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DUALITIES OF VARIABLE ANISOTROPIC HARDY SPACES

AND BOUNDEDNESS OF SINGULAR INTEGRAL

OPERATORS

Wenhua Wang

Abstract. Let A be an expansive dilation on Rn, and p(·) : Rn →
(0, ∞) be a variable exponent function satisfying the globally log-Hölder

continuous condition. Let H
p(·)
A (Rn) be the variable anisotropic Hardy

space defined via the non-tangential grand maximal function. In this

paper, the author obtains the boundedness of anisotropic convolutional

δ-type Calderón-Zygmund operators from H
p(·)
A (Rn) to Lp(·)(Rn) or from

H
p(·)
A (Rn) to itself. In addition, the author also obtains the duality be-

tween H
p(·)
A (Rn) and the anisotropic Campanato spaces with variable

exponents.

1. Introduction

As a good substitute of the Lebesgue space Lp(Rn) when p ∈ (0, 1], Hardy
space Hp(Rn) plays an important role in various fields of analysis and partial
differential equations; see, for examples, [10,17–19,21,23]. On the other hand,
variable exponent function spaces have their applications in fluid dynamics
[1], image processing [3], partial differential equations and variational calculus
[9, 20,21].

Let p(·) : Rn → (0, ∞) be a variable exponent function satisfying the glob-
ally log-Hölder continuous condition (see Section 2 below for its definition). Re-
cently, Nakai and Sawano [15] introduced the variable Hardy space Hp(·)(Rn),
via the radial grand maximal function, and then obtained some real-variable
characterizations of the space, such as the characterizations in terms of the
atomic and the molecular decompositions. Moreover, they obtained the bound-
edness of δ-type Calderón-Zygmund operators from Hp(·)(Rn) to Lp(·)(Rn) or
from Hp(·)(Rn) to itself. Then Sawano [16], Yang et al. [22] and Zhuo et al. [24]
further contributed to the theory.
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Very recently, Liu et al. [12] introduced the variable anisotropic Hardy space

H
p(·)
A (Rn) associated with a general expansive matrix A, via the non-tangential

grand maximal function, and then established its various real-variable charac-

terizations of H
p(·)
A (Rn), respectively, in terms of the atomic characterization

and the Littlewood-Paley characterization.

To complete the theory of the variable anisotropic Hardy space H
p(·)
A (Rn),

in this article, as applications of the atomic characterization, we obtain the
boundedness of anisotropic convolutional δ-type Calderón-Zygmund operators

from H
p(·)
A (Rn) to Lp(·)(Rn) and from H

p(·)
A (Rn) to itself. In addition, we also

obtain the dual space of H
p(·)
A (Rn) is the anisotropic Campanato space with

variable exponents.
The rest of this paper is organized as follows.
In Section 2, we first recall some notation and definitions concerning expan-

sive dilations, variable exponent, the variable Lebesgue space Lp(·)(Rn) and

the variable anisotropic Hardy space H
p(·)
A (Rn), via the non-tangential grand

maximal function.
Section 3 is devoted to getting the boundedness of anisotropic convolutional

δ-type Calderón-Zygmund operators from H
p(·)
A (Rn) to Lp(·)(Rn) and from

H
p(·)
A (Rn) to itself, by using the atomic characterization of H

p(·)
A (Rn) estab-

lished in [12, Theorem 4.8] (see also Lemma 3.3 below). It is worth pointing out
that some of the proof methods of the boundedness of Calderón-Zygmund op-
erators T on Hp

A(Rn) = Hp, p
A (Rn) ([13, Theorem 3.9]) and Hp(·)(Rn) ([15, The-

orem 5.2]) don’t work anymore in the present setting. For example, we search
out some estimates related to Lp(·)(Rn) norms for some series of functions
which can be reduced into dealing with the Lq(Rn) norms of the corresponding
functions (see Lemma 3.6 below).

In Section 4, we prove that the dual space of H
p(·)
A (Rn) is the anisotropic

Campanato space with variable exponents (see Theorem 4.4 below). For this
purpose, we first introduce a new kind of anisotropic Campanato spaces with

variable exponents Lp(·), q, sA (Rn) in Definition 4.1 below, which includes the
anisotropic Campanato space of Bownik (see [2, p. 50, Definition 8.1]) and the
space BMO(Rn) of John and Nirenberg [11].

Finally, we make some conventions on notation. Let N := {1, 2, . . .} and
Z+ := {0}∪N. For any α := (α1, . . . , αn) ∈ Zn+ := (Z+)n, let |α| := α1+· · ·+αn
and

∂α :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn
.

Throughout the whole paper, we denote by C a positive constant which is
independent of the main parameters, but it may vary from line to line. For any
q ∈ [1, ∞], we denote by q′ its conjugate index, namely, 1/q+1/q′ = 1. For any
a ∈ R, bac denotes the maximal integer not larger than a. The symbol D . F
means that D ≤ CF . If D . F and F . D, we then write D ∼ F . If E is a
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subset of Rn, we denote by χE its characteristic function. If there are no special
instructions, any space X (Rn) is denoted simply by X . For instance, L2(Rn)
is simply denoted by L2. Denote by S the space of all Schwartz functions and
S ′ its dual space (namely, the space of all tempered distributions).

2. Variable anisotropic Hardy space H
p(·)
A

In this section, we first recall the notion of variable anisotropic Hardy space

H
p(·)
A , via the non-tangential grand maximal function MN (f), and then given

its molecular characterization.
We begin with recalling the notion of expansive dilations on Rn; see [2, p. 5].

A real n × n matrix A is called an expansive dilation, shortly a dilation, if
minλ∈σ(A) |λ| > 1, where σ(A) denotes the set of all eigenvalues of A. Let λ−
and λ+ be two positive numbers such that

1 < λ− < min{|λ| : λ ∈ σ(A)} ≤ max{|λ| : λ ∈ σ(A)} < λ+.

