Commun. Korean Math. Soc. **27** (2012), No. 1, pp. 77–95 http://dx.doi.org/10.4134/CKMS.2012.27.1.077

WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS

Mohammad Hussein Mohammad Rashid and Mohd Salmi Mohd Noorani

ABSTRACT. For a bounded linear operator T we prove the following assertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a-isoloid, polaroid, reguloid and a-polaroid. (b) If T^* is algebraically (p, k)-quasihyponormal, then a-Weyl's theorem holds for f(T) for every $f \in Hol(\sigma(T))$, where $Hol(\sigma(T))$ is the space of all functions that analytic in an open neighborhoods of $\sigma(T)$ of T. (c) If T^* is algebraically (p, k)-quasihyponormal, then generalized a-Weyl's theorem holds for f(T) for every $f \in Hol(\sigma(T))$. (d) If T is a (p, k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum $\sigma_{SBF^+_+}(T)$, and for left Drazin spectrum $\sigma_{lD}(T)$ for every $f \in Hol(\sigma(T))$.

1. Introduction

Throughout this paper let $\mathbf{B}(\mathcal{H})$, denote, the algebra of bounded linear operators acting on an infinite dimensional separable Hilbert space \mathcal{H} . If $T \in \mathbf{B}(\mathcal{H})$ we shall write ker(T) and $\mathcal{R}(T)$ for the null space and range of T, respectively. Also, let $\alpha(T) := \dim \ker(T), \ \beta(T) := \dim \mathcal{R}(T)$, and let $\sigma(T), \sigma_a(T), \sigma_p(T)$ denote the spectrum, approximate point spectrum and point spectrum of T, respectively. An operator $T \in \mathbf{B}(\mathcal{H})$ is called *Fredholm* if it has closed range, finite dimensional null space, and its range has finite codimension. The index of a Fredholm operator is given by

$$i(T) := \alpha(T) - \beta(T).$$

T is called *Weyl* if it is Fredholm of index 0, and *Browder* if it is Fredholm "of finite ascent and descent".

Recall that the *ascent*, a(T), of an operator T is the smallest non-negative integer p such that $\ker(T^p) = \ker(T^{p+1})$. If such integer does not exist we put $a(T) = \infty$. Analogously, the *descent*, d(T), of an operator T is the smallest non-negative integer q such that $\mathcal{R}(T^q) = \mathcal{R}(T^{q+1})$, and if such integer does

O2012 The Korean Mathematical Society

Received June 22, 2009.

²⁰¹⁰ Mathematics Subject Classification. 47A10, 47A12, 47A55, 47B20.

Key words and phrases. (p, k)-quasihyponormal, single valued extension property, Fredholm theory, Browder's theory, spectrum.

not exist we put $d(T) = \infty$. The essential spectrum $\sigma_F(T)$, the Weyl spectrum $\sigma_W(T)$ and the Browder spectrum $\sigma_b(T)$ of T are defined by

$$\sigma_F(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm}\},\$$

 $\sigma_W(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl}\}\$

and

$$\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Browder}\}\$$

respectively. Evidently

$$\sigma_F(T) \subseteq \sigma_W(T) \subseteq \sigma_b(T) \subseteq \sigma_F(T) \cup acc\sigma(T),$$

where we write accK for the accumulation points of $K \subseteq \mathbb{C}$.

Following [13], we say that Weyl's theorem holds for T if $\sigma(T) \setminus \sigma_W(T) = E_0(T)$, where $E_0(T)$ is the set of all eigenvalues λ of finite multiplicity isolated in $\sigma(T)$. And Browder's theorem holds for T if $\sigma(T) \setminus \sigma_W(T) = \pi_0(T)$, where π_0 is the set of all poles of T of finite rank.

Let $\Phi_+(\mathcal{H})$ be the class of all upper semi-Fredholm operators, $\Phi_+^-(\mathcal{H})$ be the class of all $T \in \Phi_+(\mathcal{H})$ with $i(T) \leq 0$, and for any $T \in \mathbf{B}(\mathcal{H})$ let

$$\sigma_{SF_{+}^{-}}(T) = \left\{ \lambda \in \mathbb{C} : T - \lambda I \notin SF_{+}^{-}(\mathcal{H}) \right\}.$$

Let E_0^a be the set of all eigenvalues of T of finite multiplicity which are isolated in $\sigma_a(T)$. According to [27], we say that T satisfies *a*-Weyl's theorem if $\sigma_{SF_+^-}(T) = \sigma_a(T) \setminus E_0^a(T)$. It follows from [27, Corollary 2.5] *a*-Weyl's theorem implies Weyl's theorem.

In [12] Berkani define the class of *B*-Fredholm operators as follows. For each integer *n*, define T_n to be the restriction of *T* to $\mathcal{R}(T^n)$ viewed as a map from $\mathcal{R}(T^n)$ into $\mathcal{R}(T^n)$ (in particular $T_0 = T$). If for some *n* the range $\mathcal{R}(T^n)$ is closed and T_n is a Fredholm (resp. semi-Fredholm) operator, then *T* is called a *B*-Fredholm (resp. semi-*B*-Fredholm) operator. In this case and from [6] T_m is a Fredholm operator and $i(T_m) = i(T_n)$ for each $m \ge n$. The index of a *B*-Fredholm operator *T* is defined as the index of the Fredholm operator T_n , where *n* is any integer such that the range $\mathcal{R}(T^n)$ is closed and T_n is a Fredholm operator (see [12]).

Let $BF(\mathcal{H})$ be the class of all *B*-Fredholm operators. In [6] Berkani has studied this class of operators and has proved that an operator $T \in \mathbf{B}(\mathcal{H})$ is *B*-Fredholm if and only if $T = T_0 \oplus T_1$, where T_0 is a Fredholm operator and T_1 is a nilpotent operator.

Recall that an operator $T \in \mathbf{B}(\mathcal{H})$ is called a *B*-*Weyl* operator (see [8]) if it is a *B*-Fredholm operator of index 0. The *B*-Weyl spectrum $\sigma_{BW}(T)$ of *T* is defined by

 $\sigma_{BW}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not a } B\text{-Weyl operator}\}.$

In the case of a normal operator T acting on a Hilbert space \mathcal{H} , Berkani [12, Theorem 4.5] showed that $\sigma_{BW}(T) = \sigma(T) \setminus E(T)$, where E(T) is the set of

all eigenvalues of T which are isolated in the spectrum of T. This result gives a generalization of the classical Weyl's theorem.

Let $SBF_+(\mathcal{H})$ be the class of all upper semi-*B*-Fredholm operators, and $SBF_+(\mathcal{H})$ the class of all $T \in SBF_+(\mathcal{H})$ such that $i(T) \leq 0$, and

$$\sigma_{SBF_{+}^{-}}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin SBF_{+}^{-}(\mathcal{H})\}.$$

Recall that an operator $T \in \mathbf{B}(\mathcal{H})$ satisfies the generalized *a*-Weyl's theorem if $\sigma_{SBF^-_+}(T) = \sigma_a(T) \setminus E^a(T)$, where $E^a(T)$ is the set of all eigenvalues of Twhich are isolated in $\sigma_a(T)$. Note that generalized a-Weyl's theorem implies a-Weyl's theorem (see [11]).

Recall that an operator $T \in \mathbf{B}(\mathcal{H})$ is *Drazin invertible* if and only if it has a finite ascent and descent, which is also equivalent to the fact that $T = T_0 \oplus T_1$, where T_0 is a nilpotent operator and T_1 is an invertible operator (see [23, Proposition A]). The Drazin spectrum is given by

 $\sigma_D(T) := \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Drazin invertible} \}.$

We observe that $\sigma_D(T) = \sigma(T) \setminus \pi(T)$, where $\pi(T)$ is the set of all poles.

An operator $T \in \mathbf{B}(\mathcal{H})$ is called *left Drazin invertible* if $a(T) < \infty$ and $\mathcal{R}(T^{a(T)+1})$ is closed (see [9, Definition 2.4]). The left Drazin spectrum is given by

 $\sigma_{LD}(T) := \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not left Drazin invertible} \}.$

Recall [9, Definition 2.5] that $\lambda \in \sigma_a(T)$ is a left pole of T if $T - \lambda I$ is a left Drazin invertible operator and $\lambda \in \sigma_a(T)$ is a left pole of finite rank if λ is a left pole of T and $\alpha(T - \lambda) < \infty$. We will denote $\pi^a(T)$ the set of all left poles of T, and by $\pi_0^a(T)$ the set of all left poles, of T of finite rank. We have $\sigma_{LD}(T) = \sigma_a(T) \setminus \pi^a(T)$.

