffinity $X \in \mathbf{B}(\mathcal{H})$ such that $X S=T X$. If both $S \prec T$ and $T \prec S$, then we say that S and T are quasisimilar.

The following facts follow from the above definition and some well known facts about (p, k)-quasihyponormal operators.
(i) If $T \in \mathbf{B}(\mathcal{H})$ is an algebraically (p, k)-quasihyponormal operator, then so is $T-\lambda I$ for each $\lambda \in \mathbb{C}$.
(ii) If $T \in \mathbf{B}(\mathcal{H})$ is an algebraically (p, k)-quasihyponormal operator and M is a closed T-invariant subspace of \mathcal{H}, then $\left.T\right|_{M}$ is an algebraically (p, k) quasihyponormal operator.

Lemma 2.3. Let $T \in \mathbf{B}(\mathcal{H})$ be a p-quasihyponormal operator for $0<p \leq 1$. Then the following assertions hold.
(1) $\left\|T^{n} x\right\|^{2} \leq\left\|T^{n-1} x\right\|\left\|T^{n+1} x\right\|$ for all unit vector $x \in \mathcal{H}$ and all positive integer n.
(2) $\left\|T^{n}\right\|^{n} \leq\left\|T^{n-1}\right\|^{n} r\left(T^{n}\right)$ for all positive integer n, where $r\left(T^{n}\right)$ denote the spectral radius of T^{n}. Hence T is normaloid.
(3) T is a paranormal operator.

Proof. (1) It is obvious that if T is p-quasihyponormal, then it is a (p, n) quasihyponormal operator for each positive integer n, since

$$
\begin{aligned}
& \left\langle T^{* n}\left(T T^{*}\right)^{p} T^{n} x, x\right\rangle \\
= & \left\langle T^{* n} T\left(T^{*} T\right)^{p-1} T^{*} T^{n} x, x\right\rangle \\
= & \left\langle\left(T^{*} T\right)^{p+1} T^{n-1} x, T^{n-1} x\right\rangle \\
\geq & \left\|T^{n-1} x\right\|^{-2 p}\left\langle T^{*} T T^{n-1} x, T^{n-1} x\right\rangle^{p+1} \text { (by Hölder-McCarthy inequality) } \\
= & \left\|T^{n-1} x\right\|^{-2 p}\left\|T^{n} x\right\|^{2 p+2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\langle T^{* n}\left(T^{*} T\right)^{p} T^{n} x, x\right\rangle \\
= & \left\langle\left(T^{*} T\right)^{p} T^{n} x, T^{n} x\right\rangle \\
\leq & \left\|T^{n} x\right\|^{2-2 p}\left\langle T^{*} T T^{n} x, T^{n} x\right\rangle \text { (Hölder-McCarthy inequality) } \\
= & \left\|T^{n} x\right\|^{2-2 p}\left\|T^{n+1} x\right\|^{2 p} .
\end{aligned}
$$

But T is a p-quasihyponormal operator. Then

$$
\left\langle T^{* n}\left(\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p}\right) T^{n} x, x\right\rangle \geq 0
$$

Hence

$$
\left\|T^{n} x\right\|^{2} \leq\left\|T^{n-1} x\right\|\left\|T^{n+1} x\right\|
$$

(2) If $T^{n}=0$ for some $n>1$, then $T=0$, and in this case $r(T)=0$. Hence (2) is obvious. Hence we may assume $T^{n} \neq 0$ for all $n \geq 1$. Then

$$
\frac{\left\|T^{n}\right\|}{\left\|T^{n-1}\right\|} \leq \frac{\left\|T^{n+1}\right\|}{\left\|T^{n}\right\|} \leq \cdots \leq \frac{\left\|T^{m n}\right\|}{\left\|T^{m n-1}\right\|}
$$

by (1), and we have

$$
\left(\frac{\left\|T^{n}\right\|}{\left\|T^{n-1}\right\|}\right)^{m n-n-1} \leq \frac{\left\|T^{n+1}\right\|}{\left\|T^{n}\right\|} \times \cdots \times \frac{\left\|T^{m n}\right\|}{\left\|T^{m n-1}\right\|}=\frac{\left\|T^{m n}\right\|}{\left\|T^{n-1}\right\|}
$$

Hence

$$
\left(\frac{\left\|T^{n}\right\|}{\left\|T^{n-1}\right\|}\right)^{n-\frac{n}{m}-\frac{1}{n}} \leq \frac{\left\|T^{m n}\right\|^{\frac{1}{m}}}{\left\|T^{m n-1}\right\|^{\frac{1}{m}}}
$$

Now letting $m \longrightarrow \infty$. We get

$$
\left\|T^{n}\right\|^{n} \leq\left\|T^{n-1}\right\|^{n} r\left(T^{n}\right)
$$

Put $n=1$, we have $\|T\| \leq r(T)$. So $\|T\|=r(T)$, i.e., T is normaloid.
(3) Put $n=1$ in (1), we have $\|T x\|^{2} \leq\left\|T^{2} x\right\|$, that is, T is paranormal.

Definition $2.4([17])$. An operator $T \in \mathbf{B}(\mathcal{H})$ is said to be totally hereditarily normaloid, $T \in T H N$ if every part of T (i.e., its restriction to an invariant subspace), and T_{p}^{-1} for every invertible part T_{p} of T, is normaloid.

Lemma 2.5. Let $T \in T H N$, let $\lambda \in \mathbb{C}$. Assume that $\sigma(T)=\{\lambda\}$. Then $T=\lambda I$.
Proof. We consider two cases:
case I. $(\lambda=0)$: Since T is normaloid. Therefore $T=0$.
case II. $(\lambda \neq 0)$: Here T is invertible, and since $T \in T H N$, we see that T, T^{-1} are normaloid. On the other hand $\sigma\left(T^{-1}\right)=\left\{\frac{1}{\lambda}\right\}$, so $\|T\|\left\|T^{-1}\right\|=\left|\lambda \| \frac{1}{\lambda}\right|=1$. It follows that T is convexoid, so $W(T)=\{\lambda\}$. Therefore $T=\lambda I$.

In [14], Curto and Han proved that quasinilpotent algebraically paranormal operators are nilpotent. We now establish a similar result for algebraically (p, k)-quasihyponormal operators.
Proposition 2.6. Let T be a quasinilpotent ($p, k)$-quasihyponormal operator. Then T is nilpotent.
Proof. Assume that $p(T)$ is a totally hereditarily normaloid operator for some nonconstant polynomial p. Since $\sigma(p(T))=p(\sigma(T))$, the operator $p(T)-p(0)$ is quasinilpotent. Thus Lemma 2.5 would imply that

$$
c T^{m}\left(T-\lambda_{1} I\right) \cdots\left(T-\lambda_{n} I\right) \equiv p(T)-p(0)=0
$$

where $m \geq 1$. Since $T-\lambda_{j} I$ is invertible for every $\lambda_{j} \neq 0$, we must have $T^{m}=0$.
Lemma 2.7. Let T be an invertible p-quasihyponormal operator. Then $\mathcal{H}=$ $\mathcal{R}(T) \oplus \operatorname{ker}(T)$. Moreover T_{1}, the restriction of T to $\mathcal{R}(T)$ is one-one and onto.
Proof. Suppose that $y \in \mathcal{R}(T) \cap \operatorname{ker}(T)$ then $y=T x$ for some $x \in \mathcal{H}$ and $T y=$ 0. It follows that $T^{2} x=0$. However, $d(T)=1$ and so $x \in \operatorname{ker}\left(T^{2}\right)=\operatorname{ker}(T)$. Hence $y=T x=0$ and so $\mathcal{R}(T) \cap \operatorname{ker}(T)=\{0\}$. Also, $T \mathcal{R}(T)=\mathcal{R}(T)$.