In the case when A is diagonalizable over C, we can even take λ− := min{|λ| :
λ ∈ σ(A)} and λ+ := max{|λ| : λ ∈ σ(A)}. Otherwise, we need to choose
them sufficiently close to these equalities according to what we need in our
arguments.

It was proved in [2, p. 5, Lemma 2.2] that, for a given dilation A, there exist
a number r ∈ (1, ∞) and a set ∆ := {x ∈ Rn : |Px| < 1}, where P is some non-
degenerate n × n matrix, such that ∆ ⊂ r∆ ⊂ A∆, and one can additionally
assume that |∆| = 1, where |∆| denotes the n-dimensional Lebesgue measure
of the set ∆. Let Bk := Ak∆ for k ∈ Z. Then Bk is open, Bk ⊂ rBk ⊂ Bk+1

and |Bk| = bk, here and hereafter, b := |detA|. An ellipsoid x + Bk for some
x ∈ Rn and k ∈ Z is called a dilated ball. Denote by B the set of all such
dilated balls, namely,

B := {x+Bk : x ∈ Rn, k ∈ Z}.(2.1)

Throughout the whole paper, let σ be the smallest integer such that 2B0 ⊂
AσB0 and, for any subset E of Rn, let E{ := Rn \ E. Then, for all k, j ∈ Z
with k ≤ j, it holds true that

Bk +Bj ⊂ Bj+σ,(2.2)

Bk + (Bk+σ){ ⊂ (Bk){,(2.3)

where E+F denotes the algebraic sum {x+y : x ∈ E, y ∈ F} of sets E, F ⊂ Rn.

Definition 2.1. A quasi-norm, associated with dilation A, is a Borel measur-
able mapping ρA : Rn → [0,∞), for simplicity, denoted by ρ, satisfying

(i) ρ(x) > 0 for all x ∈ Rn \{~0n}, here and hereafter, ~0n denotes the origin
of Rn;

(ii) ρ(Ax) = bρ(x) for all x ∈ Rn, where, as above, b := |detA|;
(iii) ρ(x + y) ≤ H [ρ(x) + ρ(y)] for all x, y ∈ Rn, where H ∈ [1, ∞) is a

constant independent of x and y.
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In the standard dyadic case A := 2In×n, ρ(x) := |x|n for all x ∈ Rn is an
example of homogeneous quasi-norms associated with A, here and hereafter,
In×n denotes the n× n unit matrix, | · | always denotes the Euclidean norm in
Rn.

It was proved, in [2, p. 6, Lemma 2.4], that all homogeneous quasi-norms
associated with a given dilation A are equivalent. Therefore, for a given dilation
A, in what follows, for simplicity, we always use the step homogeneous quasi-
norm ρ defined by setting, for all x ∈ Rn,

ρ(x) :=
∑
k∈Z

bkχBk+1\Bk(x) if x 6= ~0n, or else ρ(~0n) := 0.

By (2.2), we know that, for all x, y ∈ Rn,

ρ(x+ y) ≤ bσ (max {ρ(x), ρ(y)}) ≤ bσ[ρ(x) + ρ(y)];

see [2, p. 8]. Moreover, (Rn, ρ, dx) is a space of homogeneous type in the sense
of Coifman and Weiss [4, 5], where dx denotes the n-dimensional Lebesgue
measure.

Now we recall that a measurable function p(·) : Rn → (0, ∞) is called a
variable exponent. For any variable exponent p(·), let

p− := ess inf
x∈Rn

p(x) and p+ := ess sup
x∈Rn

p(x).(2.4)

Denote by P the set of all variable exponents p(·) satisfying 0 < p− ≤ p+ <∞.
Let f be a measurable function on Rn and p(·) ∈ P. Then the modular

function (or, for simplicity, the modular) %p(·), associated with p(·), is defined
by setting

%p(·)(f) :=

∫
Rn
|f(x)|p(x) dx

and the Luxemburg (also called Luxemburg-Nakano) quasi-norm ‖f‖Lp(·) by

‖f‖Lp(·) := inf
{
λ ∈ (0, ∞) : %p(·)(f/λ) ≤ 1

}
.

Moreover, the variable Lebesgue space Lp(·) is defined to be the set of all mea-
surable functions f satisfying that %p(·)(f) <∞, equipped with the quasi-norm
‖f‖Lp(·) .

The following remark comes from [14, Remark 2.3].

Remark 2.2. Let p(·) ∈ P.

(i) Obviously, for any r ∈ (0, ∞) and f ∈ Lp(·),
‖|f |r‖Lp(·) = ‖f‖rLrp(·) .

Moreover, for any µ ∈ C and f, g ∈ Lp(·), ‖µf‖Lp(·) = |µ| ‖f‖Lp(·) and

‖f + g‖p
Lp(·)

≤ ‖f‖p
Lp(·)

+ ‖g‖p
Lp(·)

,

here and hereafter,

p := min{p−, 1}(2.5)
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with p− as in (2.4). In particular, when p− ∈ [1, ∞], Lp(·) is a Banach
space (see [8, Theorem 3.2.7]).

(ii) It was proved in [6, Proposition 2.21] that, for any function f ∈ Lp(·)
with ‖f‖Lp(·) > 0, %p(·)(f/‖f‖Lp(·)) = 1 and, in [6, Corollary 2.22] that,
if ‖f‖Lp(·) ≤ 1, then %p(·)(f) ≤ ‖f‖Lp(·) .

A function p(·) ∈ P is said to satisfy the globally log-Hölder continuous
condition, denoted by p(·) ∈ C log, if there exist two positive constants Clog(p)
and C∞, and p∞ ∈ R such that, for any x, y ∈ Rn,

|p(x)− p(y)| ≤ Clog(p)

log(e+ 1/ρ(x− y))

and

|p(x)− p∞| ≤
C∞

log(e+ ρ(x))
.