Note that if $\lambda \in \pi^a(T)$, then it is easily seen that $T - \lambda$ is an operator of topological uniform descent. Therefore it follows from ([11, Theorem 2.5]) that λ is isolated in $\sigma_a(T)$. Following [9] if $T \in \mathbf{B}(\mathcal{H})$ and $\lambda \in \mathbb{C}$ is isolated in $\sigma_a(T)$, then $\lambda \in \pi^a(T)$ if and only if $\lambda \notin \sigma_{SBF^+_+}(T)$ and $\lambda \in \pi^a_0(T)$ if and only if $\lambda \notin \sigma_{SF^+_+}(T)$.

For the sake of simplicity of notation we introduce the abbreviations gaW, aW, gW and W to signify that an operator $T \in \mathbf{B}(\mathcal{H})$ obeys generalized a-Weyl's theorem, a-Weyl's theorem, generalized Weyl's theorem and Weyl's theorem, respectively. Analogous meaning is attached to the abbreviations gaB, aB, gB and B with respect to Browder's theorem.

In the following diagram, arrows signify implications between various Weyl and Browder type theorems. It is known from [1, 3, 7, 11, 19, 20, 27] that if

 $T \in \mathbf{B}(\mathcal{H})$, then we have:

The quasinilpotent part $H_0(T - \lambda)$ and the analytic core $K(T - \lambda)$ of $T - \lambda$ are defined by

$$H_0(T-\lambda) := \{ x \in \mathcal{H} : \lim_{n \to \infty} \| (T-\lambda)^n x \|^{\frac{1}{n}} = 0 \}.$$

and

 $K(T - \lambda) = \{ x \in \mathcal{H} : \text{there exists a sequence } \{x_n\} \subset \mathcal{H} \text{ and } \delta > 0 \text{ for which} \\ x = x_0, (T - \lambda)x_{n+1} = x_n \text{ and } \|x_n\| \le \delta^n \|x\| \text{ for all } n = 1, 2, \ldots \}.$

We note that $H_0(T-\lambda)$ and $K(T-\lambda)$ are generally non-closed hyper-invariant subspaces of $T-\lambda$ such that $(T-\lambda)^{-p}(0) \subseteq H_0(T-\lambda)$ for all p = 0, 1, ... and $(T-\lambda)K(T-\lambda) = K(T-\lambda)$. Recall that if $\lambda \in iso(\sigma(T))$, then $H_0(T-\lambda) =$ $\chi_T(\{\lambda\})$, where $\chi_T(\{\lambda\})$ is the glocal spectral subspace consisting of all $x \in \mathcal{H}$ for which there exists an analytic function $f : \mathbb{C} \setminus \{\lambda\} \longrightarrow \mathcal{H}$ that satisfies $(T-\mu)f(\mu) = x$ for all $\mu \in \mathbb{C} \setminus \{\lambda\}$ (see [17]).

Let $Hol(\sigma(T))$ be the space of all functions that analytic in an open neighborhoods of $\sigma(T)$. Following [18] we say that $T \in \mathbf{B}(\mathcal{H})$ has the single-valued extension property (SVEP) at point $\lambda \in \mathbb{C}$ if for every open neighborhood U_{λ} of λ , the only analytic function $f : U_{\lambda} \longrightarrow \mathcal{H}$ which satisfies the equation $(T-\mu)f(\mu) = 0$ is the constant function $f \equiv 0$. It is well-known that $T \in \mathbf{B}(\mathcal{H})$ has SVEP at every point of the resolvent $\rho(T) := \mathbb{C} \setminus \sigma(T)$. Moreover, from the identity theorem for analytic function it easily follows that $T \in \mathbf{B}(\mathcal{H})$ has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of $\sigma(T)$. In [25, Proposition 1.8], Laursen proved that if T is of finite ascent, then T has SVEP.

Proposition 1.1 ([24]). Let $T \in \mathbf{B}(\mathcal{H})$.

- (i) If T has the SVEP, then $i(T \lambda I) \leq 0$ for every $\lambda \in \rho_{SBF}(T)$.
- (ii) If T^* has the SVEP, then $i(T \lambda I) \ge 0$ for every $\lambda \in \rho_{SBF}(T)$.
- (iii) If T^* has the SVEP, then

(a) $\sigma_{SF_{+}^{-}}(T) = \omega(T)$ and (b) $\sigma_{SBF_{+}^{-}}(T) = \sigma_{B\omega}(T)$.

In [36] H. Weyl examined the spectra of all compact perturbations of a hermitian operator T on a Hilbert space and proved that their intersection coincides with the isolated point of the spectrum $\sigma(T)$ which are the eigenvalues of finite multiplicity. Weyl's theorem has been extended to several classes of

80

Hilbert space operators including seminormal operators [4, 5]. In [7] M. Berkani introduced the concepts of the generalized Weyl's theorem and generalized Browder's theorem, and they showed that T satisfies the generalized Weyl's theorem whenever T is a normal operator on Hilbert space. More recently, [10] extended this result to hyponormal operators. In [32] extended this result to log-hyponormal operators. Recently, Rashid et al. [31] showed that if T is quasiclass A, then generalized Weyl's theorem holds f(T) for every $f \in Hol(\sigma(T))$. More recently, in [26] Mecheri showed that generalized Weyl's theorem holds for algebraically (p, k)-quasihyponormal operators.

In this paper, we study generalized *a*-Weyl's theorem for algebraically (p, k)quasihyponormal operators. Among other things, we prove that the spectral mapping theorem holds for semi-*B*-essential approximate point spectrum $\sigma_{SBF_{+}^{-}}(T)$, and for left Drazin spectrum for every $f \in Hol(\sigma(T))$.

2. Properties of algebraically (p, k)-quasihyponormal operators

Definition 2.1 ([22]). An operator $T \in \mathbf{B}(\mathcal{H})$ is said to be (p, k)-quasihyponormal if

$$T^{k*}((T^*T)^p - (TT^*)^p)T^k \ge 0,$$

where $0 \le p \le 1$ and k is a positive integer. Especially, when p = 1, k = 1, p = k = 1, T is called k-quasihyponormal, p-quasihyponormal, quasihyponormal, respectively.

Definition 2.2. An operator $T \in \mathbf{B}(\mathcal{H})$ is said to be algebraically (p, k)-quasihyponormal if there exists a non-constant complex polynomial \mathcal{P} such that $\mathcal{P}(T)$ is a (p, k)-quasihyponormal operator.

In general, the following implications hold:

 $p\text{-hyponormal} \Rightarrow p\text{-quasihyponormal} \Rightarrow \text{algebraically } p\text{-quasihyponormal}$

 \Rightarrow algebraically (p, k)-quasihyponormal.

An operator $T \in \mathbf{B}(\mathcal{H})$ is called isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T. An operator $T \in \mathbf{B}(\mathcal{H})$ is called normaloid if r(T) = ||T||, where r(T) is the spectral radius of T. $X \in \mathbf{B}(\mathcal{H})$ is called a quasiaffinity if it has trivial kernel and dense range. $S \in \mathbf{B}(\mathcal{H})$ is said to be a quasiaffine transform of $T \in \mathbf{B}(\mathcal{H})$ (notation: $S \prec T$) if there is a quasiaffinity $X \in \mathbf{B}(\mathcal{H})$ such that XS = TX. If both $S \prec T$ and $T \prec S$, then we say that S and T are quasisimilar.

The following facts follow from the above definition and some well known facts about (p, k)-quasihyponormal operators.

(i) If $T \in \mathbf{B}(\mathcal{H})$ is an algebraically (p, k)-quasihyponormal operator, then so is $T - \lambda I$ for each $\lambda \in \mathbb{C}$.

(ii) If $T \in \mathbf{B}(\mathcal{H})$ is an algebraically (p, k)-quasihyponormal operator and M is a closed T-invariant subspace of \mathcal{H} , then $T|_M$ is an algebraically (p, k)-quasihyponormal operator.

Lemma 2.3. Let $T \in \mathbf{B}(\mathcal{H})$ be a p-quasihyponormal operator for 0 .Then the following assertions hold.