If $x \in \mathcal{H}$, there is $u \in \mathcal{R}(T)$ such that $T u=T x$. Now if $z=x-u$, then $T z=0$. Hence

$$
\mathcal{H}=\mathcal{R}(T) \oplus \operatorname{ker}(T)
$$

Since $a(T)=1, T$ maps $\mathcal{R}(T)$ onto itself. If $y \in \mathcal{R}(T)$ and $T y=0$, then $y \in \mathcal{R}(T) \cap \operatorname{ker}(T)=\{0\}$. Hence T_{1} is one-one and onto.

Observe that $\left\{\lambda_{0}\right\}$ is a clopen subset of $\sigma(T)$. Let $T \in \mathbf{B}(\mathcal{H})$. The $R_{\lambda}(T)=$ $(T-\lambda)^{-1}$ is analytic on $\rho(T)$, and an isolated point λ_{0} of $\sigma(T)$ is an isolated singular point of the resolvent of T. Here there is a Laurent expansion of this function in powers of $\lambda-\lambda_{0}$. We write this in the form

$$
(T-\lambda)^{-1}=\sum_{n=0}^{\infty}\left(\lambda-\lambda_{0}\right)^{n} A_{n}+\sum_{n=1}^{\infty}\left(\lambda-\lambda_{0}\right)^{-n} B_{n}
$$

The coefficients A_{n} and B_{n} are members of $\mathbf{B}(\mathcal{H})$ and given by the standard formulas

$$
\begin{align*}
A_{n} & =\frac{1}{2 \pi i} \int_{\Gamma}\left(\lambda-\lambda_{0}\right)^{-n-1}(\lambda-T)^{-1} d \lambda \tag{2.1}\\
B_{n} & =\frac{1}{2 \pi i} \int_{\Gamma}\left(\lambda-\lambda_{0}\right)^{n-1}(\lambda-T)^{-1} d \lambda, \tag{2.2}
\end{align*}
$$

where Γ is any circle $\left|\lambda-\lambda_{0}\right|=\rho$ with $0<\rho<\delta$ described once counterclockwise.
The function f_{n} defined by

$$
f_{n}(\lambda)= \begin{cases}\left(\lambda-\lambda_{0}\right)^{n-1}, & \text { if }\left|\lambda-\lambda_{0}\right| \leq \rho<\delta \\ 0, & \text { otherwise }\end{cases}
$$

is in $\operatorname{Hol}(\sigma(T))$ and moreover

$$
B_{n}=f_{n}(T), n=1,2, \ldots
$$

For each positive integer n, we have

$$
\left(\lambda-\lambda_{0}\right) f_{n}(\lambda)=f_{n+1}
$$

So

$$
\begin{equation*}
\left(T-\lambda_{0}\right) B_{n}=B_{n+1} \tag{2.3}
\end{equation*}
$$

and by induction

$$
\begin{equation*}
\left(T-\lambda_{0}\right)^{n} B_{1}=B_{n+1} . \tag{2.4}
\end{equation*}
$$

We note in passing that

$$
\begin{equation*}
B_{1}=E\left(\lambda_{0}\right) \tag{2.5}
\end{equation*}
$$

the spectral projection corresponding to the clopen set λ_{0} of $\sigma(T)$.
Consider for each non-negative integer n the function g_{n} defined by

$$
g_{n}(\lambda)= \begin{cases}0, & \text { if }\left|\lambda-\lambda_{0}\right| \leq \rho<\delta \\ \left(\lambda-\lambda_{0}\right)^{-n-1}, & \text { otherwise }\end{cases}
$$

is in $\operatorname{Hol}(\sigma(T))$. Moreover,

$$
A_{n}=-g_{n}(T)
$$

for each non-negative integer n. We have

$$
\begin{equation*}
\left(\lambda-\lambda_{0}\right) g_{n+1}(\lambda)=g_{n}(\lambda) \tag{2.6}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left(\lambda-\lambda_{0}\right) A_{n+1}=A_{n} \tag{2.7}
\end{equation*}
$$

Similarly $\left(\lambda-\lambda_{0}\right) g_{0}(\lambda)+f_{1}(\lambda)=1$ and so

$$
\begin{equation*}
(T-\lambda) A_{0}=B_{0}-1 \tag{2.8}
\end{equation*}
$$

Recall that if $T \in \mathbf{B}(\mathcal{H})$ and λ_{0} is an isolated point of $\sigma(T)$, then λ_{0} is called a pole of order m if and only if $E\left(\lambda_{0}\right)\left(\lambda_{0}-T\right)^{m}=0$ and $E\left(\lambda_{0}\right)\left(\lambda_{0}-T\right)^{m-1} \neq 0$.

Lemma 2.8. Let T be a (p, k)-quasihyponormal operator and $\lambda_{0} \in \operatorname{iso\sigma }(T)$. Let $\tau=\sigma(T) \backslash\left\{\lambda_{0}\right\}$. Then λ_{0} is an eigenvalue of T. The ascent and descent of $T-\lambda_{0}$ are both equal to k. Also

$$
\begin{aligned}
\mathcal{R}\left(E\left(\lambda_{0}\right)\right) & =\operatorname{ker}\left(\left(T-\lambda_{0}\right)^{k}\right) \\
\mathcal{R}(E(\tau)) & =\mathcal{R}\left(\left(T-\lambda_{0}\right)^{k}\right)
\end{aligned}
$$

Proof. For convenience we denote the null-space and range of $\left(\lambda_{0}-T\right)^{k}$ by ker_{k} and \mathcal{R}_{k}, respectively. If $x \in \operatorname{ker}_{k}$, where $k \geq 1$, we see by (2.7), induction and (2.8) that

$$
0=A_{k-1}\left(T-\lambda_{0}\right)^{k} x=\left(T-\lambda_{0}\right)^{k} A_{k-1} x=\left(T-\lambda_{0}\right) A_{0} x=B_{1} x-x
$$

So that by (2.5), we have $x=B_{1} x \in \mathcal{R}\left(E\left(\lambda_{0}\right)\right)$. Thus $\operatorname{ker}_{k} \subseteq \mathcal{R}\left(E\left(\lambda_{0}\right)\right)$ if $k \geq 1$. On the other hand, it follows from (2.4) that if $x \in \mathcal{R}\left(E\left(\lambda_{0}\right)\right)$, then $x=B_{1} x$ and $\left(T-\lambda_{0}\right)^{k} x=B_{k+1} x$. Since $B_{n+1} x=0$ if $n \geq k$. It follows that $\mathcal{R}\left(E\left(\lambda_{0}\right)\right) \subseteq \operatorname{ker}_{k}$ and $\operatorname{ker}_{n}=\mathcal{R}\left(E\left(\lambda_{0}\right)\right)$ if $n \geq k$. However, ker_{k-1} is a proper subset of ker_{k} because $B_{k} \neq 0$. The equations $\operatorname{ker}_{k-1}=\operatorname{ker}_{k}=\mathcal{R}\left(E\left(\lambda_{0}\right)\right)$ imply that $B_{k}=0$ in view of the relation $B_{k}=\left(T-\lambda_{0}\right)^{k-1} B_{1}$. We have now proved that the ascent of $\lambda_{0}-T$ is k and $\operatorname{ker}_{k}=\mathcal{R}\left(E\left(\lambda_{0}\right)\right)$. In particular, since $k>0, \lambda_{0}$ is an eigenvalue of T.