A C∞ function ϕ is said to belong to the Schwartz class S if, for every integer
` ∈ Z+ and multi-index α, ‖ϕ‖α,` := sup

x∈Rn
[ρ(x)]`|∂αϕ(x)| <∞. The dual space

of S, namely, the space of all tempered distributions on Rn equipped with the
weak-∗ topology, is denoted by S ′. For any N ∈ Z+, let

SN := {ϕ ∈ S : ‖ϕ‖α,` ≤ 1, |α| ≤ N, ` ≤ N} .

In what follows, for ϕ ∈ S, k ∈ Z and x ∈ Rn, let ϕk(x) := b−kϕ
(
A−kx

)
.

Definition 2.3. Let ϕ ∈ S and f ∈ S ′. The non-tangential maximal function
Mϕ(f) with respect to ϕ is defined by setting, for any x ∈ Rn,

Mϕ(f)(x) := sup
y∈x+Bk,k∈Z

|f ∗ ϕk(y)|.

Moreover, for any given N ∈ N, the non-tangential grand maximal function
MN (f) of f ∈ S ′ is defined by setting, for any x ∈ Rn,

MN (f)(x) := sup
ϕ∈SN

Mϕ(f)(x).

The following variable anisotropic Hardy space H
p(·)
A was introduced in [12,

Definition 2.4].

Definition 2.4. Let p(·) ∈ C log, A be a dilation and N ∈ [b(1/p−1)/ lnλ−c+
2, ∞), where p is as in (2.5). The variable anisotropic Hardy space H

p(·)
A is

defined as

H
p(·)
A :=

{
f ∈ S ′ : MN (f) ∈ Lp(·)

}
and, for any f ∈ Hp(·)

A , let ‖f‖
H
p(·)
A

:= ‖MN (f)‖Lp(·) .

Remark 2.5. Let p(·) ∈ C log.
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(i) The quasi-norm of H
p(·)
A in Definition 2.4 depends on N , however, by

[12, Theorem 3.10], we know that the H
p(·)
A is independent of the choice

of N , as long as N ∈ [b(1/p− 1)/ lnλ−c+ 2, ∞).

(ii) When p(·) := p, where p ∈ (0, ∞), the space H
p(·)
A is reduced to the

anisotropic Hardy Hp
A studied in [2, Definition 3.11].

(iii) When A := 2In×n, the space H
p(·)
A is reduced to the variable Hardy

space Hp(·) studied in [15, p. 3674].

We begin with the following notion of anisotropic (p(·), q, s)-atoms intro-
duced in [14, Definition 4.1].

Definition 2.6. Let p(·) ∈ P, q ∈ (1, ∞] and s ∈ [b(1/p−−1)ln b/ lnλ−c, ∞)∩
Z+ with p− as in (2.4). An anisotropic (p(·), q, s)-atom is a measurable func-
tion a on Rn satisfying

(i) supp a ⊂ B, where B ∈ B and B is as in (2.1);

(ii) ‖a‖Lq ≤ |B|1/q
‖χB‖Lp(·)

;

(iii)
∫
Rn a(x)xαdx = 0 for any α ∈ Zn+ with |α| ≤ s.

Throughout this article, we call an anisotropic (p(·), q, s)-atom simply by a
(p(·), q, s)-atom. The following variable anisotropic atomic Hardy space was
introduced in [12, Definition 4.2].

Definition 2.7. Let p(·) ∈ C log, q ∈ (1, ∞], s ∈ [b(1/p−−1)ln b/ lnλ−c, ∞)∩
Z+ with p− as in (2.4), and A be a dilation. The variable anisotropic atomic

Hardy spaceH
p(·), q, s
A is defined to be the set of all distributions f ∈ S ′ satisfying

that there exist {λi}i∈N ⊂ C and a sequence of (p(·), q, s)-atoms, {ai}i∈N,
supported, respectively, on {B(i)}i∈N ⊂ B such that

f =
∑
i∈N

λiai in S ′.

Moreover, for any f ∈ Hp(·), q, s
A , let

‖f‖
H
p(·), q, s
A

:= inf

∥∥∥∥∥∥
{∑
i∈N

[
|λi|χB(i)

‖χB(i)‖Lp(·)

]p}1/p
∥∥∥∥∥∥
Lp(·)

,

where the infimum is taken over all the decompositions of f as above.

3. Calderón-Zygmund operators on H
p(·)
A

In this section, we obtain the boundedness of anisotropic convolutional δ-

type Calderón-Zygmund operators from H
p(·)
A to Lp(·) or from H

p(·)
A to itself.

Let us begin with the notion of anisotropic Calderón-Zygmund operators asso-
ciated with dilation A.

Let δ ∈ (0, lnλ+

ln b ). We call a linear operator T is an anisotropic convolutional

δ-type Calderón-Zygmund operator, if T is bounded on L2 with kernel k ∈ S ′
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coinciding with a locally integrable function on Rn \ {0}, and satisfying that
there exists a positive constant C such that, for any x, y ∈ Rn with ρ(x) >
b2σρ(y),

|k(x− y)− k(x)| ≤ C [ρ(y)]δ

[ρ(x)]1+δ
.

For any f ∈ L2, T (f) := p.v.k ∗ f(x).

Theorem 3.1. Let p(·) ∈ C log and δ ∈ (0, lnλ+

ln b ). Assume T is an anisotropic

convolutional δ-type Calderón-Zygmund operator. If p− ∈ ( 1
1+δ , 1) with p− as

in (2.4), then T can be extended to a bounded linear operator from H
p(·)
A to

Lp(·) and from H
p(·)
A to H

p(·)
A . Moreover, there exists a positive constant C

such that, for any H
p(·)
A ,

(i) ‖T (f)‖Lp(·) ≤ C‖f‖Hp(·)A

;

(ii) ‖T (f)‖
H
p(·)
A

≤ C‖f‖
H
p(·)
A

.

