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Abstract. In this study, we establish some new characterizations for a class of anisotropic
Herz spaces in which all exponents are considered as variables. We also provide a descrip-
tion of these spaces based on bloc decomposition. As an application, we investigate the
boundedness of certain sublinear operators within these function spaces.

1. Introduction and Preliminaries

The aim of this paper is to establish a characterization of the anisotropic variable
Herz spaces K̇

α(·),q(·)
p(·) (A;Rn) associated with non-isotropic dilations A on Rn in

terms of block decompositions. All exponents in the considered spaces are variable.
First, we define the set of variable exponents as follows:

P0 (Rn) := {p measurable: p (·) : Rn → [c,∞) for some c > 0} .

The subset of variable exponents with a range of [1,∞) is denoted by P(Rn).
For p ∈ P0(Rn), we introduce the notation

p− = ess inf
x∈Rn

p(x), p+ = ess sup
x∈Rn

p(x).

Now we give the definition of variable Lebesgue spaces.
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Definition 1.1. Let p ∈ P0(Rn). The Lebesgue space Lp(·)(Rn), with a variable
exponent is the class of all measurable functions f on Rn such that the modular

ϱp(·)(f) :=

∫
Rn

|f(x)|p(x) dx

is finite. This space is a quasi-Banach function space equipped with the norm

∥f∥p(·) := inf

{
µ > 0 : ϱp(·)(

1

µ
f) ⩽ 1

}
.

If p(x) ≡ p is constant, then Lp(·)(Rn) = Lp(Rn) is the classical Lebesgue space.
We refer to the monographs [3] and [4] for further details and references on recent
developments on variable Lebesgue spaces.

We present the most important condition on the exponent in the study of vari-
able exponent spaces.

Definition 1.2. We say that a function g : Rn → R is locally log-Hölder continuous
if there exists a constant clog > 0 such that

|g(x)− g(y)| ⩽ clog
log(e+ 1/|x− y|)

for all x, y ∈ Rn. In particular, if

|g(x)− g(0)| ⩽ clog
log(e+ 1/|x|)

for all x ∈ Rn, then we say that g is log-Hölder continuous at the origin (or has a
log decay at the origin). Additionally, if there exist g∞ ∈ R and clog > 0 such that

|g(x)− g∞| ⩽ clog
log(e+ |x|)

for all x ∈ Rn, then we say that g is log-Hölder continuous at infinity (or has a log
decay at infinity).

For some examples of a function locally log-Hölder continuous, see E. Nakai and
Y. Sawano [7, Example 1.3].

The sets P
log
0 (Rn) and Plog

∞ (Rn) consist of all exponents p ∈ P(Rn) that have a
log decay at the origin and at infinity, respectively. The set Plog(Rn) is used for all
those exponents p ∈ P(Rn) that are locally log-Hölder continuous and have a log
decay at infinity, with p∞ := lim|x|→∞ p(x).

It is well known that if p ∈ Plog(Rn), then p′ ∈ Plog(Rn), where p′ denotes the
conjugate exponent of p given by 1/p(·) + 1/p′(·) = 1.
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Definition 1.3. Let p, q ∈ P0(Rn). The mixed Lebesgue-sequence space ℓq(·)(Lp(·))
is defined on sequences of Lp(·)-functions by the modular

ϱℓq(·)(Lp(·))((fv)v) =
∑
v

inf

{
λv > 0 : ϱp(·)(

fv

λ
1/q(·)
v

) ⩽ 1

}
.

A (quasi)-norm is defined from this as usual:

(1.4) ∥(fv)v∥ℓq(·)(Lp(·))
= inf

{
γ > 0 : ϱℓq(·)(Lp(·))(

1

γ
(fv)v) ⩽ 1

}
.

If q(·) satisfies q+ < ∞, then we can replace (1.4) by the simpler expression

ϱℓq(·)(Lp(·))((fv)v) =
∑
v

∥∥∥|fv|q(·)∥∥∥ p(·)
q(·)

.