Now let T_{1} and T_{2} be the restrictions of T to $\mathcal{R}(E(\tau))$ and $\mathcal{R}\left(E\left(\lambda_{0}\right)\right)$, respectively. $\lambda_{0} \in \sigma\left(T_{2}\right)$ but $\lambda_{0} \notin \sigma\left(T_{1}\right)$. Hence, the descent of $\lambda_{0}-T_{1}$ is 0 and $\mathcal{R}\left(\left(\lambda_{0}-T_{1}\right)^{k}\right)=\mathcal{R}(E(\tau))$ when $k \geq 1$. Thus $\mathcal{R}(E(\tau)) \subseteq \mathcal{R}_{k}$. Now if $n \geq k$, the only point common to \mathcal{R}_{n} and ker_{n} is 0 . For, if $x \in \mathcal{R}_{n} \cap \operatorname{ker}_{n}$, then $\left(\lambda_{0}-T\right)^{n} x=0$ and there is $y \in \mathcal{H}$ such that $x=\left(\lambda_{0}-T\right)^{n} y$. Hence $y \in \operatorname{ker}_{2 n}=$ ker and so $x=0$. Now suppose that $n \geq k$ and $x \in \mathcal{R}_{n}$. Let $x_{1}=E(\tau) x$ and $x_{2}=E\left(\lambda_{0}\right)$, then $x_{2}=x-x_{1} \in \mathcal{R}_{n}$ because $\mathcal{R}(E(\tau)) \subseteq \mathcal{R}_{n}$. However, $x_{2} \in \mathcal{R}\left(E\left(\lambda_{0}\right)\right)=\operatorname{ker}_{n}$, and so $x_{2}=0$ whence $x=x_{1} \in \mathcal{R}(E(\tau))$. Thus $\mathcal{R}_{n} \subseteq \mathcal{R}(E(\tau))$ if $n \geq k$ and therefore that the descent of $\lambda_{0}-T$ is less that or equal to k. Then by [15, Proposition 1.49] shows that the descent is exactly k, which know to be the ascent.

Corollary 2.9. Let $T \in \mathbf{B}(\mathcal{H})$ be a (p, k)-quasihyponormal operator. Then T is of finite ascent.

An operator $T \in \mathbf{B}(\mathcal{H})$ is said to be polaroid if $\operatorname{iso} \sigma(T) \subseteq \pi(T)$, where $\pi(T)$ is the set of all poles of T. In general, if T is polaroid, then it is isoloid. However, the converse is not true. Consider the following example. Let $T \in \ell^{2}(\mathbb{N})$ be defined by

$$
T\left(x_{1}, x_{2}, \ldots\right)=\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right)
$$

Then T is a compact quasinilpotent operator with $\alpha(T)=1$, and so T is isoloid. However, since T does not have finite ascent, T is not polaroid.

Proposition 2.10. Let T be an algebraically (p, k)-quasihyponormal operator. Then T is polaroid.
Proof. Suppose T is an algebraically (p, k)-quasihyponormal operator. Then $p(T)$ is (p, k)-quasihyponormal for some nonconstant polynomial p. Let $\lambda \in$ $i s o(\sigma(T))$. Using the spectral projection $P:=\frac{1}{2 i \pi} \int_{\partial D}(\mu-T)^{-1} d \mu$, where D is a closed disk of center λ which contains no other points of $\sigma(T)$, we can represent T as the direct sum

$$
T=\left(\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right), \quad \text { and } \quad \sigma\left(T_{1}\right)=\{\lambda\} \quad \text { and } \quad \sigma\left(T_{2}\right)=\sigma(T) \backslash\{\lambda\}
$$

Since T_{1} is algebraically (p, k)-quasihyponormal and $\sigma\left(T_{1}\right)=\{\lambda\}$. But $\sigma\left(T_{1}-\right.$ $\lambda I)=\{0\}$ it follows from Proposition 2.6 that $T_{1}-\lambda I$ is nilpotent. Therefore $T_{1}-\lambda$ has finite ascent and descent. On the other hand, since $T_{2}-\lambda I$ is invertible, clearly it has finite ascent and descent. Therefore $T-\lambda I$ has finite ascent and descent. Therefore λ is a pole of the resolvent of T. Thus if $\lambda \in$ iso $(\sigma(T))$ implies $\lambda \in \pi(T)$, and so $i s o(\sigma(T)) \subset \pi(T)$. Hence T is polaroid.

Corollary 2.11. Let T be an algebraically (p, k)-quasihyponormal operator. Then T is isoloid.

For $T \in \mathbf{B}(\mathcal{H}), \lambda \in \sigma(T)$ is said to be a regular point if there exists $S \in \mathbf{B}(\mathcal{H})$ such that $T-\lambda I=(T-\lambda I) S(T-\lambda I)$. T is is called reguloid if every isolated point of $\sigma(T)$ is a regular point. It is well known [19, Theorems 4.6.4 and 8.4.4] that $T-\lambda I=(T-\lambda I) S(T-\lambda I)$ for some $S \in \mathbf{B}(\mathcal{H}) \Longleftrightarrow T-\lambda I$ has a closed range.

Theorem 2.12. Let T be an algebraically (p, k)-quasihyponormal operator. Then T is reguloid.
Proof. Suppose T is an algebraically (p, k)-quasihyponormal operator. Then $p(T)$ is a (p, k)-quasihyponormal operator for some nonconstant polynomial p. Let $\lambda \in \operatorname{iso}(\sigma(T))$. Using the spectral projection $P:=\frac{1}{2 i \pi} \int_{\partial D}(\mu-T)^{-1} d \mu$, where D is a closed disk of center λ which contains no other points of $\sigma(T)$, we can represent T as the direct sum

$$
T=\left(\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right), \quad \text { and } \quad \sigma\left(T_{1}\right)=\{\lambda\} \quad \text { and } \quad \sigma\left(T_{2}\right)=\sigma(T) \backslash\{\lambda\}
$$

Since T_{1} is algebraically (p, k)-quasihyponormal and $\sigma\left(T_{1}\right)=\{\lambda\}$, it follows from Lemma 2.5 that $T_{1}=\lambda I$. Therefore by [34, Theorem 6],

$$
\begin{equation*}
\mathcal{H}=E(\mathcal{H}) \oplus E(\mathcal{H})^{\perp}=\operatorname{ker}(T-\lambda I) \oplus \operatorname{ker}(T-\lambda I)^{\perp} \tag{2.9}
\end{equation*}
$$

Relative to decomposition 2.9, $T=\lambda I \oplus T_{2}$. Therefore $T-\lambda I=0 \oplus T-\lambda I$ and hence $\operatorname{ran}(T-\lambda I)=(T-\lambda I)(\mathcal{H})=0 \oplus\left(T_{2}-\lambda I\right)\left(\operatorname{ker}(T-\lambda I)^{\perp}\right)$. Since $T_{2}-\lambda I$ is invertible, $T-\lambda I$ has closed range.
Theorem 2.13. Let $T^{*} \in \mathbf{B}(\mathcal{H})$ be an algebraically (p, k)-quasihyponormal operator. Then T is a-isoloid.

