Introduction: In Oriental medicine, the status of tongue is the important indicator to diagnose one's health, because it represents physiological and clinicopathological changes of inner parts of the body. The method of tongue diagnosis is not only convenient but also non-invasive, so tongue diagnosis is most widely used in Oriental medicine. By the way, since tongue diagnosis is affected by examination circumstances a lot, its performance depends on a light source, degrees of an angle, a medical doctor's condition etc. Therefore, it is not easy to make an objective and standardized tongue diagnosis. In order to solve this problem, in this study, we tried to design a discriminant function for thick and thin coating with color vectors of preprocessed image. Method: 52 subjects, who were diagnosed as white-coated tongue, were involved. Among them, 45 subjects diagnosed as thin coating and 7 subjects diagnosed as thick coating by oriental medical doctors, and then their tongue images were obtained from a digital tongue diagnosis system. Using those acquired tongue images, we implemented two steps: Preprocessing and image analyzing. The preprocessing part of this method includes histogram equalization and histogram stretching at each color component, especially, intensity and saturation. It makes the difference between tongue substance and tongue coating was more visible, so that we can separate tongue coating easily. Next part, we analyzed the characteristic of color values and found the threshold to divide tongue area into coating area. Then, from tongue coating image, it is possible to extract the variables that were important to classify thick and thin coating. Result : By statistical analysis, two significant vectors, associated with G, were found, which were able to describe the difference between thick and thin coating very well. Using these two variables, we designed the discriminant function for coating classification and examined its performance. As a result, the overall accuracy of thick and thin coating classification was 92.3%. Discussion : From the result, we can expect that the discriminant function is applicable to other coatings in a similar way. Also, it can be used to make an objective and standardized diagnosis.