If E ⊂ Rn is a measurable set, then |E| stands for the (Lebesgue) measure of
E and χE denotes its characteristic function.

In the following, we introduce some basic notation and definitions of non-
isotropic spaces associated with general expansive dilations.

Definition 1.5. A dilation is n × n real matrix A, such that all eigenvalues λ of
A satisfy |λ| > 1. We suppose λ1, λ2, ..., λn are eigenvalues of A so that 1 < |λ1| ⩽
... ⩽ |λn|. Let λ−, λ+ be any numbers so that

1 < λ− < |λ1| ⩽ ... ⩽ |λn| < λ+.

A set △ ⊂ Rn is said to be an ellipsoid if

△ = {x ∈ Rn : |Px| < 1}

for some nondegenerate n× n matrix P , where | · | denotes the Euclidean norm in
Rn.

In [2, Lemma 2.2], it is demonstrated that for a dilation A, there exists an
ellipsoid △ and r > 1 satisfying

(1.6) △ ⊂ r△ ⊂ A△, where |△| = 1.

For convenience, we set
Bk = Ak△ for k ∈ Z,

then, by (1.6) we obtain

Bk ⊂ rBk ⊂ Bk+1, |Bk| = bk,

where b = |detA| > 1.
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Definition 1.7. A homogeneous quasi-norm associated with a dilation A is a mea-
surable mapping σA : Rn → [0,∞), so that
• σA (x) > 0 for x ̸= 0,
• σA (Ax) = bσA (x) for all x ∈ Rn,
• there is c > 0 so that σA (x+ y) ⩽ c (σA (x) + σA (y)) for all x, y ∈ Rn.

For a fixed dilation A, we define the “canonical” quasi-norm σ.

Definition 1.8. Define the step homogeneous quasi-norm σ on Rn induced by the
dilation A as

σ (x) =

{
bj if x ∈ Bj+1\Bj , j ∈ Z
0 if x = 0.

For any x, y ∈ Rn, we have

σ (x+ y) ⩽ bθ (σ (x) + σ (y)) ,

where θ is the smallest integer so that

2B0 ⊂ AθB0 = Bθ.

Also, we use the following notation

Rk := Bk \Bk−1 and χk = χRk
, k ∈ Z.

Now, we define the anisotropic Herz spaces with variable exponent.

Definition 1.9. Let p, q ∈ P0(Rn) and α : Rn → R with α ∈ L∞(Rn). The
homogeneous anisotropic Herz space K̇

α(·),q(·)
p(·) (A;Rn) associated with the dilation

A is defined as the set of all f ∈ L
p(·)
loc (Rn \ {0}) such that

∥f∥
K̇

α(·),q(·)
p(·) (A;Rn)

:=
∥∥∥(bkα(·)f χk

)
k∈Z

∥∥∥
ℓq(·)(Lp(·))

< ∞.

The non-homogeneous anisotropic Herz space K
α(·),q(·)
p(·) (A;Rn) associated with the

dilation A consists of all f ∈ L
p(·)
loc (Rn) such that

∥f∥
K

α(·),q(·)
p(·) (A;Rn)

:= ∥f χB0
∥p(·) +

∥∥∥(bkα(·)f χk

)
k⩾1

∥∥∥
ℓq(·)(Lp(·))

< ∞.

Clearly, K̇
0,p(·)
p(·) (A;Rn) = K

0,p(·)
p(·) (A;Rn) = Lp(·) (A;Rn). Recall that the

anisotropic Herz spaces K
α(·),q
p(·) (A;Rn) and K̇

α(·),q
p(·) (A;Rn), where q is constant,

are introduced by H. Wang in [8]. A detailed discussion of the properties of these
spaces may be found in [9] and [10].

By the same argument used in [6], we can establish the next result, which will
be useful in the sequel.
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Proposition 1.10. Let α ∈ L∞(Rn) and p, q ∈ P0(Rn). If α and q are log-Hölder
continuous at infinity, then

K
α(·),q(·)
p(·) (A;Rn) = Kα∞,q∞

p(·) (A;Rn) .