Proof. Suppose T^{*} is algebraically (p, k)-quasihyponormal. Since T^{*} has SVEP, then $\sigma(T)=\sigma_{a}(T)$. Let $\lambda \in \operatorname{iso}\left(\sigma_{a}(T)\right)=i s o(\sigma(T))$. But T^{*} is polaroid, hence T is also polaroid. Therefore it is isoloid, and hence $\lambda \in \sigma_{p}(T)$. Thus T is a isoloid.

3. Weyl's type theorem

Lemma 3.1. If T is a (p, k)-quasihyponormal operator and $S \prec T$, then S has SVEP.

Proof. Since T is a (p, k)-quasihyponormal operator, then it has a SVEP. So the result follows from [14, Lemma 3.1].

Theorem 3.2. Let $S, T \in \mathbf{B}(\mathcal{H})$. If T has $S V E P$ and $S \prec T$, then $f(S) \in g a B$ for every $f \in \operatorname{Hol}(\sigma(T))$. In particular, if T has SVEP, then $T \in$ gaB.
Proof. Suppose that T has SVEP. Since $S \prec T$, it follows from the proof of [14] that S has SVEP. We now show that $S \in g a B$. Let $\lambda \in \sigma_{a}(S) \backslash \sigma_{S B F_{+}^{-}}(S)$; then $S-\lambda I \in S B F_{+}^{-}(S)$ but not bounded below. Since $S-\lambda I \in S B F_{+}^{-}(S)$, it follows from from [11, Corollary 2.10] that $S-\lambda I=S_{1} \oplus S_{2}$, where S_{1} is an upper semi-Fredholm operator with $i\left(S_{1}\right) \leq 0$, and S_{2} is nilpotent. Since S has SVEP, S_{1} and S_{2} also have SVEP. Therefore a-Browder's theorem holds for S_{1}, and hence $\sigma_{a b}\left(S_{1}\right)=\sigma_{S F_{+}^{-}}\left(S_{1}\right)$. Since S_{1} is semi-Fredholm with $i\left(S_{1}\right) \leq 0, S_{1}$ is a-Browder's. Hence λ is an isolated point of $\sigma_{a}(S)$. It follows that $S \in g a B$.

Now let $f \in \operatorname{Hol}(\sigma(T))$. Since the SVEP is stable under the functional calculus, then $f(S)$ has the SVEP. Therefore $f(S) \in g a B$, by the first part of the proof.

We now recall that the generalized a-Weyl's theorem may not hold for quasinilpotent operators, and that it does not necessarily transfer to or from adjoints.
Example 3.3. Let $T \in \mathbf{B}(\mathcal{H})$ defined on ℓ^{2} by

$$
T\left(x_{1}, x_{2}, \ldots\right)=\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right) .
$$

Then T is a quasinilpotent operator and $\sigma(T)=\sigma_{S B F_{+}^{-}}(T)=E^{a}(T)=\{0\}$. Thus T does not obey generalized a-Weyl's theorem.

Now $\sigma\left(T^{*}\right)=\sigma_{S B F_{+}^{-}}\left(T^{*}\right)=\{0\}$ and $E^{a}\left(T^{*}\right)=\emptyset$. Therefore $T^{*} \in g a W$.
As a consequence of [17, Theorem 2.4] and [16, Lemma 2.5] we have:
Theorem 3.4. Let $T \in \mathbf{B}(\mathcal{H})$ be a (p, k)-quasihyponormal operator. Then T is of stable index.

Let $T \in \mathbf{B}(\mathcal{H})$. It is well known that the inclusion $\sigma_{S F_{+}^{-}}(f(T)) \subseteq f\left(\sigma_{S F_{+}^{-}}(T)\right)$ holds for every $f \in \operatorname{Hol}(\sigma(T))$ with no restriction on T [29]. The next theorem shows that the spectral mapping theorem holds for the essential approximate point spectrum for algebraically (p, k)-quasihyponormal operator.

Theorem 3.5. Suppose T^{*} or T is an algebraically (p, k)-quasihyponormal operator. Then

$$
\sigma_{S F_{+}^{-}}(f(T))=f\left(\sigma_{S F_{+}^{-}}(T)\right)
$$

Proof. Assume first that T is an algebraically (p, k)-quasihyponormal operator and let $f \in \operatorname{Hol}(\sigma(T))$. It suffices to show that $\sigma_{S F_{+}^{-}}(f(T)) \supseteq f\left(\sigma_{S F_{+}^{-}}(T)\right)$. Suppose that $\lambda \notin \sigma_{S F_{+}^{-}}(f(T))$. Then $f(T)-\lambda I \in S F_{+}^{-}(\mathcal{H})$ and

$$
f(T)-\lambda I=c\left(T-\mu_{1} I\right)\left(T-\mu_{2} I\right) \cdots\left(T-\mu_{n} I\right) g(T),
$$

where $c, \mu_{1}, \mu_{2}, \ldots, \mu_{n} \in \mathbb{C}$, and $g(T)$ is invertible. Since T is an algebraically (p, k)-quasihyponormal operator, it has SVEP. It follows from [2, Theorem 2.6] that $i\left(T-\mu_{j}\right) \leq 0$ for each $j=1,2, \ldots, n$. Therefore $\lambda \notin f\left(\sigma_{S F_{+}^{-}}(T)\right)$, and hence $\sigma_{S F_{+}^{-}}(f(T))=f\left(\sigma_{S F_{+}^{-}}(T)\right)$. Suppose now that T^{*} is an algebraically (p, k)-quasihyponormal operator. Then T^{*} has SVEP, and so by [2, Theorem 2.6] $i\left(T-\mu_{j} I\right) \geq 0$ for each $j=1,2, \ldots, n$. Since

$$
0 \leq \sum_{j=1}^{n} i\left(T-\mu_{j} I\right)=i(f(T)-\lambda I) \leq 0
$$

$T-\mu_{j} I$ is Weyl for each $j=1,2, \ldots, n$. Hence $\lambda \notin f\left(\sigma_{S F_{+}^{-}}(T)\right)$, and so $\sigma_{S F_{+}^{-}}(f(T))=f\left(\sigma_{S F_{+}^{-}}(T)\right)$. This completes the proof.

Theorem 3.6. Suppose T^{*} is an algebraically (p, k)-quasihyponormal operator. Then a-Weyls theorem holds for $f(T)$ for every $f \in \operatorname{Hol}(\sigma(T))$.

Proof. Suppose T^{*} is an algebraically (p, k)-quasihyponormal operator. We first show that a-Weyls theorem holds for T. Suppose that $\lambda \in \sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)$. Then $T-\lambda I$ is upper semi-Fredholm and $i(T-\lambda I) \leq 0$. Since $T^{*}{ }^{+}$is an algebraically (p, k)-quasihyponormal operator, T^{*} has SVEP. Therefore by $[2$, Theorem 2.6] that $i(T-\lambda I) \geq 0$, and hence $T-\lambda I$ is Weyl. Since T^{*} has SVEP, it follows from [18, Corollary 7] that $\sigma_{a}(T)=\sigma(T)$. Also, since Weyls theorem holds for T by [26], $\lambda \in \pi_{0}^{a}(T)$.