Remark 3.2. When A := 2In×n and T is a Calderon-Zygmund operator of
convolution type, Theorem 3.1 coincides with [15, Proposition 5.3, Theorem
5.5] of Nakai and Sawano, respectively.

To prove Theorem 3.1, we need some technical lemmas. The following lemma
reveals the atomic characterization of the variable anisotropic Hardy space (see
[12, Theorem 4.8]).

Lemma 3.3. Let p(·) ∈ C log, q ∈ (max{p+, 1}, ∞] with p+ as in (2.4), s ∈
[b(1/p− − 1)ln b/ lnλ−c, ∞) ∩ Z+ with p− as in (2.4) and N ∈ N ∩ [b(1/p −
1)ln b/ lnλ−c+ 2, ∞). Then

H
p(·)
A = H

p(·), q, s
A

with equivalent quasi-norms.

By the proof of [12, Theorem 4.8], we obtain the following conclusion, which
plays an important role in the section.

Lemma 3.4. Let p(·) ∈ C log, r ∈ (1, ∞] and s ∈ [b(1/p−−1)ln b/ lnλ−c, ∞)∩
Z+ with p− as in (2.4). Then, for any f ∈ Hp(·)

A ∩Lr, there exist {λi}i∈N ⊂ C,
dilated balls {xi +B`i}i∈N ⊂ B and (p(·), ∞, s)-atoms {ai}i∈N such that

f =
∑
k∈Z

∑
i∈N

λki a
k
i in Lr and H

p(·)
A ,

where the series also converges almost everywhere.

Proof. Let f ∈ H
p(·)
A ∩ Lr. For any k ∈ Z, by the proof of [12, Theorem

4.8], we know that there exist {xki }i∈N ⊂ Ωk = {x ∈ Rn : MNf(x) > 2k},
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{`ki }i∈N ⊂ Z, a sequence of (p(·),∞, s)-atoms, {aki }k∈Z,i∈N, supported on {xki +
B`ki+4σ}k∈Z,i∈N, respectively, and {λki }k∈Z,i∈N ⊂ C, such that

(3.1) f =
∑
k∈Z

∑
i∈N

λki a
k
i =:

∑
k∈Z

∑
i∈N

hki in S ′,

and for any k ∈ Z and i ∈ N, supphki ⊂ xki +B`ki+4σ ⊂ Ωk,

(3.2) ‖hki ‖L∞ . 2k and ]{j ∈ N : (xki +B`ki+4σ) ∩ (xkj +B`kj+4σ) 6= ∅} ≤ R,

where R is as in [12, Lemma 4.5]. Moreover, by f ∈ Hp(·)
A ∩ Lr, we have, for

almost every x ∈ Ωk, there exists a k(x) ∈ Z such that 2k(x) < MNf(x) ≤
2k(x)+1. From this, supphki ⊂ Ωk and (3.2), we deduce that, for a.e. x ∈ Rn,∑

k∈Z

∑
i∈N
|hki (x)| ∼

∑
k∈(−∞,k(x)]∩Z

∑
i∈N
|hki (x)|(3.3)

.
∑

k∈(−∞,k(x)]∩Z

∑
i∈N

2kχxki+B`k
i
+4σ

(x)

∼
∑

k∈(−∞,k(x)]∩Z

2k ∼ 2k(x) ∼MNf(x).

This implies that there exists a subsequence of the series{
K∑

k=−K

∑
i∈Z

hki

}
K∈N

,

denoted still by itself without loss of generality, which converges to some mea-

surable function f̃ almost everywhere in Rn.
On the other hand, from (3.3), it follows that, for any K ∈ N and a.e.

x ∈ Rn, ∣∣∣∣∣f̃(x)−
K∑

k=−K

hki (x)

∣∣∣∣∣ . |f̃(x)|+
∑

k∈(−∞,k(x)]∩Z

∑
i∈N
|hki (x)|

. |f̃(x)|+MNf(x) .MNf(x).

From this, the fact that MN (f) ∈ Lr with 1 < r ≤ ∞, and the Lebesgue

dominated convergence theorem, we further deduce that f̃ =
∑
k∈Z

∑
i∈N h

k
i in

Lr. By this and (3.3), we know f = f̃ ∈ Lr and hence

f =
∑
k∈Z

∑
i∈N

hki in Lr and H
p(·)
A ,

and also almost everywhere. �
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We recall the definition of anisotropic Hardy-Littlewood maximal function
MHL(f). For any f ∈ L1

loc and x ∈ Rn,

MHL(f)(x) := sup
x∈B∈B

1

|B|

∫
B

|f(z)| dz,(3.4)

where B is as in (2.1).
The following lemma is just [14, Lemma 4.3].

Lemma 3.5. Let q ∈ (1, ∞]. Assume that p(·) ∈ C log satisfies 1 < p− ≤ p+ <
∞, where p− and p+ are as in (2.4). Then there exists a positive constant C
such that, for any sequence {fk}k∈N of measurable functions,∥∥∥∥∥∥

{∑
k∈N

[MHL(fk)]
q

}1/q
∥∥∥∥∥∥
Lp(·)

≤ C

∥∥∥∥∥∥
(∑
k∈N
|fk|q

)1/q
∥∥∥∥∥∥
Lp(·)

with the usual modification made when q =∞, where MHL denotes the Hardy-
Littlewood maximal operator as in (3.4).

Let us recall some auxiliary estimates together with the completeness of
function spaces. The following Lemma 3.6, Lemma 3.7 and Lemma 3.8, re-
spectively, come from [12, Lemma 4.6, Lemma 4.7] and [6, Lemma 2.71].