Additionally, if α and q have a log decay at the origin, then

∥f∥
K̇

α(·),q(·)
p(·) (A;Rn)

≈
( −1∑

k=−∞

∥bkα(0)f χk∥q(0)p(·)

)1/q(0)
+
( ∞∑

k=0

∥bkα∞f χk∥q∞p(·)
)1/q∞

.

Recall that the expression f ≲ g means that f ⩽ cg for some independent
constant c (and non-negative functions f and g), and f ≈ g means f ≲ g ≲ f .

2. Some Technical Lemmas

In this section, we introduce several lemmas used to prove the main theorems
in sections 3 and 4. In the following, we denote by c as a generic positive constant,
i.e. a constant whose value may change from line to line.

The following lemma plays an important role in the proof of the main results.

Lemma 2.1. Let p ∈ P(Rn) and Rk := Bk \ Bk−1, k ∈ Z. If bk ⩾ 2−n and p is
log-Hölder continuous at infinity, then we have

∥χk∥p(·) ≈ b
k

p∞ ,

with the implicit constants independent of k.

Proof. Our proof based on an idea from [1, Lemma 2.2] where the case of the
Euclidean ball was studied. First, we have

∥χk∥p(·) ≈ b
k

p∞ ,

which is equivalent to
∥b−

k
p∞ χk∥p(·) ≈ 1.

In particular, we will show that

ϱp(·)(b
− k

p∞ χk) :=

∫
Rn

|b−
k

p∞ χk (x) |p(y) dy

= b−k

∫
Rk

b
k
( p∞−p(y)

p∞

)
dy ≲ c,(2.2)

for some constant c > 0. For that, it is sufficient to prove that b
k
( p∞−p(y)

p∞

)
is

bounded, i.e. k
(p∞−p(y)

p∞

)
log b ⩽ c for all y ∈ Rk. Since p is log-Hölder continuous

at infinity, then (2.2) is bounded by

(2.3) b−k| p(y)−p∞
p∞ | ≲ b−k 1

log(e+|y|) ≲ b−k/ log|y|, y ∈ Rk.
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We can distinguish two cases as follows:
Case 1: For every integer k ⩾ 0, due to [2, Lemma 3.2] and Definition 1.8, we
deduce that

bk log λ−/ log b ≲ |y| ≲ ϱ(x)log λ+/ log b = bk log λ+/ log b for k ⩾ 0,

for all y ∈ Rk. This implies that (2.3) is bounded by

b
−k

k log(b)(log λ+/ log b) = e−
log λ+
log b ≲ c.

Case 2: Considering the case
[
−n log 2

log b

]
⩽ k ⩽ −1, i.e. 2−n ⩽ bk < 1, we have (2.3)

bounded by

−k

∣∣∣∣p(y)− p∞
p∞

∣∣∣∣ log b ⩽ |p(y)− p∞| log 1

bk

⩽ 2np+ log 2

≲ c.

In either case, we obtain that (2.2) is bounded by

b−k

∫
Rk

dy ≲ c.

Now, we show that b
k

p∞ ≲ ∥χk∥p(·). This is a consequence of Hölder’s inequality

and the estimate ∥χk∥p′(·) ≲ b
k

p′∞ which was already proved. In fact, we have

b
k

p∞ = b
k

p∞ −k

∫
Rn

χk(y)dy ⩽ 2b
− k

p′∞ ∥χk∥p(·)∥χk∥p′(·) ≲ ∥χk∥p(·).

This finishes the proof.

Remark 2.4. It is known that for p ∈ Plog, we have

∥χB∥p(·)∥χB∥p′(·) ≈ |B|.

Also,
∥χB∥p(·) ≈ |B|

1
p(x) , x ∈ B,

for small balls B ⊂ Rn and
∥χB∥p(·) ≈ |B|

1
p∞

for large balls (|B| ⩾ 1), with constants only depending on the log-Hölder constant
of p. See, for example, [3, Corollary 4.5.9].