- (1) $||T^n x||^2 \leq ||T^{n-1}x|| ||T^{n+1}x||$ for all unit vector $x \in \mathcal{H}$ and all positive integer n.
- (2) $||T^n||^n \leq ||T^{n-1}||^n r(T^n)$ for all positive integer n, where $r(T^n)$ denote the spectral radius of T^n . Hence T is normaloid.
- (3) T is a paranormal operator.

Proof. (1) It is obvious that if T is p-quasihyponormal, then it is a (p, n)-quasihyponormal operator for each positive integer n, since

$$\langle T^{*n}(TT^*)^p T^n x, x \rangle$$

$$= \langle T^{*n}T(T^*T)^{p-1}T^*T^n x, x \rangle$$

$$= \langle (T^*T)^{p+1}T^{n-1}x, T^{n-1}x \rangle$$

$$\geq \|T^{n-1}x\|^{-2p} \langle T^*TT^{n-1}x, T^{n-1}x \rangle^{p+1}$$
 (by Hölder-McCarthy inequality)
$$= \|T^{n-1}x\|^{-2p} \|T^nx\|^{2p+2}$$

and

$$\langle T^{*n}(T^*T)^p T^n x, x \rangle$$

= $\langle (T^*T)^p T^n x, T^n x \rangle$
 $\leq ||T^n x||^{2-2p} \langle T^*TT^n x, T^n x \rangle$ (Hölder-McCarthy inequality)

$$= \|T^n x\|^{2-2p} \|T^{n+1} x\|^{2p}.$$

But T is a p-quasihyponormal operator. Then

$$\langle T^{*n}((T^*T)^p - (TT^*)^p)T^nx, x \rangle \ge 0.$$

Hence

$$||T^n x||^2 \le ||T^{n-1} x|| ||T^{n+1} x||.$$

(2) If $T^n = 0$ for some n > 1, then T = 0, and in this case r(T) = 0. Hence (2) is obvious. Hence we may assume $T^n \neq 0$ for all $n \ge 1$. Then

$$\frac{\|T^n\|}{\|T^{n-1}\|} \le \frac{\|T^{n+1}\|}{\|T^n\|} \le \dots \le \frac{\|T^{mn}\|}{\|T^{mn-1}\|}$$

by (1), and we have

$$\left(\frac{\|T^n\|}{\|T^{n-1}\|}\right)^{mn-n-1} \le \frac{\|T^{n+1}\|}{\|T^n\|} \times \dots \times \frac{\|T^{mn}\|}{\|T^{mn-1}\|} = \frac{\|T^{mn}\|}{\|T^{n-1}\|}.$$

Hence

$$\left(\frac{\|T^n\|}{\|T^{n-1}\|}\right)^{n-\frac{n}{m}-\frac{1}{n}} \le \frac{\|T^{mn}\|^{\frac{1}{m}}}{\|T^{mn-1}\|^{\frac{1}{m}}}.$$

Now letting $m \longrightarrow \infty$. We get

$$||T^n||^n \le ||T^{n-1}||^n r(T^n).$$

Put n = 1, we have $||T|| \le r(T)$. So ||T|| = r(T), *i.e.*, T is normaloid.

(3) Put n = 1 in (1), we have $||Tx||^2 \le ||T^2x||$, that is, T is paranormal. \Box

Definition 2.4 ([17]). An operator $T \in \mathbf{B}(\mathcal{H})$ is said to be totally hereditarily normaloid, $T \in THN$ if every part of T (*i.e.*, its restriction to an invariant subspace), and T_p^{-1} for every invertible part T_p of T, is normaloid.

Lemma 2.5. Let $T \in THN$, let $\lambda \in \mathbb{C}$. Assume that $\sigma(T) = \{\lambda\}$. Then $T = \lambda I$.

Proof. We consider two cases:

case I. $(\lambda = 0)$: Since T is normaloid. Therefore T = 0.

case II. $(\lambda \neq 0)$: Here *T* is invertible, and since $T \in THN$, we see that T, T^{-1} are normaloid. On the other hand $\sigma(T^{-1}) = \{\frac{1}{\lambda}\}$, so $||T|| ||T^{-1}|| = |\lambda| |\frac{1}{\lambda}| = 1$. It follows that *T* is convexoid, so $W(T) = \{\lambda\}$. Therefore $T = \lambda I$.

In [14], Curto and Han proved that quasinilpotent algebraically paranormal operators are nilpotent. We now establish a similar result for algebraically (p, k)-quasihyponormal operators.

Proposition 2.6. Let T be a quasinilpotent (p, k)-quasihyponormal operator. Then T is nilpotent.

Proof. Assume that p(T) is a totally hereditarily normaloid operator for some nonconstant polynomial p. Since $\sigma(p(T)) = p(\sigma(T))$, the operator p(T) - p(0) is quasinilpotent. Thus Lemma 2.5 would imply that

$$cT^m(T - \lambda_1 I) \cdots (T - \lambda_n I) \equiv p(T) - p(0) = 0,$$

where $m \ge 1$. Since $T - \lambda_j I$ is invertible for every $\lambda_j \ne 0$, we must have $T^m = 0$.

Lemma 2.7. Let T be an invertible p-quasihyponormal operator. Then $\mathcal{H} = \mathcal{R}(T) \oplus \ker(T)$. Moreover T_1 , the restriction of T to $\mathcal{R}(T)$ is one-one and onto.

Proof. Suppose that $y \in \mathcal{R}(T) \cap \ker(T)$ then y = Tx for some $x \in \mathcal{H}$ and Ty = 0. It follows that $T^2x = 0$. However, d(T) = 1 and so $x \in \ker(T^2) = \ker(T)$. Hence y = Tx = 0 and so $\mathcal{R}(T) \cap \ker(T) = \{0\}$. Also, $T\mathcal{R}(T) = \mathcal{R}(T)$.

If $x \in \mathcal{H}$, there is $u \in \mathcal{R}(T)$ such that Tu = Tx. Now if z = x - u, then Tz = 0. Hence

$$\mathcal{H} = \mathcal{R}(T) \oplus \ker(T).$$

Since a(T) = 1, T maps $\mathcal{R}(T)$ onto itself. If $y \in \mathcal{R}(T)$ and Ty = 0, then $y \in \mathcal{R}(T) \cap \ker(T) = \{0\}$. Hence T_1 is one-one and onto.

Observe that $\{\lambda_0\}$ is a clopen subset of $\sigma(T)$. Let $T \in \mathbf{B}(\mathcal{H})$. The $R_{\lambda}(T) = (T - \lambda)^{-1}$ is analytic on $\rho(T)$, and an isolated point λ_0 of $\sigma(T)$ is an isolated singular point of the resolvent of T. Here there is a Laurent expansion of this function in powers of $\lambda - \lambda_0$. We write this in the form

$$(T-\lambda)^{-1} = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n A_n + \sum_{n=1}^{\infty} (\lambda - \lambda_0)^{-n} B_n.$$

The coefficients A_n and B_n are members of $\mathbf{B}(\mathcal{H})$ and given by the standard formulas

(2.1)
$$A_n = \frac{1}{2\pi i} \int_{\Gamma} (\lambda - \lambda_0)^{-n-1} (\lambda - T)^{-1} d\lambda,$$

(2.2)
$$B_n = \frac{1}{2\pi i} \int_{\Gamma} (\lambda - \lambda_0)^{n-1} (\lambda - T)^{-1} d\lambda,$$

where Γ is any circle $|\lambda - \lambda_0| = \rho$ with $0 < \rho < \delta$ described once counterclockwise.

The function f_n defined by

$$f_n(\lambda) = \begin{cases} (\lambda - \lambda_0)^{n-1}, & \text{if } |\lambda - \lambda_0| \le \rho < \delta, \\ 0, & \text{otherwise.} \end{cases}$$

is in $Hol(\sigma(T))$ and moreover

$$B_n = f_n(T), \ n = 1, 2, \dots$$

For each positive integer n, we have

$$(\lambda - \lambda_0)f_n(\lambda) = f_{n+1}.$$

 So

 $(2.3) (T-\lambda_0)B_n = B_{n+1}$

and by induction

(2.4)
$$(T - \lambda_0)^n B_1 = B_{n+1}.$$

We note in passing that

$$(2.5) B_1 = E(\lambda_0)$$

the spectral projection corresponding to the clopen set λ_0 of $\sigma(T)$. Consider for each non-negative integer *n* the function g_n defined by

$$g_n(\lambda) = \begin{cases} 0, & \text{if } |\lambda - \lambda_0| \le \rho < \delta, \\ (\lambda - \lambda_0)^{-n-1}, & \text{otherwise.} \end{cases}$$

is in $Hol(\sigma(T))$. Moreover,

$$A_n = -g_n(T)$$

for each non-negative integer n. We have

(2.6)
$$(\lambda - \lambda_0)g_{n+1}(\lambda) = g_n(\lambda)$$

and so

$$(2.7) \qquad \qquad (\lambda - \lambda_0)A_{n+1} = A_n$$

Similarly $(\lambda - \lambda_0)g_0(\lambda) + f_1(\lambda) = 1$ and so

(2.8) $(T-\lambda)A_0 = B_0 - 1.$

Recall that if $T \in \mathbf{B}(\mathcal{H})$ and λ_0 is an isolated point of $\sigma(T)$, then λ_0 is called a pole of order *m* if and only if $E(\lambda_0)(\lambda_0 - T)^m = 0$ and $E(\lambda_0)(\lambda_0 - T)^{m-1} \neq 0$.