Lemma 3.6. Let p(·) ∈ C log and q ∈ (1, ∞] ∩ (p+, ∞] with p+ as in (2.4).
Assume that {λi}i∈N ⊂ C, {B(i)}i∈N ⊂ B and {ai}i∈N ∈ Lq satisfy, for any
i ∈ N, supp ai ⊂ B(i),

‖a‖Lq ≤
|B(i)|1/q

‖χB(i)‖Lp(·)
and ∥∥∥∥∥∥

{∑
i∈N

[
|λi|χB(i)

‖χB(i)‖Lp(·)

]p}1/p
∥∥∥∥∥∥
Lp(·)

<∞.

Then ∥∥∥∥∥∥
[∑
i∈N
|λiai|p

]1/p∥∥∥∥∥∥
Lp(·)

≤ C

∥∥∥∥∥∥
{∑
i∈N

[
|λi|χB(i)

‖χB(i)‖Lp(·)

]p}1/p
∥∥∥∥∥∥
Lp(·)

,

where p is as in (2.5) and C is a positive constant independent of {λi}i∈N,

{B(i)}i∈N and {ai}i∈N.

Lemma 3.7. Let p(·) ∈ C log and r ∈ (1, ∞] ∩ (p+, ∞] with p+ as in (2.4).

Then H
p(·)
A ∩ Lr is dense in H

p(·)
A .

Lemma 3.8. Given p(·) ∈ P, Lp(·) is complete: every Cauchy sequence in Lp(·)

converges in norm.

Lemma 3.9. Let p(·) ∈ C log. Then H
p(·)
A is complete: every Cauchy sequence

in H
p(·)
A converges in norm.



374 W. WANG

Proof. We show this lemma by borrowing some ideas from the proof of [7,

Proposition 4.1]. To prove that H
p(·)
A is complete, it is sufficient to prove that

if {fk}∞k=1 is a sequence in H
p(·)
A such that∑
k∈N
‖fk‖

p

H
p(·)
A

<∞,

where p is as in (2.5), then the series
∑
k∈N fk in H

p(·)
A converges in norm. For

any j ∈ N, let Fj :=
∑j
k=1 fk. From Remark 2.2(i) and the fact that p is as in

(2.5), we conclude that, for any m,n ∈ N with m > n,

‖Fm − Fn‖
p

H
p(·)
A

=

∥∥∥∥∥
m∑

k=n+1

fk

∥∥∥∥∥
p

H
p(·)
A

≤

∥∥∥∥∥
m∑

k=n+1

MN (fk)

∥∥∥∥∥
p

Lp(·)

=

∥∥∥∥∥
[

m∑
k=n+1

MN (fk)

]p∥∥∥∥∥
Lp(·)/p

≤

∥∥∥∥∥
m∑

k=n+1

[MN (fk)]
p

∥∥∥∥∥
Lp(·)/p

≤
m∑

k=n+1

‖[MN (fk)]
p‖Lp(·)/p =

m∑
k=n+1

‖MN (fk)‖p
Lp(·)

=

m∑
k=n+1

‖fk‖
p

H
p(·)
A

.

By this, we know that {Fj}j∈N is a Cauchy sequence in H
p(·)
A . Since H

p(·)
A is

continuously contained in S ′(see [12, Lemma 4.3]), thus {Fj}j∈N is a Cauchy

sequence in S ′ . Therefore we know that there exists a tempered distribution
f ∈ S ′ such that Fj → f in S ′ as j →∞.

Next we prove f ∈ Hp(·)
A . Since

MN (f) ≤ lim
j→∞

j∑
k=1

MN (fk),

by Remark 2.2(i), we obtain

‖MN (f)‖p
Lp(·)

≤

∥∥∥∥∥ lim
j→∞

j∑
k=1

MN (fk)

∥∥∥∥∥
p

Lp(·)

= lim
j→∞

∥∥∥∥∥
j∑

k=1

MN (fk)

∥∥∥∥∥
p

Lp(·)

≤ lim
j→∞

∥∥∥∥∥
j∑

k=1

[MN (fk)]p

∥∥∥∥∥
Lp(·)/p

=

∞∑
k=1

‖[MN (fk)]p‖Lp(·)/p

=

∞∑
k=1

‖fk‖
p

H
p(·)
A

<∞,

which implies that f ∈ Hp(·)
A .
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Finally, by Remark 2.2(i), we find that∥∥∥∥∥f −
j∑

k=1

fk

∥∥∥∥∥
p

H
p(·)
A

=

∥∥∥∥∥∥ lim
s→∞

s∑
k=j+1

fk

∥∥∥∥∥∥
p

H
p(·)
A

≤ lim
s→∞

∥∥∥∥∥∥
s∑

k=j+1

fk

∥∥∥∥∥∥
p

H
p(·)
A

≤
∞∑

k=j+1

‖fk‖
p

H
p(·)
A

→ 0 as j →∞,

which implies that {Fj}j∈N in H
p(·)
A converges to f =

∑
k∈N fk in norm. This

finishes the proof of Lemma 3.9. �

Proof of Theorem 3.1. We only prove (i), by using Lemma 3.9, (ii) can be
proved in the same way.

First, we show that (i) holds true for any f ∈ Hp(·)
A ∩ Lr with r ∈ (1, ∞] ∩

(p+, ∞]. For any f ∈ Hp(·)
A ∩ Lr, from Lemma 3.4, we know that there exist

numbers {λi}i∈N ⊂ C and a sequence of (p(·),∞, s)-atom, {ai}i∈N, supported,
respectively, on {xi +B`i}i∈N ⊂ B such that

f =
∑
i∈N

λiai in Lr

and ∥∥∥∥∥∥∥
∑
i∈N

 |λi|χxi+B`i∥∥∥χxi+B`i∥∥∥Lp(·)
p

1/p
∥∥∥∥∥∥∥
Lp(·)

. ‖f‖
H
p(·)
A

.