The next lemma is a Hardy-type inequality which is easy to prove.
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Lemma 2.5 ([5]). Let γ > 1, κ > 0 and 0 < q ⩽ ∞. Let {εk}k∈Z be a sequence of
positive real numbers, such that∥∥{εk}k∈Z

∥∥
ℓq

= I < ∞.

Then, the sequences{
δk : δk =

∑
j⩽k

γ−(k−j)κεj

}
k∈Z

and
{
ηk : ηk =

∑
j⩾k

γ−(j−k)κεj

}
k∈Z

belong to ℓq, and ∥∥{δk}k∈Z
∥∥
ℓq

+
∥∥{ηk}k∈Z

∥∥
ℓq

⩽ c I,

with c > 0 only depending on γ and q.

The following lemma presents the Hölder inequality in Lp(·)(Rn).

Lemma 2.6 ([3]). Let p ∈ P(Rn). Then, there exists a constant c such that for all
f ∈ Lp(·)(Rn) and g ∈ Lp′(·)(Rn), f · g ∈ L1(Rn), and

∥f · g∥1 ⩽ c ∥f∥p(·) ∥g∥p′(·) .

3. Bloc Decomposition of Anisotropic Variable Herz Spaces

Now, we establish characterizations of the spaces K̇
α(·),q(·)
p(·) (A;Rn) and

K
α(·),q(·)
p(·) (A;Rn) in terms of central bloc decompositions, which will be convenient

for the study of the boundedness of operators on these spaces.
Let us first recall the definition of bloc decomposition.

Definition 3.1. Let α ∈ L∞(Rn), be log-Hölder continuous, both at the origin and
at infinity and p ∈ P(Rn). A function ak is said to be a central (α(·), p(·))-bloc, if
(i) supp ak = {x ∈ Rn : ak (x) ̸= 0} ⊂ Bk.
(ii) ∥ak∥p(·) ⩽ b−kα(0), k < 0.

(iii) ∥ak∥p(·) ⩽ b−kα∞ , k ⩾ 0.

A function ak on Rn is said to be a central (α(·), p(·))-bloc of restricted type, if
it satisfies the condition (iii) and supp ak ⊂ Bk, k ⩾ 0.

Remark 3.2. If α and p are constants, then we recover the classical case.

One of the main results of this paper will be the following theorem. It generalizes
Theorem 2.3 of H. Wang [8] by taking q as a constant.

Theorem 3.3. Let α ∈ L∞(Rn), p ∈ Plog(Rn) and q ∈ P0(Rn). If α and q are
log-Hölder continuous, both at the origin and at infinity with α(0), α∞ > 0, then
the following two statements are equivalentes
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(i) f ∈ K̇
α(·),q(·)
p(·) (A;Rn)

(ii) f can be represented by

(3.4) f (x) =

∞∑
k=−∞

βkak (x) ,

where βk ⩾ 0, each ak is a central (α(·), p(·))-block with support contained in Bk

and ( −1∑
k=−∞

|βk|q(0)
) 1

q(0)

+
( ∞∑

k=0

|βk|q∞
) 1

q∞
⩽ c ∥f∥

K̇
α(·),q(·)
p(·) (A;Rn)

.

Moreover, the norms ∥f∥
K̇

α(·),q(·)
p(·) (A;Rn)

and

inf

(( −1∑
k=−∞

|βk|q(0)
) 1

q(0)

+
( ∞∑

k=0

|βk|q∞
) 1

q∞

)

are equivalent, where the infimum is taken over all decompositions of f as in (3.4).

Proof. The idea of the proof is borrowed from [5], where the variable Herz-type
Hardy spaces case is studied.

First, we show that (i) implies (ii). For every f ∈ K̇
α(·),q(·)
p(·) (A;Rn), we have

f (x) =

∞∑
k=−∞

f (x)χk (x)

=

∞∑
k=−∞

∥∥∥bkα(·)fχk

∥∥∥
p(·)

f (x)χk (x)∥∥bkα(·)fχk

∥∥
p(·)

=

∞∑
k=−∞

βkak (x) ,

where

βk =
∥∥∥bkα(·)fχk

∥∥∥
p(·)

and ak (x) =
f (x)χk (x)∥∥bkα(·)fχk

∥∥
p(·)

.