Lemma 2.8. Let T be a (p, k)-quasihyponormal operator and $\lambda_0 \in iso\sigma(T)$. Let $\tau = \sigma(T) \setminus {\lambda_0}$. Then λ_0 is an eigenvalue of T. The ascent and descent of $T - \lambda_0$ are both equal to k. Also

$$\mathcal{R}(E(\lambda_0)) = \ker((T - \lambda_0)^k),$$
$$\mathcal{R}(E(\tau)) = \mathcal{R}((T - \lambda_0)^k).$$

Proof. For convenience we denote the null-space and range of $(\lambda_0 - T)^k$ by ker_k and \mathcal{R}_k , respectively. If $x \in \ker_k$, where $k \ge 1$, we see by (2.7), induction and (2.8) that

$$0 = A_{k-1}(T - \lambda_0)^k x = (T - \lambda_0)^k A_{k-1} x = (T - \lambda_0) A_0 x = B_1 x - x.$$

So that by (2.5), we have $x = B_1 x \in \mathcal{R}(E(\lambda_0))$. Thus $\ker_k \subseteq \mathcal{R}(E(\lambda_0))$ if $k \ge 1$. On the other hand, it follows from (2.4) that if $x \in \mathcal{R}(E(\lambda_0))$, then $x = B_1 x$ and $(T - \lambda_0)^k x = B_{k+1} x$. Since $B_{n+1} x = 0$ if $n \ge k$. It follows that $\mathcal{R}(E(\lambda_0)) \subseteq \ker_k$ and $\ker_n = \mathcal{R}(E(\lambda_0))$ if $n \ge k$. However, \ker_{k-1} is a proper subset of \ker_k because $B_k \ne 0$. The equations $\ker_{k-1} = \ker_k = \mathcal{R}(E(\lambda_0))$ imply that $B_k = 0$ in view of the relation $B_k = (T - \lambda_0)^{k-1} B_1$. We have now proved that the ascent of $\lambda_0 - T$ is k and $\ker_k = \mathcal{R}(E(\lambda_0))$. In particular, since $k > 0, \lambda_0$ is an eigenvalue of T.

Now let T_1 and T_2 be the restrictions of T to $\mathcal{R}(E(\tau))$ and $\mathcal{R}(E(\lambda_0))$, respectively. $\lambda_0 \in \sigma(T_2)$ but $\lambda_0 \notin \sigma(T_1)$. Hence, the descent of $\lambda_0 - T_1$ is 0 and $\mathcal{R}((\lambda_0 - T_1)^k) = \mathcal{R}(E(\tau))$ when $k \geq 1$. Thus $\mathcal{R}(E(\tau)) \subseteq \mathcal{R}_k$. Now if $n \geq k$, the only point common to \mathcal{R}_n and ker_n is 0. For, if $x \in \mathcal{R}_n \cap \ker_n$, then $(\lambda_0 - T)^n x = 0$ and there is $y \in \mathcal{H}$ such that $x = (\lambda_0 - T)^n y$. Hence $y \in \ker_{2n} = \ker$ and so x = 0. Now suppose that $n \geq k$ and $x \in \mathcal{R}_n$. Let $x_1 = E(\tau)x$ and $x_2 = E(\lambda_0)$, then $x_2 = x - x_1 \in \mathcal{R}_n$ because $\mathcal{R}(E(\tau)) \subseteq \mathcal{R}_n$. However, $x_2 \in \mathcal{R}(E(\lambda_0)) = \ker_n$, and so $x_2 = 0$ whence $x = x_1 \in \mathcal{R}(E(\tau))$. Thus $\mathcal{R}_n \subseteq \mathcal{R}(E(\tau))$ if $n \geq k$ and therefore that the descent of $\lambda_0 - T$ is less that or equal to k. Then by [15, Proposition 1.49] shows that the descent is exactly k, which know to be the ascent.

Corollary 2.9. Let $T \in \mathbf{B}(\mathcal{H})$ be a (p, k)-quasihyponormal operator. Then T is of finite ascent.

An operator $T \in \mathbf{B}(\mathcal{H})$ is said to be polaroid if $iso\sigma(T) \subseteq \pi(T)$, where $\pi(T)$ is the set of all poles of T. In general, if T is polaroid, then it is isoloid. However, the converse is not true. Consider the following example. Let $T \in \ell^2(\mathbb{N})$ be defined by

$$T(x_1, x_2, \ldots) = \left(\frac{x_2}{2}, \frac{x_3}{3}, \ldots\right).$$

Then T is a compact quasinilpotent operator with $\alpha(T) = 1$, and so T is isoloid. However, since T does not have finite ascent, T is not polaroid. **Proposition 2.10.** Let T be an algebraically (p, k)-quasihyponormal operator. Then T is polaroid.

Proof. Suppose T is an algebraically (p, k)-quasihyponormal operator. Then p(T) is (p, k)-quasihyponormal for some nonconstant polynomial p. Let $\lambda \in iso(\sigma(T))$. Using the spectral projection $P := \frac{1}{2i\pi} \int_{\partial D} (\mu - T)^{-1} d\mu$, where D is a closed disk of center λ which contains no other points of $\sigma(T)$, we can represent T as the direct sum

$$T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}, \text{ and } \sigma(T_1) = \{\lambda\} \text{ and } \sigma(T_2) = \sigma(T) \setminus \{\lambda\}.$$

Since T_1 is algebraically (p, k)-quasihyponormal and $\sigma(T_1) = \{\lambda\}$. But $\sigma(T_1 - \lambda I) = \{0\}$ it follows from Proposition 2.6 that $T_1 - \lambda I$ is nilpotent. Therefore $T_1 - \lambda$ has finite ascent and descent. On the other hand, since $T_2 - \lambda I$ is invertible, clearly it has finite ascent and descent. Therefore $T - \lambda I$ has finite ascent and descent. Therefore $T - \lambda I$ has finite ascent and descent. Therefore $T - \lambda I$ has finite $\lambda \in a$ pole of the resolvent of T. Thus if $\lambda \in iso(\sigma(T))$ implies $\lambda \in \pi(T)$, and so $iso(\sigma(T)) \subset \pi(T)$. Hence T is polaroid. \Box

Corollary 2.11. Let T be an algebraically (p, k)-quasihyponormal operator. Then T is isoloid.

For $T \in \mathbf{B}(\mathcal{H})$, $\lambda \in \sigma(T)$ is said to be a regular point if there exists $S \in \mathbf{B}(\mathcal{H})$ such that $T - \lambda I = (T - \lambda I)S(T - \lambda I)$. *T* is is called reguloid if every isolated point of $\sigma(T)$ is a regular point. It is well known [19, Theorems 4.6.4 and 8.4.4] that $T - \lambda I = (T - \lambda I)S(T - \lambda I)$ for some $S \in \mathbf{B}(\mathcal{H}) \iff T - \lambda I$ has a closed range.

Theorem 2.12. Let T be an algebraically (p,k)-quasihyponormal operator. Then T is reguloid.

Proof. Suppose T is an algebraically (p, k)-quasihyponormal operator. Then p(T) is a (p, k)-quasihyponormal operator for some nonconstant polynomial p. Let $\lambda \in iso(\sigma(T))$. Using the spectral projection $P := \frac{1}{2i\pi} \int_{\partial D} (\mu - T)^{-1} d\mu$, where D is a closed disk of center λ which contains no other points of $\sigma(T)$, we can represent T as the direct sum

$$T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$$
, and $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) \setminus \{\lambda\}$.