By the assumption that the operator T is bounded on Lr, we further have

T (f) =
∑
i∈N

λi(Tai) in Lr,

and hence in S ′. Then, by Remark 2.2(i), we find that, for any x ∈ Rn,

‖T (f)‖p
Lp(·)

=

∥∥∥∥∥T
(∑
i∈N

λiai

)∥∥∥∥∥
p

Lp(·)

=

∥∥∥∥∥∑
i∈N

λiT (ai)

∥∥∥∥∥
p

Lp(·)

≤

∥∥∥∥∥∑
i∈N
|λi|T (ai)χxi+AσB`i

∥∥∥∥∥
p

Lp(·)

+

∥∥∥∥∥∑
i∈N
|λi|T (ai)χ(xi+AσB`i )

{

∥∥∥∥∥
p

Lp(·)

.

∥∥∥∥∥∥
{∑
i∈N

[
|λi|T (ai)χxi+AσB`i

]p}1/p
∥∥∥∥∥∥
p

Lp(·)
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+

∥∥∥∥∥∑
i∈N
|λi|T (ai)χ(xi+AσB`i )

{

∥∥∥∥∥
p

Lp(·)

=: L1 + L2.

For the term L1, by the boundedness of T on Lr with r ∈ (max{p+, 1}, ∞),
and Lemma 3.6, we conclude that

L1 .

∥∥∥∥∥∥∥
∑
i∈N

 |λi|χxi+B`i∥∥∥χxi+B`i∥∥∥Lp(·)
p

1/p
∥∥∥∥∥∥∥
p

Lp(·)

. ‖f‖p
H
p(·)
A

.

For the term L2, assume ai(x) is a (p(·), ∞, s)-atom supported on xi +B`i .

From the size condition of ai(x), we conclude that, for any x ∈ (xi +AσB`i)
{,

Tai(x) = k ∗ ai(x)

≤
∫
xi+B`i+σ

|k(x− y)− k(x− xi)| |ai(y)| dy

.
∫
xi+B`i+σ

ρ(y − xi)δ

ρ(x− xi)1+δ
|ai(y)| dy

.
|xi +B`i |δ

ρ(x− xi)1+δ
‖ai‖Lr |xi +B`i |1/r

′

.
|xi +B`i |δ

ρ(x− xi)1+δ
1

‖χB`i ‖Lp(·)
.
[
MHL(χxi+B`i )(x)

]1+δ 1

‖χB`i‖Lp(·)
.

By this, Remark 2.2(i), Lemma 3.5 and the fact that β := 1 + δ > 1/p, we
obtain

L2 .

∥∥∥∥∥∑
i∈N

|λi|
‖χxi+B`i ‖Lp(·)

[
MHL(χxi+Bli )

]β∥∥∥∥∥
p

Lp(·)

∼

∥∥∥∥∥∥
{∑
i∈N

|λi|
‖χxi+B`i‖Lp(·)

[
MHL(χxi+B`i )

]β}1/β
∥∥∥∥∥∥
βp

Lβp(·)

.

∥∥∥∥∥∥
{∑
i∈N

|λi|χxi+B`i
‖χxi+B`i‖Lp(·)

}1/β
∥∥∥∥∥∥
βp

Lβp(·)

∼

∥∥∥∥∥∑
i∈N

|λi|χxi+B`i
‖χxi+B`i ‖Lp(·)

∥∥∥∥∥
p

Lp(·)

.

∥∥∥∥∥∥
{∑
i∈N

[
|λi|χxi+B`i
‖χxi+B`i ‖Lp(·)

]p}1/p
∥∥∥∥∥∥
p

Lp(·)

∼ ‖f‖p
H
p(·), q, s
A

.

Combining the estimates of L1 and L2, we further conclude that, for any f ∈
H
p(·)
A ∩ Lr,

‖T (f)‖Lp(·) . ‖f‖Hp(·)A

.
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Next, we prove that (i) also holds true for any f ∈ Hp(·)
A . Let f ∈ Hp(·)

A , by

Lemma 3.7, we know that there exists a sequence {fj}j∈Z+ ⊂ H
p(·)
A ∩ Lr with

r ∈ (1, ∞]∩ (p+, ∞] such that fj → f as j →∞ in H
p(·)
A . Therefore, {fj}j∈Z+

is a Cauchy sequence in H
p(·)
A . By this, we see that, for any j, k ∈ Z+,

‖T (fj)− T (fk)‖Lp(·) = ‖T (fj − fk)‖Lp(·) . ‖fj − fk‖Hp(·)A

.

Notice that {T (fj)}j∈Z+
is also a Cauchy sequence in Lp(·). Applying Lemma

3.8, we conclude that there exist a g ∈ Lp(·) such that T (fj) → g as j → ∞
in Lp(·). Let T (f) := g. We claim that T (f) is well defined. Indeed, for any

other sequence {hj}j∈Z+ ⊂ H
p(·)
A ∩Lr satisfying hj → f as j →∞ in H

p(·)
A , by

Remark 2.2(i), we have

‖T (hj)− T (f)‖p
Lp(·)

≤ ‖T (hj)− T (fj)‖
p

Lp(·)
+ ‖T (fj)− g‖

p

Lp(·)
.

. ‖hj − fj‖
p

H
p(·)
A

+ ‖T (fj)− g‖
p

Lp(·)

. ‖hj − f‖
p

H
p(·)
A

+ ‖f − fj‖
p

H
p(·)
A

+ ‖T (fj)− g‖
p

Lp(·)
→ 0,

as j → 0,

which is wished.
From this, we see that, for any f ∈ Hp(·)

A ,

‖T (f)‖Lp(·) = ‖g‖Lp(·) = lim
j→∞

‖T (fj)‖Lp(·) . lim
j→∞

‖fj‖Hp(·)A

∼ ‖f‖
H
p(·)
A

,

which implies that (i) also holds true for any f ∈ Hp(·)
A and hence completes

the proof of Theorem 3.1. �

4. Dual spaces of H
p(·)
A

In this section, we give the dual space of H
p(·)
A . More precisely, as an ap-

plication of the atomic characterizations of H
p(·)
A obtained in Lemma 3.3, we

prove that the dual space of H
p(·)
A is the variable anisotropic Campanato space

Lp(·), q, sA .
Now, we introduce the notion of the anisotropic Campanato space with

variable exponents Lp(·), q, sA .