Conversely, suppose that $\lambda \in \pi_{0}^{a}(T)$. Since T^{*} has SVEP, it follows from [18, Corollary 7] that $\sigma_{a}(T)=\sigma(T)$. Therefore λ is an isolated point of $\sigma(T)$, and hence $\bar{\lambda}$ is an isolated point of $\sigma\left(T^{*}\right)$. But T^{*} is an algebraically (p, k) quasihyponormal operator, hence by Proposition 2.10 that $\bar{\lambda} \in \pi\left(T^{*}\right)$. Therefore there exists a natural number n_{0} such that $n_{0}=a\left(T^{*}-\bar{\lambda} I\right)=d\left(T^{*}-\bar{\lambda} I\right)$. Hence we have $\mathcal{H}=\operatorname{ker}\left(\left(T^{*}-\bar{\lambda} I\right)^{n_{0}}\right) \oplus \operatorname{ran}\left(\left(T^{*}-\bar{\lambda} I\right)^{n_{0}}\right)$ and $\operatorname{ran}\left(\left(T^{*}-\bar{\lambda} I\right)^{n_{0}}\right)$ is closed. Therefore $\operatorname{ran}\left((T-\lambda I)^{n_{0}}\right)$ is closed and $\mathcal{H}=\operatorname{ker}\left(\left(T^{*}-\bar{\lambda} I\right)^{n_{0}}\right)^{\perp} \oplus$ $\operatorname{ran}\left(\left(T^{*}-\bar{\lambda} I\right)^{n_{0}}\right)^{\perp}=\operatorname{ker}\left((T-\lambda I)^{n_{0}}\right) \oplus \operatorname{ran}\left((T-\lambda I)^{n_{0}}\right)$. So $\lambda \in \sigma_{p}(T)$, and hence $T-\lambda I$ is Weyl. Consequently, $\lambda \in \sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)$. Thus a-Weyls theorem holds for T.

Now we show that T is a-isoloid. Let λ be an isolated point of $\sigma_{a}(T)$. Since T^{*} has SVEP, λ is an isolated point of $\sigma(T)$. But T^{*} is polaroid, hence T is also polaroid. Therefore it is isoloid, and hence $\lambda \in \sigma_{p}(T)$. Thus T is a-isoloid.

Finally, we shall show that a-Weyls theorem holds for $f(T)$ for every $f \in$ $\operatorname{Hol}(\sigma(T))$. Let $f \in \operatorname{Hol}(\sigma(T))$. Since a-Weyls theorem holds for T, it satisfies a-Browders theorem. Therefore $\sigma_{a b}(T)=\sigma_{S F_{+}^{-}}(T)$. It follows from Theorem 3.5 that

$$
\sigma_{a b}(f(T))=f\left(\sigma_{a b}(T)\right)=f\left(\sigma_{S F_{+}^{-}}(T)\right)=\sigma_{S F_{+}^{-}}(f(T))
$$

and hence a-Browders theorem holds for $f(T)$. So $\sigma_{a}() f(T) \backslash \sigma_{S F_{+}^{-}}(f(T)) \subset$ $\pi_{0}^{a}(T)$. Conversely, suppose that $\lambda \in \pi_{0}^{a}(f(T))$. Then λ is an isolated point of $\sigma_{a}(f(T))$ and $0<\alpha(f(T)-\lambda I)<1$. Since λ is an isolated point of $f\left(\sigma_{a}(T)\right)$, if $\mu_{j} \in \sigma_{a}(T)$, then μ_{j} is an isolated point of $\sigma_{a}(T)$. Since T is a-isoloid, $0<$ $\alpha\left(T-\mu_{j}\right)<1$ for each $j=1,2, \ldots, n$. Since a-Weyls theorem holds for $T, T-\mu_{j}$ is upper semi-Fredholm and $i\left(T-\mu_{j}\right) \leq 0$ for each $j=1,2, \ldots, n$. Therefore $f(T)-\lambda I$ is upper semi-Fredholm and $f(T)-\lambda I=\sum_{j=1}^{n} i\left(T-\mu_{j} I\right) \leq 0$. Hence $\lambda \in \sigma_{a}() f(T) \backslash \sigma_{S F_{+}^{-}}(f(T))$, and so a-Weyls theorem holds for $f(T)$ for each $f \in \operatorname{Hol}(\sigma(T))$. This completes the proof.

Theorem 3.7. Let T be an algebraically (p, k)-quasihyponormal operator. Then $\sigma_{l D}(T)=\sigma_{S B F_{+}^{-}}(T) \cup \operatorname{acc}\left(\sigma_{a}(T)\right)$.

Proof. Suppose that $\lambda \in \sigma_{a}(T) \backslash \sigma_{l D}(T)$. Then $T-\lambda I$ is left Drazin invertible but not bounded below. In particular, $T-\lambda I$ is semi-B-Fredholm. Therefore $d=a(T-\lambda)<\infty$ and $\operatorname{ran}\left((T-\lambda I)^{d+1}\right)$ is closed. On the other hand, since $d=a(T-\lambda I)<\infty$ and $\left(\operatorname{ran}(T-\lambda)^{d+1}\right)$ is closed, λ is an isolated point of $\sigma_{a}(T)$. Hence $\lambda \in \sigma_{a}(T) \backslash\left(\sigma_{S B F_{+}^{-}}(T) \cup \operatorname{acc}\left(\sigma_{a}(T)\right)\right)$.

Conversely, suppose that $\lambda \in \sigma_{a}(T) \backslash\left(\sigma_{S B F_{+}^{-}}(T) \cup \operatorname{acc}\left(\sigma_{a}(T)\right)\right)$. Then $T-$ λI is semi- B-Fredholm and λ is an isolated point of $\sigma_{a}(T)$. Since $T-\lambda I$ is upper semi-Fredholm, it follows from [11, Corollary 2.10] that $T-\lambda I$ can be decompose as $T-\lambda I=T_{1} \oplus T_{2}$, where T_{1} is an upper semi-Fredholm operator with $i\left(T_{1}\right) \leq 0$ and T_{2} is nilpotent. We consider two cases.

Case I. Suppose that T_{1} is bounded below. Then $T-\lambda I$ is left Drazin invertible, and so $\lambda \notin \sigma_{l D}(T)$.

Case II. Suppose that T_{1} is not bounded below. Then 0 is an isolated point of $\sigma_{a}\left(T_{1}\right)$. But T_{1} is an upper semi-Fredholm operator, hence it follows from the punctured neighborhood theorem that T_{1} is a-Browder. Therefore there exists a finite rank operator S_{1} such that $T_{1}+S_{1}$ is bounded below and $T_{1} S_{1}=S_{1} T_{1}$. Put $F:=S_{1} \oplus 0$. Then F is a finite rank operator, $T F=F T$ and $T-\lambda I+F=T_{1} \oplus T_{2}+S_{1} \oplus 0=\left(T_{1}+S_{1}\right) \oplus T_{2}$ is left Drazin invertible. Hence $\lambda \notin \sigma_{l D}(T)$.

As shown in [12] that the spectral mapping theorem holds for the Drazin spectrum. We prove here the spectral mapping theorem holds for left Drazin spectrum.

Theorem 3.8. Let T be an algebraically (p, k)-quasihyponormal operator and let $f \in \operatorname{Hol}(\sigma(T))$. Then $\sigma_{l D}(f(T))=f\left(\sigma_{l D}(T)\right)$.