Since T_1 is algebraically (p, k)-quasihyponormal and $\sigma(T_1) = \{\lambda\}$, it follows from Lemma 2.5 that $T_1 = \lambda I$. Therefore by [34, Theorem 6],

(2.9)
$$\mathcal{H} = E(\mathcal{H}) \oplus E(\mathcal{H})^{\perp} = \ker(T - \lambda I) \oplus \ker(T - \lambda I)^{\perp}.$$

Relative to decomposition 2.9, $T = \lambda I \oplus T_2$. Therefore $T - \lambda I = 0 \oplus T - \lambda I$ and hence $\operatorname{ran}(T - \lambda I) = (T - \lambda I)(\mathcal{H}) = 0 \oplus (T_2 - \lambda I)(\ker(T - \lambda I)^{\perp})$. Since $T_2 - \lambda I$ is invertible, $T - \lambda I$ has closed range.

Theorem 2.13. Let $T^* \in \mathbf{B}(\mathcal{H})$ be an algebraically (p, k)-quasihyponormal operator. Then T is a-isoloid.

Proof. Suppose T^* is algebraically (p, k)-quasihyponormal. Since T^* has SVEP, then $\sigma(T) = \sigma_a(T)$. Let $\lambda \in iso(\sigma_a(T)) = iso(\sigma(T))$. But T^* is polaroid, hence T is also polaroid. Therefore it is isoloid, and hence $\lambda \in \sigma_p(T)$. Thus T is a-isoloid.

3. Weyl's type theorem

Lemma 3.1. If T is a (p, k)-quasihyponormal operator and $S \prec T$, then S has SVEP.

Proof. Since T is a (p, k)-quasihyponormal operator, then it has a SVEP. So the result follows from [14, Lemma 3.1].

Theorem 3.2. Let $S, T \in \mathbf{B}(\mathcal{H})$. If T has SVEP and $S \prec T$, then $f(S) \in gaB$ for every $f \in Hol(\sigma(T))$. In particular, if T has SVEP, then $T \in gaB$.

Proof. Suppose that T has SVEP. Since $S \prec T$, it follows from the proof of [14] that S has SVEP. We now show that $S \in gaB$. Let $\lambda \in \sigma_a(S) \setminus \sigma_{SBF_+^-}(S)$; then $S - \lambda I \in SBF_+^-(S)$ but not bounded below. Since $S - \lambda I \in SBF_+^-(S)$, it follows from from [11, Corollary 2.10] that $S - \lambda I = S_1 \oplus S_2$, where S_1 is an upper semi-Fredholm operator with $i(S_1) \leq 0$, and S_2 is nilpotent. Since S has SVEP, S_1 and S_2 also have SVEP. Therefore a-Browder's theorem holds for S_1 , and hence $\sigma_{ab}(S_1) = \sigma_{SF_+^-}(S_1)$. Since S_1 is semi-Fredholm with $i(S_1) \leq 0, S_1$ is a Browder's. Hence λ is an isolated point of $\sigma_a(S)$. It follows that $S \in gaB$.

Now let $f \in Hol(\sigma(T))$. Since the SVEP is stable under the functional calculus, then f(S) has the SVEP. Therefore $f(S) \in gaB$, by the first part of the proof.

We now recall that the generalized *a*-Weyl's theorem may not hold for quasinilpotent operators, and that it does not necessarily transfer to or from adjoints.

Example 3.3. Let $T \in \mathbf{B}(\mathcal{H})$ defined on ℓ^2 by

$$T(x_1, x_2, \ldots) = \left(\frac{x_2}{2}, \frac{x_3}{3}, \ldots\right).$$

Then T is a quasinilpotent operator and $\sigma(T) = \sigma_{SBF_+}(T) = E^a(T) = \{0\}$. Thus T does not obey generalized a-Weyl's theorem.

Now $\sigma(T^*) = \sigma_{SBF_{\perp}^-}(T^*) = \{0\}$ and $E^a(T^*) = \emptyset$. Therefore $T^* \in gaW$.

As a consequence of [17, Theorem 2.4] and [16, Lemma 2.5] we have:

Theorem 3.4. Let $T \in \mathbf{B}(\mathcal{H})$ be a (p,k)-quasihyponormal operator. Then T is of stable index.

Let $T \in \mathbf{B}(\mathcal{H})$. It is well known that the inclusion $\sigma_{SF^-_+}(f(T)) \subseteq f(\sigma_{SF^-_+}(T))$ holds for every $f \in Hol(\sigma(T))$ with no restriction on T [29]. The next theorem shows that the spectral mapping theorem holds for the essential approximate point spectrum for algebraically (p, k)-quasihyponormal operator. **Theorem 3.5.** Suppose T^* or T is an algebraically (p, k)-quasihyponormal operator. Then

$$\sigma_{SF_{-}}(f(T)) = f(\sigma_{SF_{-}}(T)).$$

Proof. Assume first that T is an algebraically (p, k)-quasihyponormal operator and let $f \in Hol(\sigma(T))$. It suffices to show that $\sigma_{SF_{+}^{-}}(f(T)) \supseteq f(\sigma_{SF_{+}^{-}}(T))$. Suppose that $\lambda \notin \sigma_{SF_{+}^{-}}(f(T))$. Then $f(T) - \lambda I \in SF_{+}^{-}(\mathcal{H})$ and

$$f(T) - \lambda I = c(T - \mu_1 I)(T - \mu_2 I) \cdots (T - \mu_n I)g(T),$$

where $c, \mu_1, \mu_2, \ldots, \mu_n \in \mathbb{C}$, and g(T) is invertible. Since T is an algebraically (p, k)-quasihyponormal operator, it has SVEP. It follows from [2, Theorem 2.6] that $i(T - \mu_j) \leq 0$ for each $j = 1, 2, \ldots, n$. Therefore $\lambda \notin f(\sigma_{SF_+}(T))$, and hence $\sigma_{SF_+}(f(T)) = f(\sigma_{SF_+}(T))$. Suppose now that T^* is an algebraically (p, k)-quasihyponormal operator. Then T^* has SVEP, and so by [2, Theorem 2.6] $i(T - \mu_j I) \geq 0$ for each $j = 1, 2, \ldots, n$. Since

$$0 \le \sum_{j=1}^{n} i(T - \mu_j I) = i(f(T) - \lambda I) \le 0,$$

 $T - \mu_j I$ is Weyl for each j = 1, 2, ..., n. Hence $\lambda \notin f(\sigma_{SF^-_+}(T))$, and so $\sigma_{SF^-_+}(f(T)) = f(\sigma_{SF^-_+}(T))$. This completes the proof. \Box

Theorem 3.6. Suppose T^* is an algebraically (p, k)-quasihyponormal operator. Then a-Weyls theorem holds for f(T) for every $f \in Hol(\sigma(T))$.

Proof. Suppose T^* is an algebraically (p, k)-quasihyponormal operator. We first show that *a*-Weyls theorem holds for T. Suppose that $\lambda \in \sigma_a(T) \setminus \sigma_{SF^-_+}(T)$. Then $T - \lambda I$ is upper semi-Fredholm and $i(T - \lambda I) \leq 0$. Since T^* is an algebraically (p, k)-quasihyponormal operator, T^* has SVEP. Therefore by [2, Theorem 2.6] that $i(T - \lambda I) \geq 0$, and hence $T - \lambda I$ is Weyl. Since T^* has SVEP, it follows from [18, Corollary 7] that $\sigma_a(T) = \sigma(T)$. Also, since Weyls theorem holds for T by [26], $\lambda \in \pi_0^a(T)$.

Conversely, suppose that $\lambda \in \pi_0^a(T)$. Since T^* has SVEP, it follows from [18, Corollary 7] that $\sigma_a(T) = \sigma(T)$. Therefore λ is an isolated point of $\sigma(T)$, and hence $\bar{\lambda}$ is an isolated point of $\sigma(T^*)$. But T^* is an algebraically (p, k)quasihyponormal operator, hence by Proposition 2.10 that $\bar{\lambda} \in \pi(T^*)$. Therefore there exists a natural number n_0 such that $n_0 = a(T^* - \bar{\lambda}I) = d(T^* - \bar{\lambda}I)$. Hence we have $\mathcal{H} = \ker((T^* - \bar{\lambda}I)^{n_0}) \oplus \operatorname{ran}((T^* - \bar{\lambda}I)^{n_0})$ and $\operatorname{ran}((T^* - \bar{\lambda}I)^{n_0})^{\perp} \oplus$ ran $((T^* - \bar{\lambda}I)^{n_0})^{\perp} = \ker((T - \lambda I)^{n_0}) \oplus \operatorname{ran}((T - \lambda I)^{n_0})$. So $\lambda \in \sigma_p(T)$, and hence $T - \lambda I$ is Weyl. Consequently, $\lambda \in \sigma_a(T) \setminus \sigma_{SF_+}(T)$. Thus a-Weyls theorem holds for T. Now we show that T is a-isoloid. Let λ be an isolated point of $\sigma_a(T)$. Since T^* has SVEP, λ is an isolated point of $\sigma(T)$. But T^* is polaroid, hence T is also polaroid. Therefore it is isoloid, and hence $\lambda \in \sigma_p(T)$. Thus T is a-isoloid.