It is obvious that supp ak ⊂ Bk and

∥ak∥p(·) ≈
{

b−kα(0), if k ⩽ −1,
b−kα∞ , if k ⩾ 0.
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Thus, each ak is a central (α(·), p(·))- bloc with the support Bk and

( −1∑
k=−∞

|βk|q(0)
) 1

q(0)

+
( ∞∑
k=0

|βk|q∞
) 1

q∞

=
( −1∑
k=−∞

∥∥∥bkα(·)fχk

∥∥∥q(0)
p(·)

) 1
q(0)

+
( ∞∑
k=0

∥∥∥bkα(·)fχk

∥∥∥q∞
p(·)

) 1
q∞

≈
( −1∑
k=−∞

bkα(0)q(0) ∥fχk∥q(0)p(·)

) 1
q(0)

+
( ∞∑
k=0

bkα∞q∞ ∥fχk∥q∞p(·)
) 1

q∞

≈ ∥f∥
K̇

α(·),q(·)
p(·) (A;Rn)

.

It remains to prove that (ii) implies (i). For this purpose, let f(x) =
∑∞

k=−∞ βkak (x)
be a decomposition of f that satisfies the hypothesis (ii) of Theorem 3.3, by the
Minkowski inequality, we obtain

(3.5) ∥fχj∥p(·) ⩽
∞∑
k=j

|βk| ∥ak∥p(·) for each j ∈ Z.

From this, (3.5), and Proposition 1.10, it follows that ∥f∥
K̇

α(·),q(·)
p(·) (A;Rn)

is bounded

by

c
( −1∑
k=−∞

bkα(0)q(0)
( ∞∑

j=k

|βj | ∥aj∥p(·)
)q(0)) 1

q(0)

+c
( ∞∑
k=0

bkα∞q∞
( ∞∑

j=k

|βj | ∥aj∥p(·)
)q∞) 1

q∞
= I1 + I2.

Then we deal with I1 and I2, separatly. For I1, we divide the sum
∑∞

j=k · · · into
two parts,

−1∑
j=k

· · ·+
∞∑
j=0

· · ·.

I1 is bounded by Ia1 + Ib1, where

Ia1 := c
( −1∑
k=−∞

(
bkα(0)

−1∑
j=k

|βj | ∥aj∥p(·)
)q(0)) 1

q(0)

and

Ib1 := c
( −1∑
k=−∞

(
bkα(0)

∞∑
j=0

|βj | ∥aj∥p(·)
)q(0)) 1

q(0)

.
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Since 0 < α(0) < ∞, then by Lemma 2.5 (with γ = bα(0) > 1), we get

Ia1 ⩽ c
( −1∑
k=−∞

( −1∑
j=k

|βj |b−(j−k)α(0)
)q(0)) 1

q(0)

⩽ c
( −1∑
k=−∞

|βk|q(0)
) 1

q(0)

.

By Hölder’s inequality in ℓ1 with 1
q∞

+ 1
q′∞

= 1 and since α(0), α∞ > 0, we obtain

Ib1 ⩽ c
( −1∑
k=−∞

bkα(0)q(0)
( ∞∑

j=0

|βj |b−jα∞
)q(0)) 1

q(0)

⩽ c
( −1∑
k=−∞

bkα(0)q(0)
) 1

q(0)
( ∞∑

j=0

|βj |q∞
) 1

q∞
( ∞∑

j=0

b−jα∞q′∞

) 1
q′∞

⩽ c
( ∞∑

j=0

|βj |q∞
) 1

q∞

⩽ c∥f∥
K̇

α(·),q(·)
p(·) (A;Rn)

.

Thus, we have the desired estimate for I1.