Proof. Suppose that $\mu \notin f\left(\sigma_{l D}(T)\right)$ and set $h(\lambda)=f(\lambda)-\mu I$. Then h has no zeros in $\sigma_{l D}(T)$. Since $\sigma_{l D}(T)=\sigma_{S B F_{+}^{-}}(T) \cup \operatorname{acc}\left(\sigma_{a}(T)\right)$ by Theorem 3.7, we conclude that h has finitely many zeros in $\sigma_{a}(T)$. Now we consider two cases.

Case I. Suppose that h has no zeros in $\sigma_{a}(T)$. Then $h(T)=f(T)-\mu I$ is bounded below, and so $\mu \notin \sigma_{l D}(f(T))$.

Case II. Suppose that h has at least one zero in $\sigma_{a}(T)$. Then

$$
h(\lambda)=c\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right) g(\lambda),
$$

where $c, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$ and $g(\lambda)$ is a nonvanishing analytic function on an open neighborhood. Therefore

$$
h(T)=c\left(T-\lambda_{1} I\right)\left(T-\lambda_{2} I\right) \cdots\left(T-\lambda_{n} I\right) g(T),
$$

where $g(T)$ is bounded below. Since $\mu \notin f\left(\sigma_{l D}(T)\right), \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \notin \sigma_{l D}(T)$. Therefore $T-\lambda_{j} I$ is left Drazin invertible, and hence each $T-\lambda_{j} I \in S B F_{+}^{-}(r), j$ $=1,2, \ldots, n$. But each λ_{j} is an isolated point of $\sigma_{a}(T)$, it follows from [11, Theorem 2.8] that each λ_{j} is a left pole of the resolvent of T. Therefore $a(T-$ $\left.\lambda_{j} I\right)=d<\infty$ and $\operatorname{ran}\left(T-\lambda_{j} I\right)^{d+1}$ is closed $(j=1,2, \ldots, n)$, so $a((T-$ $\left.\left.\lambda_{1}\right)\left(T-\lambda_{2}\right) \cdots\left(T-\lambda_{n}\right)\right)=s<\infty$ and $\operatorname{ran}\left(\left(T-\lambda_{1}\right)\left(T-\lambda_{2}\right) \cdots\left(T-\lambda_{n}\right)\right)^{s+1}$ is closed. Since $g(T)$ is bounded below, $a(h(T))=t<\infty$ and $\operatorname{ran}\left(\left(h(T)^{t+1}\right)\right)$ is closed. Therefore $h(T)$ is left Drazin invertible, and so $0 \notin \sigma_{l D}(h(T))$. Hence $\mu \notin \sigma_{l D}(f(T))$. It follows from Cases I and II that $\sigma_{l D}(f(T)) \subseteq f\left(\sigma_{l D}(T)\right)$.

Conversely, suppose that $\lambda \notin \sigma_{l D}(f(T))$. Then $f(T)-\lambda I$ is left Drazin invertible. We again consider two cases.

Case I. Suppose that $f(T)-\lambda I$ is bounded below. Then $\lambda \notin \sigma_{a}(f(T))=$ $f\left(\sigma_{a}(T)\right)$, and hence $\lambda \notin f\left(\sigma_{l D}(T)\right)$.

Case II. Suppose that $\lambda \in \sigma_{a}(f(T)) \backslash \sigma_{l D}(f(T))$. Write

$$
f(T)=c\left(T-\lambda_{1} I\right)\left(T-\lambda_{2} I\right) \cdots\left(T-\lambda_{n} I\right) g(T)
$$

where $c, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$ and $g(T)$ is bounded below. Since $f(T)-\lambda I$ is left Drazin invertible, $f(T)=c\left(T-\lambda_{1} I\right)\left(T-\lambda_{2} I\right) \cdots\left(T-\lambda_{n} I\right) g(T)$ has finite ascent say r and $\operatorname{ran}(f(T))^{r+1}$ is closed. Hence $T-\lambda_{j} I$ has finite ascent say r_{j} and $\operatorname{ran}\left(T-\lambda_{j}\right)^{r_{j}+1}$ is closed for every $j=1,2, \ldots, n$. Therefore each $T-\lambda_{j} I$ is left Drazin invertible, and so $\lambda_{1}, \ldots, \lambda_{n} \notin \sigma_{l D}(T)$.

We now wish to prove that $\lambda \notin f\left(\sigma_{l D}(T)\right)$. Assume not; then there exists $\mu \in \sigma_{a D}(T)$ such that $f(\mu)=\lambda$. Since $g(\mu) \neq 0$, we must have $\mu=\mu_{j}$ for some $j=1,2, \ldots, n$, which implies $\mu_{j} \in \sigma_{l D}(T)$, a contradiction. Hence $\lambda \notin f\left(\sigma_{l D}(T)\right)$, and so $f\left(\sigma_{l D}(T)\right) \subseteq \sigma_{l D}(f(T))$. This completes the proof.

Theorem 3.9. Suppose T or T^{*} is an algebraically (p, k)-quasihyponormal operator. Then $f\left(\sigma_{S B F_{+}^{-}}(T)\right)=\sigma_{S B F_{+}^{-}}(f(T))$ for all $f \in \operatorname{Hol}(\sigma(T))$.

Proof. Let $\lambda \notin \sigma_{S B F_{+}^{-}}(f(T))$. Then $f(T)-\lambda I \in S B F_{+}^{-}(T)$ and

$$
f(T)-\lambda I=\prod_{j=1}^{m}\left(T-\lambda_{j} I\right) g(T)
$$

where $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{C}$ and $g(T)$ is invertible. Since $f(T)-\lambda I$ is an upper semi-B-Fredholm operator, it follows from [7, Theorem 3.2] that $T-\lambda_{j} I$ is upper semi- B-Fredholm for each $1 \leq j \leq m$. Hence

$$
i(f(T)-\lambda I)=\sum_{j=1}^{m} i\left(T-\lambda_{j} I\right) \leq 0
$$

Now from [7, Remark A] there exists some integer k such that for each, $1 \leq j \leq$ $m, T-\left(\lambda_{j}+\frac{1}{k}\right) I$ is an upper semi- B-Fredholm operator and $i\left(T-\left(\lambda_{j}+\frac{1}{k}\right) I\right)=$ $i\left(T-\lambda_{j} I\right)$. If T is an algebraically (p, k)-quasihyponormal operator, then it follows from Proposition 1.1 that $i\left(T-\lambda_{j} I\right) \leq 0$. Hence $\lambda \notin f\left(\sigma_{S B F_{+}^{-}}(T)\right)$.

Now if T^{*} is an algebraically (p, k)-quasihyponormal operator, then we have from Proposition 1.1 that $i\left(T-\lambda_{j} I\right)=0$ and so $T-\lambda_{j} I$ is a B-Fredholm operator of index 0 . Thus $\lambda \notin f\left(\sigma_{S B F_{+}^{-}}(T)\right)$.

For the converse inclusion. Let $\lambda \in \sigma_{S B F_{+}^{-}}(f(T)) \backslash f\left(\sigma_{S B F_{+}^{-}}(T)\right)$. Suppose that

$$
f(T)-\lambda I=\prod_{j=1}^{m}\left(T-\lambda_{j} I\right) g(T)
$$

where $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{C} \backslash \sigma_{S B F_{+}^{-}}(T)$ and $g(T)$ is invertible. Hence $f(T)-\lambda I$ is upper semi- B-Fredholm and $i(f(T)-\lambda I)=\sum_{j=1}^{m} i\left(T-\lambda_{j} I\right) \leq 0$. Therefore $\lambda \notin \sigma_{S B F_{+}^{-}}(f(T))$, so a contradiction.

