• 제목/요약/키워드: variable exponents

검색결과 12건 처리시간 0.023초

Existence Results for an Nonlinear Variable Exponents Anisotropic Elliptic Problems

  • Mokhtar Naceri
    • Kyungpook Mathematical Journal
    • /
    • 제64권2호
    • /
    • pp.271-286
    • /
    • 2024
  • In this paper, we prove the existence of distributional solutions in the anisotropic Sobolev space $\mathring{W}^{1,\overrightarrow{p}(\cdot)}(\Omega)$ with variable exponents and zero boundary, for a class of variable exponents anisotropic nonlinear elliptic equations having a compound nonlinearity $G(x, u)=\sum_{i=1}^{N}(\left|f\right|+\left|u\right|)^{p_i(x)-1}$ on the right-hand side, such that f is in the variable exponents anisotropic Lebesgue space $L^{\vec{p}({\cdot})}(\Omega)$, where $\vec{p}({\cdot})=(p_1({\cdot}),{\ldots},p_N({\cdot})){\in}(C(\bar{\Omega},]1,+{\infty}[))^N$.

WEAK HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENTS AND APPLICATIONS

  • Souad Ben Seghier
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.33-69
    • /
    • 2023
  • Let α ∈ (0, ∞), p ∈ (0, ∞) and q(·) : ℝn → [1, ∞) satisfy the globally log-Hölder continuity condition. We introduce the weak Herz-type Hardy spaces with variable exponents via the radial grand maximal operator and to give its maximal characterizations, we establish a version of the boundedness of the Hardy-Littlewood maximal operator M and the Fefferman-Stein vector-valued inequality on the weak Herz spaces with variable exponents. We also obtain the atomic and the molecular decompositions of the weak Herz-type Hardy spaces with variable exponents. As an application of the atomic decomposition we provide various equivalent characterizations of our spaces by means of the Lusin area function, the Littlewood-Paley g-function and the Littlewood-Paley $g^*_{\lambda}$-function.

FINITE TIME BLOW UP OF SOLUTIONS FOR A STRONGLY DAMPED NONLINEAR KLEIN-GORDON EQUATION WITH VARIABLE EXPONENTS

  • Piskin, Erhan
    • 호남수학학술지
    • /
    • 제40권4호
    • /
    • pp.771-783
    • /
    • 2018
  • This paper, we investigate a strongly damped nonlinear Klein-Gordon equation with nonlinearities of variable exponent type $$u_{tt}-{\Delta}u-{\Delta}u_t+m^2u+{\mid}u_t{\mid}^{p(x)-2}u_t={\mid}u{\mid}^{q(x)-2}u$$ associated with initial and Dirichlet boundary conditions in a bounded domain. We obtain a nonexistence of solutions if variable exponents p (.), q (.) and initial data satisfy some conditions.

Anisotropic Variable Herz Spaces and Applications

  • Aissa Djeriou;Rabah Heraiz
    • Kyungpook Mathematical Journal
    • /
    • 제64권2호
    • /
    • pp.245-260
    • /
    • 2024
  • In this study, we establish some new characterizations for a class of anisotropic Herz spaces in which all exponents are considered as variables. We also provide a description of these spaces based on bloc decomposition. As an application, we investigate the boundedness of certain sublinear operators within these function spaces.

BOUNDEDNESS OF THE COMMUTATOR OF THE INTRINSIC SQUARE FUNCTION IN VARIABLE EXPONENT SPACES

  • Wang, Liwei
    • 대한수학회지
    • /
    • 제55권4호
    • /
    • pp.939-962
    • /
    • 2018
  • In this paper, we show that the commutator of the intrinsic square function with BMO symbols is bounded on the variable exponent Lebesgue spaces $L^{p({\cdot})}({\mathbb{R}}^n)$ applying a generalization of the classical Rubio de Francia extrapolation. As a consequence we further establish its boundedness on the variable exponent Morrey spaces $\mathcal{M_{p({\cdot}),u}$, Morrey-Herz spaces $M{\dot{K}}^{{\alpha}({\cdot}),{\lambda}}_{q,p({\cdot})}({\mathbb{R}}^n)$ and Herz type Hardy spaces $H{\dot{K}}^{{\alpha}({\cdot}),q}_{p({\cdot})}({\mathbb{R}}^n)$, where the exponents ${\alpha}({\cdot})$ and $p({\cdot})$ are variable. Observe that, even when ${\alpha}({\cdot}){\equiv}{\alpha}$ is constant, the corresponding main results are completely new.