Next, we deal with I2. We have

I2 =
( ∞∑
k=0

(
bkα∞

∞∑
j=k

|βj | ∥aj∥p(·)
)q∞) 1

q∞

⩽
( ∞∑
k=0

( ∞∑
j=k

|βj |b−(j−k)α∞
)q∞) 1

q∞
.

Since 0 < α∞ < ∞, then by Lemma 2.5 (with γ = bα∞ > 1), we deduce that

I2 ⩽
( ∞∑
k=0

|βk|q∞
) 1

q∞

⩽
( −1∑
k=−∞

|βk|q(0)
) 1

q(0)

+
( ∞∑
k=0

|βk|q∞
) 1

q∞
.

This finishs the estimation of I2 and the proof of Theorem 3.3.

Remark 3.6. A non-homogeneous counterpart of Theorem 3.3 is available. Since
K

α(·),q(·)
p(·) (A;Rn) = Kα∞,q∞

p(·) (A;Rn), its proof is an immediate consequence of [8,
Theorem 2.5].
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4. Some Applications

The next result concerns the boundedness, on anisotropic variable Herz spaces,
of some sublinear operators T satisfying the size condition

(4.1) |Tf(x)| ≲
∫
Rn

|f(y)|
ϱ(x− y)

dy, x /∈ supp f

for integrable and compactly supported functions f .

Theorem 4.2. Let α ∈ L∞(Rn), p ∈ P(Rn), q ∈ P0(Rn), and if α, p and q are
log-Hölder continuous, both at the origin and at infinity such that

0 < α (0) < 1− 1/p(0) and 0 < α∞ < 1− 1/p∞.

Then every sublinear operator T satisfying (4.1) which is bounded on Lp(·)(Rn) is
also bounded on K̇

α(·),q(·)
p(·) (A;Rn) and K

α(·),q(·)
p(·) (A;Rn), respectively.

Proof. It suffices to prove that T is bounded on K̇
α(·),q(·)
p(·) (A;Rn). The non-

homogeneous case can be proved similarly. We must show that

∥Tf∥
K̇

α(·),q(·)
p(·) (A;Rn)

⩽ c ∥f∥
K̇

α(·),q(·)
p(·) (A;Rn)

for all f ∈ K̇
α(·),q(·)
p(·) (A;Rn). Thanks to Theorem 3.3, it holds that

f =

∞∑
i=−∞

βiai

where βi ⩾ 0 and ai’s are (α(·), p(·))- bloc with supp ai ⊆ Bi. Hence, we obtain

∥Tf∥
K̇

α(·),q(·)
p(·) (A;Rn)

≈
( −1∑

k=−∞

bkα(0)q(0)
( ∞∑

i=−∞
βi ∥Tai · χk∥p(·)

)q(0))1/q(0)
+
( ∞∑

k=0

bkα∞q∞
( ∞∑

i=−∞
βi ∥Tai · χk∥p(·)

)q∞)1/q∞
≲

( −1∑
k=−∞

bkα(0)q(0)
( k−θ−1∑

i=−∞
βi ∥Tai · χk∥p(·)

)q(0))1/q(0)
+
( −1∑

k=−∞

bkα(0)q(0)
( ∞∑

i=k−θ

βi ∥Tai · χk∥p(·)
)q(0))1/q(0)

+
( ∞∑

k=0

bkα∞q∞
( k−θ−1∑

i=−∞
βi ∥Tai · χk∥p(·)

)q∞)1/q∞
+
( ∞∑

k=0

bkα∞q∞
( ∞∑

i=k−θ

βi ∥Tai · χk∥p(·)
)q∞)1/q∞

:= J1 + J2 + J3 + J4.
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First, we estimate J1. Since

σ (x) ⩽ bθ (σ (x− y) + σ (y)) ,

and taking x ∈ Rk, y ∈ Bi with k ⩾ i+ θ + 1, then x ∈ Bi+θ+1\Bi+θ, and we get

σ(x− y) ⩾ b−θσ(x)− σ(y) = b−θσ(x)− bi−1

= b−θσ(x)− b−θ−1σ(x) = b−θ
(
1− 1

b

)
σ(x).