Finally, we shall show that *a*-Weyls theorem holds for f(T) for every $f \in Hol(\sigma(T))$. Let $f \in Hol(\sigma(T))$. Since *a*-Weyls theorem holds for *T*, it satisfies *a*-Browders theorem. Therefore $\sigma_{ab}(T) = \sigma_{SF_+}(T)$. It follows from Theorem 3.5 that

$$\sigma_{ab}(f(T)) = f(\sigma_{ab}(T)) = f(\sigma_{SF_{+}}(T)) = \sigma_{SF_{+}}(f(T)),$$

and hence a-Browders theorem holds for f(T). So $\sigma_a()f(T) \setminus \sigma_{SF^-_+}(f(T)) \subset \pi_0^a(T)$. Conversely, suppose that $\lambda \in \pi_0^a(f(T))$. Then λ is an isolated point of $\sigma_a(f(T))$ and $0 < \alpha(f(T) - \lambda I) < 1$. Since λ is an isolated point of $f(\sigma_a(T))$, if $\mu_j \in \sigma_a(T)$, then μ_j is an isolated point of $\sigma_a(T)$. Since T is a-isoloid, $0 < \alpha(T-\mu_j) < 1$ for each $j = 1, 2, \ldots, n$. Since a-Weyls theorem holds for $T, T-\mu_j$ is upper semi-Fredholm and $i(T-\mu_j) \leq 0$ for each $j = 1, 2, \ldots, n$. Therefore $f(T) - \lambda I$ is upper semi-Fredholm and $f(T) - \lambda I = \sum_{j=1}^n i(T-\mu_j I) \leq 0$. Hence $\lambda \in \sigma_a()f(T) \setminus \sigma_{SF^-_+}(f(T))$, and so a-Weyls theorem holds for f(T) for each $f \in Hol(\sigma(T))$. This completes the proof.

Theorem 3.7. Let T be an algebraically (p, k)-quasihyponormal operator. Then $\sigma_{lD}(T) = \sigma_{SBF_{-}}(T) \cup acc(\sigma_a(T)).$

Proof. Suppose that $\lambda \in \sigma_a(T) \setminus \sigma_{lD}(T)$. Then $T - \lambda I$ is left Drazin invertible but not bounded below. In particular, $T - \lambda I$ is semi-B-Fredholm. Therefore $d = a(T - \lambda) < \infty$ and $\operatorname{ran}((T - \lambda I)^{d+1})$ is closed. On the other hand, since $d = a(T - \lambda I) < \infty$ and $(\operatorname{ran}(T - \lambda)^{d+1})$ is closed, λ is an isolated point of $\sigma_a(T)$. Hence $\lambda \in \sigma_a(T) \setminus (\sigma_{SBF_1}(T) \cup \operatorname{acc}(\sigma_a(T)))$.

Conversely, suppose that $\lambda \in \sigma_a(T) \setminus (\sigma_{SBF^-_+}(T) \cup acc(\sigma_a(T)))$. Then $T - \lambda I$ is semi-*B*-Fredholm and λ is an isolated point of $\sigma_a(T)$. Since $T - \lambda I$ is upper semi-Fredholm, it follows from [11, Corollary 2.10] that $T - \lambda I$ can be decompose as $T - \lambda I = T_1 \oplus T_2$, where T_1 is an upper semi-Fredholm operator with $i(T_1) \leq 0$ and T_2 is nilpotent. We consider two cases.

Case I. Suppose that T_1 is bounded below. Then $T - \lambda I$ is left Drazin invertible, and so $\lambda \notin \sigma_{lD}(T)$.

Case II. Suppose that T_1 is not bounded below. Then 0 is an isolated point of $\sigma_a(T_1)$. But T_1 is an upper semi-Fredholm operator, hence it follows from the punctured neighborhood theorem that T_1 is *a*-Browder. Therefore there exists a finite rank operator S_1 such that $T_1 + S_1$ is bounded below and $T_1S_1 = S_1T_1$. Put $F := S_1 \oplus 0$. Then F is a finite rank operator, TF = FTand $T - \lambda I + F = T_1 \oplus T_2 + S_1 \oplus 0 = (T_1 + S_1) \oplus T_2$ is left Drazin invertible. Hence $\lambda \notin \sigma_{lD}(T)$. As shown in [12] that the spectral mapping theorem holds for the Drazin spectrum. We prove here the spectral mapping theorem holds for left Drazin spectrum.

Theorem 3.8. Let T be an algebraically (p, k)-quasihyponormal operator and let $f \in Hol(\sigma(T))$. Then $\sigma_{lD}(f(T)) = f(\sigma_{lD}(T))$.

Proof. Suppose that $\mu \notin f(\sigma_{lD}(T))$ and set $h(\lambda) = f(\lambda) - \mu I$. Then *h* has no zeros in $\sigma_{lD}(T)$. Since $\sigma_{lD}(T) = \sigma_{SBF^-_+}(T) \cup acc(\sigma_a(T))$ by Theorem 3.7, we conclude that *h* has finitely many zeros in $\sigma_a(T)$. Now we consider two cases.

Case I. Suppose that h has no zeros in $\sigma_a(T)$. Then $h(T) = f(T) - \mu I$ is bounded below, and so $\mu \notin \sigma_{lD}(f(T))$.

Case II. Suppose that h has at least one zero in $\sigma_a(T)$. Then

$$h(\lambda) = c(\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)g(\lambda),$$

where $c, \lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$ and $g(\lambda)$ is a nonvanishing analytic function on an open neighborhood. Therefore

$$h(T) = c(T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_n I)g(T),$$

where g(T) is bounded below. Since $\mu \notin f(\sigma_{lD}(T)), \lambda_1, \lambda_2, \ldots, \lambda_n \notin \sigma_{lD}(T)$. Therefore $T - \lambda_j I$ is left Drazin invertible, and hence each $T - \lambda_j I \in SBF_+^-(r), j$ $= 1, 2, \ldots, n$. But each λ_j is an isolated point of $\sigma_a(T)$, it follows from [11, Theorem 2.8] that each λ_j is a left pole of the resolvent of T. Therefore $a(T - \lambda_j I) = d < \infty$ and $\operatorname{ran}(T - \lambda_j I)^{d+1}$ is closed $(j = 1, 2, \ldots, n)$, so $a((T - \lambda_1)(T - \lambda_2) \cdots (T - \lambda_n)) = s < \infty$ and $\operatorname{ran}((T - \lambda_1)(T - \lambda_2) \cdots (T - \lambda_n))^{s+1}$ is closed. Since g(T) is bounded below, $a(h(T)) = t < \infty$ and $\operatorname{ran}((h(T)^{t+1}))$ is closed. Therefore h(T) is left Drazin invertible, and so $0 \notin \sigma_{lD}(h(T))$. Hence $\mu \notin \sigma_{lD}(f(T))$. It follows from Cases I and II that $\sigma_{lD}(f(T)) \subseteq f(\sigma_{lD}(T))$.

Conversely, suppose that $\lambda \notin \sigma_{lD}(f(T))$. Then $f(T) - \lambda I$ is left Drazin invertible. We again consider two cases.

Case I. Suppose that $f(T) - \lambda I$ is bounded below. Then $\lambda \notin \sigma_a(f(T)) = f(\sigma_a(T))$, and hence $\lambda \notin f(\sigma_{lD}(T))$.