DUALITIES OF VARIABLE ANISOTROPIC HARDY SPACES AND BOUNDEDNESS OF SINGULAR INTEGRAL OPERATORS

  • Wang, Wenhua
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.365-384
    • /
    • 2021
  • Let A be an expansive dilation on ℝn, and p(·) : ℝn → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. Let Hp(·)A (ℝn) be the variable anisotropic Hardy space defined via the non-tangential grand maximal function. In this paper, the author obtains the boundedness of anisotropic convolutional ��-type Calderón-Zygmund operators from Hp(·)A (ℝn) to Lp(·) (ℝn) or from Hp(·)A (ℝn) to itself. In addition, the author also obtains the duality between Hp(·)A (ℝn) and the anisotropic Campanato spaces with variable exponents.

THE BOUNDEDNESS OF BILINEAR PSEUDODIFFERENTIAL OPERATORS IN TRIEBEL-LIZORKIN AND BESOV SPACES WITH VARIABLE EXPONENTS

  • Yin Liu;Lushun Wang
    • 대한수학회보
    • /
    • 제61권2호
    • /
    • pp.529-540
    • /
    • 2024
  • In this paper, using the Fourier transform, inverse Fourier transform and Littlewood-Paley decomposition technique, we prove the boundedness of bilinear pseudodifferential operators with symbols in the bilinear Hörmander class $BS^{m}_{1,1}$ in variable Triebel-Lizorkin spaces and variable Besov spaces.

이중 경로 십진 부동소수점 가산기 설계 (Design of Dual-Path Decimal Floating-Point Adder)

  • 이창호;김지원;황인국;최상방
    • 전자공학회논문지
    • /
    • 제49권9호
    • /
    • pp.183-195
    • /
    • 2012
  • 본 논문에서는 동일한 크기의 지수를 갖는 십진 부동소수점 오퍼랜드의 가산 및 감산연산을 빠르게 하기 위해, 두 개의 데이터 경로를 가지는 십진 부동소수점 가산기를 제안한다. 제안된 십진 부동소수점 가산기는 L. K. Wang의 오퍼랜드 정렬 계획을 사용하지만 오퍼랜드의 지수 크기가 같을 경우 정밀도를 보장하는 범위 내에서 속도 향상을 위해 고속의 데이터 경로를 통해 연산한다. 제안된 가산기의 성능 평가를 위해 Design Compiler에서 SMIC사의 $0.18{\mu}m$ CMOS 공정 테크놀로지 라이브러리를 이용하여 합성하였다. 합성 결과 면적은 L. K. Wang의 가산기와 비교하여 8.26% 증가하였지만 전체 임계경로의 지연시간이 10.54% 감소하였다. 또한 같은 크기의 지수를 가지는 오퍼랜드를 연산할 때는 임계경로보다 13.65% 단축된 경로에서 연산을 수행하는 것을 확인하였다. 제안한 십진 부동소수점 가산기 구조는 동일 크기의 지수를 가지는 오퍼랜드의 비중이 2% 이상일 때 L. K. Wang의 가산기 구조 대비 효용성이 높다.

INFINITELY MANY SMALL SOLUTIONS FOR THE p(x)-LAPLACIAN OPERATOR WITH CRITICAL GROWTH

  • Zhou, Chenxing;Liang, Sihua
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.137-152
    • /
    • 2014
  • In this paper, we prove, in the spirit of [3, 12, 20, 22, 23], the existence of infinitely many small solutions to the following quasilinear elliptic equation $-{\Delta}_{p(x)}u+{\mid}u{\mid}^{p(x)-2}u={\mid}u{\mid}^{q(x)-2}u+{\lambda}f(x,u)$ in a smooth bounded domain ${\Omega}$ of ${\mathbb{R}}^N$. We also assume that $\{q(x)=p^*(x)\}{\neq}{\emptyset}$, where $p^*(x)$ = Np(x)/(N - p(x)) is the critical Sobolev exponent for variable exponents. The proof is based on a new version of the symmetric mountainpass lemma due to Kajikiya [22], and property of these solutions are also obtained.