The condition (4.1) gives

|Tai (x)| ≲
∫
Bi

|ai (y)|
ϱ(x)

dy

⩽ cb−k

∫
Bi

|ai (y)|dy.

By Lemma 2.6 and the condition (ii) in Definition 3.1, we get

|Tai (x)| ≲ b−k ∥ai∥p(·) ∥χBi
∥p′(·)

⩽ cb−k−i(α(0)−1+1/p(0)),

which implies that

∥Tai · χk∥p(·) ⩽ cb−k−i(α(0)−1+1/p(0))∥χ
k
∥p(·)

⩽ cbk(−1+1/p(0))−i(α(0)−1+1/p(0)).

By Lemma 2.5 (with γ = b−α(0)+1−1/p(0) > 1), we have

J1 ≲
( −1∑

k=−∞

( k−θ−1∑
i=−∞

βib
−(k−i)(−α(0)+1−1/p(0))

)q(0))1/q(0)
≲

( −1∑
k=−∞

β
q(0)
k

)1/q(0)
⩽ c∥f∥

K̇
α(·),q(·)
p(·) (A;Rn)

.

To estimate J2, we distinguish two cases, k− θ < 0 and k− θ ⩾ 0. Here we assume
that k − θ < 0. The other case will follow in the same way.

We divide the sum
∑∞

i=k−θ · · · into two parts

−1∑
i=k−θ

· · ·+
∞∑
i=0

· · ·,
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then J2 is bounded by Ja
2 + Jb

2 , where

Ja
2 :=

( −1∑
k=−∞

bkα(0)q(0)
( −1∑

i=k−θ

βi ∥Tai · χk∥p(·)
)q(0))1/q(0)

Jb
2 :=

( −1∑
k=−∞

bkα(0)q(0)
( ∞∑

i=0

βi ∥Tai · χk∥p(·)
)q(0))1/q(0)

.

For Ja
2 , the numbers k and i are negatives numbers. Then, by the Lp(·)(Rn)-

boundedness of T , Definition 3.1 and Lemma 2.5 (with γ = bα(0) > 1), we deduce
that

Ja
2 ≲

( −1∑
k=−∞

bkα(0)q(0)
( −1∑

i=k−θ

βi ∥ai∥p(·)
)q(0))1/q(0)

≲
( −1∑

k=−∞

( −1∑
i=k−θ

βib
−(i−k)α(0)

)q(0))1/q(0)
≲

( −1∑
k=−∞

β
q(0)
k

)1/q(0)
⩽ c∥f∥

K̇
α(·),q(·)
p(·) (A;Rn)

.

For Jb
2 , we have k ⩽ −1 and i ⩾ 0. By the Lp(·)(Rn)-boundedness of T and

Definition 3.1, we have

Jb
2 :=

( −1∑
k=−∞

bkα(0)q(0)
( ∞∑

i=0

βi ∥Tai · χk∥p(·)
)q(0))1/q(0)

≲
( −1∑

k=−∞

bkα(0)q(0)
( ∞∑

i=0

βi ∥ai∥p(·)
)q(0))1/q(0)

≲
( −1∑

k=−∞

bkα(0)q(0)
( ∞∑

i=0

βib
−iα∞

)q(0))1/q(0)
.

By Hölder’s inequality in ℓ1 with 1
q∞

+ 1
q′∞

= 1 and since α(0), α∞ > 0, we obtain

Jb
2 ≲

( −1∑
k=−∞

bkα(0)q(0)
)1/q(0)( ∞∑

i=0

βq∞
i

)1/q∞( ∞∑
i=0

b−iα∞q′∞

)1/q′∞
≲

( ∞∑
i=0

βq∞
i

)1/q∞
⩽ c∥f∥

K̇
α(·),q(·)
p(·) (A;Rn)

.
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Next, we estimate J3. We distinguish two cases, k − θ − 1 ⩾ 0 and k − θ − 1 < 0.
Here we assume that k − θ − 1 ⩾ 0. The other case follows similarly.
Let us decompose the sum

∑k−θ−1
i=−∞ · · · into two parts

−1∑
i=−∞

· · ·+
k−θ−1∑
i=0

· · ·.