Case II. Suppose that $\lambda \in \sigma_a(f(T)) \setminus \sigma_{lD}(f(T))$. Write

$$f(T) = c(T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_n I)g(T),$$

where $c, \lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$ and g(T) is bounded below. Since $f(T) - \lambda I$ is left Drazin invertible, $f(T) = c(T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_n I)g(T)$ has finite ascent say r and $\operatorname{ran}(f(T))^{r+1}$ is closed. Hence $T - \lambda_j I$ has finite ascent say r_j and $\operatorname{ran}(T - \lambda_j)^{r_j+1}$ is closed for every $j = 1, 2, \ldots, n$. Therefore each $T - \lambda_j I$ is left Drazin invertible, and so $\lambda_1, \ldots, \lambda_n \notin \sigma_{ID}(T)$.

We now wish to prove that $\lambda \notin f(\sigma_{lD}(T))$. Assume not; then there exists $\mu \in \sigma_{aD}(T)$ such that $f(\mu) = \lambda$. Since $g(\mu) \neq 0$, we must have $\mu = \mu_j$ for some j = 1, 2, ..., n, which implies $\mu_j \in \sigma_{lD}(T)$, a contradiction. Hence $\lambda \notin f(\sigma_{lD}(T))$, and so $f(\sigma_{lD}(T)) \subseteq \sigma_{lD}(f(T))$. This completes the proof. \Box

90

Theorem 3.9. Suppose T or T^* is an algebraically (p, k)-quasihyponormal operator. Then $f(\sigma_{SBF^-_+}(T)) = \sigma_{SBF^-_+}(f(T))$ for all $f \in Hol(\sigma(T))$.

Proof. Let $\lambda \notin \sigma_{SBF_+^-}(f(T))$. Then $f(T) - \lambda I \in SBF_+^-(T)$ and

$$f(T) - \lambda I = \prod_{j=1}^{m} (T - \lambda_j I)g(T)$$

where $\lambda_1, \ldots, \lambda_m \in \mathbb{C}$ and g(T) is invertible. Since $f(T) - \lambda I$ is an upper semi-*B*-Fredholm operator, it follows from [7, Theorem 3.2] that $T - \lambda_j I$ is upper semi-*B*-Fredholm for each $1 \leq j \leq m$. Hence

$$i(f(T) - \lambda I) = \sum_{j=1}^{m} i(T - \lambda_j I) \le 0.$$

Now from [7, Remark A] there exists some integer k such that for each, $1 \leq j \leq m, T - (\lambda_j + \frac{1}{k})I$ is an upper semi-B-Fredholm operator and $i(T - (\lambda_j + \frac{1}{k})I) = i(T - \lambda_j I)$. If T is an algebraically (p, k)-quasihyponormal operator, then it follows from Proposition 1.1 that $i(T - \lambda_j I) \leq 0$. Hence $\lambda \notin f(\sigma_{SBF_{+}}^{-}(T))$.

Now if T^* is an algebraically (p, k)-quasihyponormal operator, then we have from Proposition 1.1 that $i(T - \lambda_j I) = 0$ and so $T - \lambda_j I$ is a *B*-Fredholm operator of index 0. Thus $\lambda \notin f(\sigma_{SBF_{+}}(T))$.

For the converse inclusion. Let $\lambda \in \sigma_{SBF^-_+}(f(T)) \setminus f(\sigma_{SBF^-_+}(T))$. Suppose that

$$f(T) - \lambda I = \prod_{j=1}^{m} (T - \lambda_j I)g(T),$$

where $\lambda_1, \ldots, \lambda_m \in \mathbb{C} \setminus \sigma_{SBF^-_+}(T)$ and g(T) is invertible. Hence $f(T) - \lambda I$ is upper semi-*B*-Fredholm and $i(f(T) - \lambda I) = \sum_{j=1}^m i(T - \lambda_j I) \leq 0$. Therefore $\lambda \notin \sigma_{SBF^-_+}(f(T))$, so a contradiction.

Lemma 3.10. Suppose that $T \in \mathbf{B}(\mathcal{H})$ is algebraically (p, k)-quasihyponormal. Then for any $f \in Hol(\sigma(T))$ we have

$$\sigma_a(f(T)) \setminus E^a(f(T)) = f(\sigma_a(T)) \setminus E^a(T)).$$

Proof. Let $\lambda \in \sigma_a(f(T)) \setminus E^a(f(T))$. Then $\lambda \in \sigma_a(f(T)) = f(\sigma_a(T))$. We distinguish two cases:

Case I. $\lambda \notin iso(f(\sigma_a(T)))$, then there is an infinite sequence $\{\eta_n\}_{n\in\mathbb{N}} \in \sigma_a(T)$ such that $\lambda = f(\eta_0)$ and $\eta_n \longrightarrow \eta_0$. But $f \in Hol(\sigma(T))$, therefore $f(\eta_n) \longrightarrow f(\eta_0) = \lambda$ and $\lambda \in f(\sigma_a(T) \setminus E^a(T))$.

Case II. $\lambda \in iso(f(\sigma_a(T)))$, since $\lambda \notin E^a(f(T))$ then λ is not an eigenvalue of f(T). Then

$$f(T) - \lambda I = (T - \eta_1 I)^{t_1} (T - \eta_2 I)^{t_2} \cdots (T - \eta_m I)^{t_m} g(T),$$

where η_1, \ldots, η_m are scalars and g is invertible. Since λ is not an eigenvalue of f(T), then for each $j \in \{1, \ldots, m\}$, η_j is not an eigenvalue of T. Hence $\eta_j \in \sigma_a(T) \setminus E^a(T)$ and $\lambda = f(\eta_j) \in f(\sigma_a(T) \setminus E^a(T))$.

Conversely, Let $\lambda \in f(\sigma_a(T) \setminus E^a(T))$ then $\lambda \in \sigma_a(f(T)) = f(\sigma_a(T))$. Assume that $\lambda \in E^a(f(T))$. Then

$$f(T) - \lambda I = (T - \eta_1 I)^{t_1} (T - \eta_2 I)^{t_2} \cdots (T - \eta_m I)^{t_m} g(T),$$

where η_1, \ldots, η_m are scalars and g is invertible. If $\eta_j \in \sigma_a(T)$, then $\eta_j \in iso(\sigma_a(T))$. Since T is a-isoloid, η_j is an eigenvalue of T. Hence $\eta_j \in E^a(T)$. So $\lambda = f(\eta_j)$ this leads a contraction to the fact that $\lambda \in f(\sigma_a(T) \setminus E^a(T))$. \Box

Theorem 3.11. Let $T^* \in \mathbf{B}(\mathcal{H})$ be algebraically (p, k)-quasihyponormal. Then generalized a-Weyl's theorem holds for f(T), for every $f \in Hol(\sigma(T))$.

Proof. If T^* is an algebraically (p, k)-quasihyponormal operator, then T^* has SVEP $\sigma(T) = \sigma_a(T)$ and consequently $E(T) = E^a(T)$.

Let $\lambda \notin \sigma_{SBF_{+}^{-}}(T)$ be given. Then $T - \lambda$ is semi-*B*-Fredholm and $i(T - \lambda) \leq 0$. Then Proposition 1.1 implies that $i(T - \lambda) = 0$ and consequently $T - \lambda$ is *B*-Weyl's. Hence $\lambda \notin \sigma_{B\omega}(T)$. Hence it follows from [37, Theorem3.1] that $\lambda \in E(T) = E^{a}(T)$.

For the converse, let $\lambda \in E^a(T)$. Then $\lambda \in iso\sigma_a(T)$. Since T^* has SVEP, we have $\sigma(T) = \sigma_a(T)$. Hence $\overline{\lambda} \in \sigma(T^*)$. Now we represent T^* as the direct sum $T^* = T_1 \oplus T_2$, where $\sigma(T_1) = \{\overline{\lambda}\}$ and $\sigma(T_2) = \sigma(T) \setminus \{\overline{\lambda}\}$. Since $T \in \Upsilon(\mathcal{H})$ then so does T_1 , and so we have two cases:

Case I. $(\overline{\lambda} = 0)$: then T_1 is quasinilpotent. Hence it follows that T_1 is nilpotent. Since T_2 is invertible, Then T^* is *B*-Weyl's.

Case II. $(\overline{\lambda} \neq 0)$: Since $\sigma(T_1) = \{\overline{\lambda}\}$, then $T_1 - \overline{\lambda}$ is nilpotent and $T_2 - \overline{\lambda}$ is invertible, it follows from [37, Theorem 3.1] that $T^* - \overline{\lambda}$ is *B*-Weyl's. Thus in any case $\lambda \in \sigma_a(T) \setminus \sigma_{SBF_1^-}(T)$.