Lemma 3.10. Suppose that $T \in \mathbf{B}(\mathcal{H})$ is algebraically (p, k)-quasihyponormal. Then for any $f \in \operatorname{Hol}(\sigma(T))$ we have

$$
\left.\sigma_{a}(f(T)) \backslash E^{a}(f(T))=f\left(\sigma_{a}(T)\right) \backslash E^{a}(T)\right)
$$

Proof. Let $\lambda \in \sigma_{a}(f(T)) \backslash E^{a}(f(T))$. Then $\lambda \in \sigma_{a}(f(T))=f\left(\sigma_{a}(T)\right)$. We distinguish two cases:

Case I. $\lambda \notin \operatorname{iso}\left(f\left(\sigma_{a}(T)\right)\right)$, then there is an infinite sequence $\left\{\eta_{n}\right\}_{n \in \mathbb{N}} \in$ $\sigma_{a}(T)$ such that $\lambda=f\left(\eta_{0}\right)$ and $\eta_{n} \longrightarrow \eta_{0}$. But $f \in \operatorname{Hol}(\sigma(T))$, therefore $f\left(\eta_{n}\right) \longrightarrow f\left(\eta_{0}\right)=\lambda$ and $\lambda \in f\left(\sigma_{a}(T) \backslash E^{a}(T)\right)$.

Case II. $\lambda \in \operatorname{iso}\left(f\left(\sigma_{a}(T)\right)\right)$, since $\lambda \notin E^{a}(f(T))$ then λ is not an eigenvalue of $f(T)$. Then

$$
f(T)-\lambda I=\left(T-\eta_{1} I\right)^{t_{1}}\left(T-\eta_{2} I\right)^{t_{2}} \cdots\left(T-\eta_{m} I\right)^{t_{m}} g(T),
$$

where $\eta_{1}, \ldots, \eta_{m}$ are scalars and g is invertible. Since λ is not an eigenvalue of $f(T)$, then for each $j \in\{1, \ldots, m\}, \eta_{j}$ is not an eigenvalue of T. Hence $\eta_{j} \in \sigma_{a}(T) \backslash E^{a}(T)$ and $\lambda=f\left(\eta_{j}\right) \in f\left(\sigma_{a}(T) \backslash E^{a}(T)\right)$.

Conversely, Let $\lambda \in f\left(\sigma_{a}(T) \backslash E^{a}(T)\right)$ then $\lambda \in \sigma_{a}(f(T))=f\left(\sigma_{a}(T)\right)$. Assume that $\lambda \in E^{a}(f(T))$. Then

$$
f(T)-\lambda I=\left(T-\eta_{1} I\right)^{t_{1}}\left(T-\eta_{2} I\right)^{t_{2}} \cdots\left(T-\eta_{m} I\right)^{t_{m}} g(T),
$$

where $\eta_{1}, \ldots, \eta_{m}$ are scalars and g is invertible. If $\eta_{j} \in \sigma_{a}(T)$, then $\eta_{j} \in$ $\operatorname{iso}\left(\sigma_{a}(T)\right)$. Since T is a-isoloid, η_{j} is an eigenvalue of T. Hence $\eta_{j} \in E^{a}(T)$. So $\lambda=f\left(\eta_{j}\right)$ this leads a contraction to the fact that $\lambda \in f\left(\sigma_{a}(T) \backslash E^{a}(T)\right)$.

Theorem 3.11. Let $T^{*} \in \mathbf{B}(\mathcal{H})$ be algebraically (p, k)-quasihyponormal. Then generalized a-Weyl's theorem holds for $f(T)$, for every $f \in \operatorname{Hol}(\sigma(T))$.

Proof. If T^{*} is an algebraically (p, k)-quasihyponormal operator, then T^{*} has SVEP $\sigma(T)=\sigma_{a}(T)$ and consequently $E(T)=E^{a}(T)$.

Let $\lambda \notin \sigma_{S B F_{+}^{-}}(T)$ be given. Then $T-\lambda$ is semi- B-Fredholm and $i(T-\lambda) \leq$ 0 . Then Proposition 1.1 implies that $i(T-\lambda)=0$ and consequently $T-\lambda$ is B-Weyl's. Hence $\lambda \notin \sigma_{B \omega}(T)$. Hence it follows from [37, Theorem3.1] that $\lambda \in E(T)=E^{a}(T)$.

For the converse, let $\lambda \in E^{a}(T)$. Then $\lambda \in i \operatorname{so\sigma _{a}}(T)$. Since T^{*} has SVEP, we have $\sigma(T)=\sigma_{a}(T)$. Hence $\bar{\lambda} \in \sigma\left(T^{*}\right)$. Now we represent T^{*} as the direct $\operatorname{sum} T^{*}=T_{1} \oplus T_{2}$, where $\sigma\left(T_{1}\right)=\{\bar{\lambda}\}$ and $\sigma\left(T_{2}\right)=\sigma(T) \backslash\{\bar{\lambda}\}$. Since $T \in \mathbf{\Upsilon}(\mathcal{H})$ then so does T_{1}, and so we have two cases:

Case I. $(\bar{\lambda}=0)$: then T_{1} is quasinilpotent. Hence it follows that T_{1} is nilpotent. Since T_{2} is invertible, Then T^{*} is B-Weyl's.

Case II. $(\bar{\lambda} \neq 0)$: Since $\sigma\left(T_{1}\right)=\{\bar{\lambda}\}$, then $T_{1}-\bar{\lambda}$ is nilpotent and $T_{2}-\bar{\lambda}$ is invertible, it follows from [37, Theorem 3.1] that $T^{*}-\bar{\lambda}$ is B-Weyl's. Thus in any case $\lambda \in \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$.

Let $f \in \operatorname{Hol}(\sigma(T))$. Since T is a-isoloid, then it follows from Theorem 3.9 that $\sigma_{S B F_{+}^{-}}(f(T))=f\left(\sigma_{S B F_{+}^{-}}(T)\right)=f\left(\sigma_{a}(T) \backslash E^{a}(T)\right)=\sigma_{a}(f(T)) \backslash E^{a}(f(T))$. Thus generalized a-Weyl's theorem holds for $f(T)$.

Corollary 3.12. Let $T^{*} \in \mathbf{B}(\mathcal{H})$ be an algebraically (p, k)-quasihyponormal. Then $E^{a}(T)=\pi^{a}(T)$.

Proof. If T^{*} is an algebraically (p, k)-quasihyponormal operator, then $\sigma_{a}(T) \backslash$ $\sigma_{S B F_{+}^{-}}(T)=E^{a}(T)$. Let $\lambda \in E^{a}(T)$. Then λ is isolated in $\sigma_{a}(T)$, and $\lambda \notin$ $\sigma_{S B F_{+}^{-}}(T)$. So $T-\lambda I$ is in $S B F_{+}^{-}(\mathcal{H})$. It follows from [11, Theorem 2.8] that λ is a left pole of T, and so $\lambda \in \pi^{a}(T)$. As we have always $\pi^{a}(T) \subset E^{a}(T)$, then $E^{a}(T)=\pi^{a}(T)$.