Then J3 is bounded by Ja
3 + Jb

3 , where

Ja
3 :=

( ∞∑
k=0

bkα∞q∞

( −1∑
i=−∞

βi ∥Tai · χk∥p(·)

)q∞)1/q∞

,

Jb
3 :=

( ∞∑
k=0

bkα∞q∞

(
k−θ−1∑
i=0

βi ∥Tai · χk∥p(·)

)q∞)1/q∞

.

For Ja
3 , we have k ⩾ 0 and i ⩽ −1. By the condition (ii) in Definition 3.1 and

Lemma 2.1, we obtain

∥Tai · χk∥p(·) ≲ b−k−i(α(0)−1+1/p(0)))∥χ
k
∥p(·)

≲ bk(−1+1/p∞)−i(α(0)−1+1/p(0)),

which gives

Ja
3 ≲

( ∞∑
k=0

bk(α∞−1+1/p∞)q∞
( −1∑

i=−∞
βib

−i(α(0)−1+1/p(0))
)q∞)1/q∞

.

Thanks to Hölder’s inequality in ℓ1, with 1
q(0) +

1
q′(0) = 1, we easily obtain

Ja
3 ≲

( ∞∑
k=0

bk(α∞−1+ 1
p∞ )q∞

) 1
q∞
( −1∑

i=−∞
β
q(0)
i

) 1
q(0)
( −1∑

i=−∞
b−i(α(0)−1+ 1

p(0)
)q′(0)

) 1
q′(0)

≲
( −1∑

i=−∞
β
q(0)
i

)1/q(0)
⩽ c∥f∥

K̇
α(·),q(·)
p(·) (A;Rn)

.

Concerning Jb
3 , where k and i are non-negatives numbers, we have by the condition

(iii) in Definition 3.1 and Lemma 2.1

∥Tai · χk∥p(·) ≲ b−k−i(α∞−1+1/p∞))∥χ
k
∥p(·)

≲ bk(−1+1/p∞)−i(α∞−1+1/p∞),
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which gives

Jb
3 :=

( ∞∑
k=0

bkα∞q∞
( k−θ−1∑

i=0

βi ∥Tai · χk∥p(·)
)q∞)1/q∞

≲
( ∞∑

k=0

( k−θ−1∑
i=0

βib
−(k−i)(−α∞+1−1/p∞)

)q∞)1/q∞
,

by Lemma 2.5 (with γ = b−α∞+1−1/p∞ > 1), we obtain

Jb
3 ≲

( ∞∑
k=0

βq∞
k

)1/q∞
⩽ c∥f∥

K̇
α(·),q(·)
p(·) (A;Rn)

.

Finally, we estimate J4. In this case k and i are non-negatives numbers, then by
the Lp(·)(Rn)-boundedness of T , the condition (iii) in Definition 3.1 and Lemma 2.5
(with γ = bα∞ > 1), we easily obtain that

J4 ≲
( ∞∑

k=0

bkα∞q∞
( ∞∑

i=k−θ

βi ∥ai∥p(·)
)q∞)1/q∞

≲
( ∞∑

k=0

( ∞∑
i=k−θ

βib
−(i−k)α∞

)q∞)1/q∞
≲

( ∞∑
k=0

βq∞
k

)1/q∞
⩽ c∥f∥

K̇
α(·),q(·)
p(·) (A;Rn)

.

Combing the estimations of J1, J2, J3 and J4, we finish the proof of Theorem 4.2.

Remark 4.3. We would like to mention that if q(·) is constant, then the statements
corresponding to Theorem 4.2 can be found in Theorem 3.1 of [8].

Acknowledgements. The authors are deeply grateful to the referees and the edi-
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