Definition 4.1. Let A be a given dilation, p(·) ∈ P, s be a nonnegative integer
and r ∈ [1, ∞). Then the anisotropic Campanato space with variable exponent

Lp(·), q, sA is defined to be the set of all f ∈ Lqloc such that

‖f‖Lp(·), q, sA

:= sup
B∈B

inf
P∈Ps

|B|
‖χB‖Lp(·)

[
1

|B|

∫
B

|f(x)− P (x)|q dx
]1/q

<∞

and

‖f‖Lp(·),∞, sA

:= sup
B∈B

inf
P∈Ps

|B|
‖χB‖Lp(·)

‖f(x)− P (x)‖L∞ <∞,
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where B is as in (2.1).

Lemma 4.2. Let p(·) ∈ P. Then, for any {λi}i∈N ⊂ C and {B(i)}i∈N ⊂ B,

∑
i∈N
|λi| ≤

∥∥∥∥∥∥
{∑
i∈N

[
|λi|χB(i)

‖χB(i)‖Lp(·)

]p}1/p
∥∥∥∥∥∥
Lp(·)

,

where p is as in (2.5).

Proof. Since p(·) ∈ P and the well-known inequality that, ‖ · ‖`1 ≤ ‖ · ‖`p with
p ∈ (0, 1], then ∑

i∈N
|λi| =

∑
i∈N
|λi|

∥∥∥∥ χB(i)

‖χB(i)‖Lp(·)

∥∥∥∥
Lp(·)

≤

∥∥∥∥∥∑
i∈N

|λi|χB(i)

‖χB(i)‖Lp(·)

∥∥∥∥∥
Lp(·)

≤

∥∥∥∥∥∥
{∑
i∈N

[
|λi|χB(i)

‖χB(i)‖Lp(·)

]p}1/p
∥∥∥∥∥∥
Lp(·)

.

This finishes the proof of Lemma 4.2. �

Lemma 4.3. Let A be a given dilation, p(·) ∈ C log, s be a nonnegative integer

and q ∈ [1, ∞). Then, for any continuous linear functional ` on H
p(·)
A =

H
p(·), q, s
A ,

‖`‖
(H

p(·), q, s
A )∗

:= sup
{
|`(f)| : ‖f‖

H
p(·), q, s
A

≤ 1
}

= sup{|`(a)| : a is (p(·), q, s)-atom},

here and hereafter, (H
p(·), q, s
A )∗ denotes the dual space of H

p(·), q, s
A .

Proof. For any (p(·), q, s)-atom a, it is easy to show that ‖f‖
H
p(·), q, s
A

≤ 1.

Therefore,

sup{|`(a)| : a is (p(·), q, s)-atom} ≤ sup
{
|`(f)| : ‖f‖

H
p(·), q, s
A

≤ 1
}
.

On the other hand, let f ∈ H
p(·), q, s
A and ‖f‖

H
p(·), q, s
A

≤ 1. Then, for any

ε > 0, we know that there exist {λi}i∈N ⊂ C and a sequence of (p(·), ∞, s)-
atoms, {ai}i∈N, supported, respectively, on {Bi}i∈N ⊂ B such that

f =
∑
i∈N

λiai in S ′ and almost everywhere

and ∥∥∥∥∥∥
{∑
i∈N

[
|λi|χBi
‖χBi‖Lp(·)

]p}1/p
∥∥∥∥∥∥
Lp(·)

≤ 1 + ε.
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From this, the continuity of ` and Lemma 4.3, we further conclude that

|`(f)| ≤
∑
i∈N
|λi||`(ai)| ≤

∑
i∈N
|λi| sup{|`(a)| : a is (p(·), q, s)-atom}

≤ (1 + ε) sup{|`(a)| : a is (p(·), q, s)-atom}.
Combined with the arbitrariness of ε and hence finishes the proof of Lemma
4.3. �

Let q ∈ [1, ∞] and s ∈ Z+. Denote by Lqcomp the set of all function f ∈ L∞
with compact and

Lq, scomp := {f ∈ Lqcomp :

∫
Rn
f(x)xα dx = 0, |α| ≤ s}.

In this paper, for any r ∈ Z+, we use Pr to denote the set of polynomials on
Rn with order not more than r.

The main result of this section is the following a theorem.

Theorem 4.4. Let A be a given dilation, p(·) ∈ C log, p+ ∈ (0, 1], q ∈ (p+, ∞)
and s ∈ [b(1/p− − 1)ln b/ lnλ−c, ∞) ∩ Z+ with p− as in (2.4). Then the dual

space of H
p(·)
A = H

p(·), q, s
A , denoted by (H

p(·), q, s
A )∗, is the variable anisotropic

Campanato space Lp(·), q
′, s

A in the following sense: for any b ∈ Lp(·), q
′, s

A , the
linear functional

`b(g) :=

∫
Rn
b(x)g(x) dx,(4.1)

initial defined for all g ∈ Lq, scomp, has a bounded extension to H
p(·), q, s
A = H

p(·)
A .

Conversely, if ` is a bounded linear functional on H
p(·), q, s
A = H

p(·)
A , then `

has the form as in (4.1) with a unique b ∈ Lp(·), q
′, s

A .
Moreover,

‖b‖Lp(·), q′, sA

∼ ‖`b‖(Hp(·), q, sA )∗
,

where the implicit positive constants are independent of b.