Let $f \in Hol(\sigma(T))$. Since T is a-isoloid, then it follows from Theorem 3.9 that $\sigma_{SBF^-_+}(f(T)) = f(\sigma_{SBF^-_+}(T)) = f(\sigma_a(T) \setminus E^a(T)) = \sigma_a(f(T)) \setminus E^a(f(T))$. Thus generalized a-Weyl's theorem holds for f(T).

Corollary 3.12. Let $T^* \in \mathbf{B}(\mathcal{H})$ be an algebraically (p,k)-quasihyponormal. Then $E^a(T) = \pi^a(T)$.

Proof. If T^* is an algebraically (p, k)-quasihyponormal operator, then $\sigma_a(T) \setminus \sigma_{SBF^-_+}(T) = E^a(T)$. Let $\lambda \in E^a(T)$. Then λ is isolated in $\sigma_a(T)$, and $\lambda \notin \sigma_{SBF^-_+}(T)$. So $T - \lambda I$ is in $SBF^-_+(\mathcal{H})$. It follows from [11, Theorem 2.8] that λ is a left pole of T, and so $\lambda \in \pi^a(T)$. As we have always $\pi^a(T) \subset E^a(T)$, then $E^a(T) = \pi^a(T)$.

Definition 3.13. Let $T \in \mathbf{B}(\mathcal{H})$ and let $k \in \mathbb{N}$. Then T has a uniform descent for $n \geq k$ if $\mathcal{R}(T) + \ker(T^n) = \mathcal{R}(T) + \ker(T^k)$ for all $n \geq k$. If, in addition, $\mathcal{R}(T) + \ker(T^k)$ is closed, then T is said to have a topological uniform descent for $n \geq k$.

An operator $T \in \mathbf{B}(\mathcal{H})$ is called *a*-polaroid if $iso\sigma_a(T) \subset \pi^a(T)$. In general, if T is *a*-polaroid, then it is polaroid. However, the converse is not true. Consider the following example.

Example 3.14. Let R be the unilateral right shift on $\ell^2(\mathbb{N})$ and define

 $U(x_1, x_2, \ldots) := (0, x_2, x_3, \ldots)$ for all $x_n \in \ell^2(\mathbb{N})$.

Clearly, U is a quasi-nilpotent operator. Let $T := R \oplus U$. We have $\sigma(T) = \mathbf{D}$, \mathbf{D} is the unit disc of \mathbb{C} , so $iso(\sigma(T)) = E_0(T) = \emptyset$ and hence T is polaroid. Moreover, $\sigma_a(T) = \partial \mathbf{D} \cup \{0\}$. Since $\sigma_a(T)$ does not cluster at 0, then T has the SVEP at 0, as well as at the points $\lambda \notin \sigma_a(T)$. Since T has SVEP at all points $\lambda \in \partial \sigma(T)$ it then follows that T has SVEP. Finally, $\sigma_{SBF_+}(T) = \partial \sigma(T)$ so $\sigma_a(T) \setminus \sigma_{SBF_+}(T) = \{0\}$. Hence T is not a-polaroid.

Theorem 3.15. Let $T^* \in \mathbf{B}(\mathcal{H})$ be an algebraically (p, k)-quasihyponormal operator. Then T is a-polaroid.

Proof. Suppose T^* is algebraically (p, k)-quasihyponormal. Since T^* has the SVEP, then $\sigma_a(T) = \sigma(T)$. Let $\lambda \in iso(\sigma_a(T)) = iso(\sigma(T))$. Since *a*-Weyl's theorem holds for T by Theorem 3.6, then λ is a left pole of finite rank of T. Therefore $T - \lambda I$ has a finite ascent $k = a(T - \lambda I)$ and $\mathcal{R}(T - \lambda I)^{k+1}$ is closed. Since $T - \lambda I$ is also an operator of topological uniform descent for $n \geq 0$, then it follows from [9, Lemma 2.8] that $T - \lambda I$ is injective. So $a(T - \lambda I) = 0$ and $\mathcal{R}(T - \lambda I)$ is closed. Since $\pi^a(T) = E^a(T)$, we see that λ is a left pole of T. That is, all isolated points of the approximate point spectrum of T are left poles of the resolvent of T.

References

- [1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
- [2] P. Aiena and O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 791–807.
- [3] M. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasg. Math. J. 48 (2006), no. 1, 179–185.
- [4] S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273–279.
- [5] _____, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529–544.
- [6] M. Berkani, On a class of Quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), no. 2, 244–249.
- [7] _____, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1717–1723.
- [8] _____, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), no. 2, 596–603.
- [9] _____, On the equivalence of Weyl theorem and generalized Weyl theorem, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 1, 103–110.

- [10] M. Berkani and A. Arroud, Generalized weyl's theorem and hyponormal operators, J. Aust. Math. Soc. 76 (2004), no. 2, 1–12.
- [11] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), no. 1-2, 359–376.
- [12] M. Berkani and M. Sarih, An Atkinson-type theorem for B-Fredholm operators, Studia Math. 148 (2001), no. 3, 251–257.
- [13] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288.
- [14] R. E. Curto and Y. M. Han, Weyl's theorem for algebraically paranormal operators, Integral Equations Operator Theory 47 (2003), no. 3, 307–314.
- [15] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978.
- [16] B. P. Duggal and S. V. Djordjevic, Generalized Weyl's theorem for a class of operators satisfying a norm condition, Proc. Roy. Irish Acad. Sect. A 104A (2004), no. 1, 271–277.
- [17] _____, Generalised Weyl's theorem for a class of operators satisfying a norm condition, Math. Proc. R. Ir. Acad. 104A (2004), no. 1, 75–81.
- [18] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61–69.
- [19] R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988.
- [20] S. H. Lee and W. Y. Lee, On Weyl's theorem II, Math. Japon. 43 (1996), no. 3, 549–553.
- [21] A.-H. Kim and S. U. Yoo, Weyl's theorem for isoloid and reguloid operators, Commun. Korean Math. Soc. 14 (1999), no. 1, 179–188.
- [22] I. H. Kim, On (p,k) -quasihyponormal operators, Math. Inequal. Appl. 7 (2004), no. 4, 629–638.
- [23] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3417– 3424.
- [24] M. Lahrouz and M. Zohry, Weyl type theorems and the approximate point spectrum, Irish Math. Soc. Bull. 55 (2005), 41–51.
- [25] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323–336.
- [26] S. Mecheri, Weyl's theorem for algebraically (p, k)-quasihyponormal operators, Georgian Math. J. 13 (2006), no. 2, 307–313.
- [27] V. Rakočevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10, 915–919.
- [28] _____, Semi-Fredholm operators with finite ascent or descent and perturbation, Proc. Amer. Math. Soc. 122 (1995), no. 12, 3823–3825.
- [29] _____, Semi-Browder operators and perturbations, Studia Math. 122 (1997), no. 2, 131–137.
- [30] _____, Operators Obeying a-Weyl's theorem, Publ. Math. Debrecen 55 (1999), no. 3-4, 283–298.
- [31] M. H. M. Rashid, M. S. M. Noorani, and A. S. Saari, Weyl's type theorems for quasi-Class A operators, J. Math. Stat. 4 (2008), no. 2, 70–74.
- [32] _____, Generalized Weyl's theorem for log-hyponormal, Malaysian J. Math. Soc. 2 (2008), no. 1, 73–82.
- [33] C. Schmoeger, On operators T such that Weyl's theorem holds for f(T), Extracta Math. **13** (1998), no. 1, 27–33.
- [34] K. Tanahashi, A. Uchiyama, and M. Cho, Isolated point of spectrum of (p,k)quasihyponormal operators, Linear Algebra Appl. **382** (2004), no. 1, 221–229.
- [35] A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18–49.
- [36] H. Weyl, Uber beschrankte quadratische Formen, deren Differenze vollsteting ist, Rend. Circ. Math. Palermo 27 (1909), 373–392.

[37] H. Zguitti, A note on generalized Weyl's theorem, J. Math. Anal. Appl. 316 (2006), no. 1, 373–381.

Mohammad Hussein Mohammad Rashid Department of Mathematics& Statistics Faculty of Science Mu'tah University P.O.Box(7), Al-Karak-Jordan *E-mail address*: malik_okasha@yahoo.com

Mohd Salmi Mohd Noorani School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia 43600 UKM, Selangor Darul Ehsan, Malsysia *E-mail address:* msn@pkrisc.cc.ukm.my