Definition 3.13. Let $T \in \mathbf{B}(\mathcal{H})$ and let $k \in \mathbb{N}$. Then T has a uniform descent for $n \geq k$ if $\mathcal{R}(T)+\operatorname{ker}\left(T^{n}\right)=\mathcal{R}(T)+\operatorname{ker}\left(T^{k}\right)$ for all $n \geq k$. If, in addition,
$\mathcal{R}(T)+\operatorname{ker}\left(T^{k}\right)$ is closed, then T is said to have a topological uniform descent for $n \geq k$.

An operator $T \in \mathbf{B}(\mathcal{H})$ is called a-polaroid if $\operatorname{iso\sigma }_{a}(T) \subset \pi^{a}(T)$. In general, if T is a-polaroid, then it is polaroid. However, the converse is not true. Consider the following example.

Example 3.14. Let R be the unilateral right shift on $\ell^{2}(\mathbb{N})$ and define

$$
U\left(x_{1}, x_{2}, \ldots\right):=\left(0, x_{2}, x_{3}, \ldots\right) \quad \text { for all } x_{n} \in \ell^{2}(\mathbb{N})
$$

Clearly, U is a quasi-nilpotent operator. Let $T:=R \oplus U$. We have $\sigma(T)=\mathbf{D}$, \mathbf{D} is the unit disc of \mathbb{C}, so $\operatorname{iso}(\sigma(T))=E_{0}(T)=\emptyset$ and hence T is polaroid. Moreover, $\sigma_{a}(T)=\partial \mathbf{D} \cup\{0\}$. Since $\sigma_{a}(T)$ does not cluster at 0 , then T has the SVEP at 0 , as well as at the points $\lambda \notin \sigma_{a}(T)$. Since T has SVEP at all points $\lambda \in \partial \sigma(T)$ it then follows that T has SVEP. Finally, $\sigma_{S B F_{+}^{-}}(T)=\partial \sigma(T)$ so $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=\{0\}$. Hence T is not a-polaroid.

Theorem 3.15. Let $T^{*} \in \mathbf{B}(\mathcal{H})$ be an algebraically (p, k)-quasihyponormal operator. Then T is a-polaroid.
Proof. Suppose T^{*} is algebraically (p, k)-quasihyponormal. Since T^{*} has the SVEP, then $\sigma_{a}(T)=\sigma(T)$. Let $\lambda \in i s o\left(\sigma_{a}(T)\right)=i s o(\sigma(T))$. Since a-Weyl's theorem holds for T by Theorem 3.6, then λ is a left pole of finite rank of T. Therefore $T-\lambda I$ has a finite ascent $k=a(T-\lambda I)$ and $\mathcal{R}(T-\lambda I)^{k+1}$ is closed. Since $T-\lambda I$ is also an operator of topological uniform descent for $n \geq 0$, then it follows from [9, Lemma 2.8] that $T-\lambda I$ is injective. So $a(T-\lambda I)=0$ and $\mathcal{R}(T-\lambda I)$ is closed. Since $\pi^{a}(T)=E^{a}(T)$, we see that λ is a left pole of T. That is, all isolated points of the approximate point spectrum of T are left poles of the resolvent of T.

References

[1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
[2] P. Aiena and O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 791-807.
[3] M. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasg. Math. J. 48 (2006), no. 1, 179-185.
[4] S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273-279.
[5] \qquad , The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529-544.
[6] M. Berkani, On a class of Quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), no. 2, 244-249.
[7] , Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1717-1723.
[8] , B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), no. 2, 596-603.
[9] , On the equivalence of Weyl theorem and generalized Weyl theorem, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 1, 103-110.
[10] M. Berkani and A. Arroud, Generalized weyl's theorem and hyponormal operators, J. Aust. Math. Soc. 76 (2004), no. 2, 1-12.
[11] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), no. 1-2, 359-376.
[12] M. Berkani and M. Sarih, An Atkinson-type theorem for B-Fredholm operators, Studia Math. 148 (2001), no. 3, 251-257.
[13] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
[14] R. E. Curto and Y. M. Han, Weyl's theorem for algebraically paranormal operators, Integral Equations Operator Theory 47 (2003), no. 3, 307-314.
[15] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978.
[16] B. P. Duggal and S. V. Djordjevic, Generalized Weyl's theorem for a class of operators satisfying a norm condition, Proc. Roy. Irish Acad. Sect. A 104A (2004), no. 1, 271-277.
[17] , Generalised Weyl's theorem for a class of operators satisfying a norm condition, Math. Proc. R. Ir. Acad. 104A (2004), no. 1, 75-81.
[18] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69.
[19] R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988.
[20] S. H. Lee and W. Y. Lee, On Weyl's theorem II, Math. Japon. 43 (1996), no. 3, 549-553.
[21] A.-H. Kim and S. U. Yoo, Weyl's theorem for isoloid and reguloid operators, Commun. Korean Math. Soc. 14 (1999), no. 1, 179-188.
[22] I. H. Kim, On (p, k)-quasihyponormal operators, Math. Inequal. Appl. 7 (2004), no. 4, 629-638.
[23] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), no. 11, 34173424.
[24] M. Lahrouz and M. Zohry, Weyl type theorems and the approximate point spectrum, Irish Math. Soc. Bull. 55 (2005), 41-51.
[25] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336.
[26] S. Mecheri, Weyl's theorem for algebraically (p, k)-quasihyponormal operators, Georgian Math. J. 13 (2006), no. 2, 307-313.
[27] V. Rakoc̆evic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10, 915-919.
[28] , Semi-Fredholm operators with finite ascent or descent and perturbation, Proc. Amer. Math. Soc. 122 (1995), no. 12, 3823-3825.
[29] , Semi-Browder operators and perturbations, Studia Math. 122 (1997), no. 2, 131-137.
[30] , Operators Obeying a-Weyl's theorem, Publ. Math. Debrecen 55 (1999), no. 3-4, 283-298.
[31] M. H. M. Rashid, M. S. M. Noorani, and A. S. Saari, Weyl's type theorems for quasiClass A operators, J. Math. Stat. 4 (2008), no. 2, 70-74.
[32] , Generalized Weyl's theorem for log-hyponormal, Malaysian J. Math. Soc. 2 (2008), no. 1, 73-82.
[33] C. Schmoeger, On operators T such that Weyl's theorem holds for $f(T)$, Extracta Math. 13 (1998), no. 1, 27-33.
[34] K. Tanahashi, A. Uchiyama, and M. Cho, Isolated point of spectrum of (p, k) quasihyponormal operators, Linear Algebra Appl. 382 (2004), no. 1, 221-229.
[35] A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18-49.
[36] H. Weyl, Uber beschrankte quadratische Formen, deren Differenze vollsteting ist, Rend. Circ. Math. Palermo 27 (1909), 373-392.

WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL
[37] H. Zguitti, A note on generalized Weyl's theorem, J. Math. Anal. Appl. 316 (2006), no. 1, 373-381.

Mohammad Hussein Mohammad Rashid
Department of Mathematics\& Statistics
Faculty of Science
Mu'tah University
P.O.Box(7), Al-Karak-Jordan

E-mail address: malik_okasha@yahoo.com
Mohd Salmi Mohd Noorani
School of mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
43600 UKM, Selangor Darul Ehsan, Malsysia
E-mail address: msn@pkrisc.cc.ukm.my

[^0]: Received June 22, 2009.
 2010 Mathematics Subject Classification. 47A10, 47A12, 47A55, 47B20.
 Key words and phrases. (p, k)-quasihyponormal, single valued extension property, Fredholm theory, Browder's theory, spectrum.