Remark 4.5. (i) When A := 2In×n, Theorem 4.4 goes back to [15, Theorem
7.5].

(ii) When p(·) := p, where p ∈ (0, 1], Theorem 4.4 is reduced to [2, Theorem
8.3].

Proof of Theorem 4.4. By Lemma 3.3, we only need to show

Lp(·), q
′, s

A ⊂ (H
p(·), q, s
A )∗.

Let b ∈ Lp(·), q
′, s

A and a be a (p(·), q, s)-atom supported on B ∈ B. Then, by
the vanishing moment condition of a, Hölder’s inequality and the size condition
of a, we obtain∣∣∣∣∫

Rn
b(x)a(x) dx

∣∣∣∣ = inf
P∈Ps

∣∣∣∣∫
B

(b(x)− P (x))a(x) dx

∣∣∣∣(4.2)
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≤ ‖a‖Lq inf
P∈Ps

[∫
B

|b(x)− P (x)|q
′
dx

]1/q′
≤ |B|1/q

‖χB‖Lp(·)
inf
P∈Ps

[∫
B

|b(x)− P (x)|q
′
dx

]1/q′
≤ ‖b‖Lp(·), q′, sA

.

Therefore, for {λi}i∈N ⊂ C and a sequence {ai}i∈N of (p(·), q, s)-atoms sup-
ported, respectively, on {B(i)}i∈N ⊂ B and

g =
∑
i∈N

λiai ∈ Hp(·), q, s
A ,

by Lemma 4.2 and (4.2), we have

|`b(g)| =
∣∣∣∣∫

Rn
b(x)g(x) dx

∣∣∣∣ ≤∑
i∈N
|λi|

∣∣∣∣∫
B

|b(x)− P (x)| |ai(x)| dx
∣∣∣∣

≤
∑
i∈N
|λi|‖b‖Lp(·), q′, sA

≤ ‖g‖
H
p(·), q, s
A

‖b‖Lp(·), q′, sA

.

This implies that Lp(·), q
′, s

A ⊂ (H
p(·), q, s
A )∗ holds true.

Now we prove (H
p(·), q, s
A )∗ ⊂ Lp(·), q

′, s
A . For any B ∈ B, let

AB : L1(B)→ Ps

be the natural projection satisfying, for any g ∈ L1 and q ∈ Ps,∫
B

AB(g)(x)q(x) dx =

∫
B

g(x)q(x) dx.

From the similar proof of [2, (8.9)], we know that there exists a positive constant
Cs such that, for any B ∈ B and g ∈ L1(B),

sup
x∈B
|AB(g)(x)| ≤ Cs

∫
B
|g(z)| dz
|B|

.

For any q ∈ (1, ∞] and B ∈ B, let

Lq(B) := {f ∈ Lq : suppf ⊂ B}.

Set

Lq0(B) := {g ∈ Lq(B) : AB(g)(x) = 0 and g is not zero almost everywhere}.

For any g ∈ Lq0(B), set

a(x) :=

{
|B|1/q
‖χB‖Lp(·)

‖g‖−1Lq(B)g(x), x ∈ B;

0, x /∈ B.
(4.3)
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Then a(x) is a (p(·), q, s)-atom. By this, we obtain, for any ` ∈ (H
p(·), q, s
A )∗

and g ∈ Lq0(B),

|`(g)| ≤ ‖χB‖Lp(·)
|B|1/q

‖`‖
(H

p(·), q, s
A )∗

‖g‖Lq(B).(4.4)

This show that ` is a bounded linear function on Lq0(B). By the Hahn-Banach
theorem, it can be extended to Lq(B) without increasing its norm.

When q ∈ (1, ∞), noticing the fact that the duality of Lq(B) is Lq
′
(B), we

know that there exists a ξ ∈ Lq′(B) such that, for any f ∈ Lq0(B),

`(f) =

∫
B

f(x)ξ(x) dx.

When q =∞, it’s easy to see that there exists a ξ ∈ Lq′(B) such that, for any
f ∈ L∞0 (B),

`(f) =

∫
B

f(x)ξ(x) dx.

Therefore, for any q ∈ (1, ∞], it’s easy to see that there exists a ξ ∈ Lq′(B)
such that, for any f ∈ Lq0(B),

`(f) =

∫
B

f(x)ξ(x) dx.

Let q ∈ (1, ∞]. Now we prove that, if there exists another function ξ′ ∈
Lq
′
(B) such that, for any f ∈ Lq0(B) and

`(f) =

∫
B

f(x)ξ(x) dx,

then ξ′− ξ ∈ Ps(B). To prove this, we only need to prove that, if ξ, ξ′ ∈ L1(B)
such that, for any f ∈ L∞0 (B),

∫
B
f(x)ξ′(x) dx =

∫
B
f(x)ξ(x) dx, then ξ − ξ′ ∈

Ps(B). In fact, for any f ∈ L∞0 (B), we obtain

0 =

∫
B

[f(x)−AB(f)(x)][ξ′(x)− ξ(x)] dx

=

∫
B

f(x)[ξ′(x)− ξ(x)] dx−
∫
B

f(x)AB [ξ′(x)− ξ(x)] dx

=

∫
B

f(x)[ξ′(x)− ξ(x)−AB(ξ′ − ξ)(x)] dx.

Therefore, for a.e. x ∈ B ⊂ B, we have

ξ′(x)− ξ(x) = AB(ξ′ − ξ)(x).

Hence ξ′−ξ ∈ Ps(B). From this, we see that, for any q ∈ (1, ∞] and f ∈ Lq0(B),

there exists a unique ξ ∈ Lq′(B)/Ps(B) such that

`(f) =

∫
B

f(x)ξ(x) dx.



382 W. WANG

If q ∈ (1, ∞], for any j ∈ N and g ∈ Lq0(Bj) with q ∈ (1, ∞], let fj ∈
Lq
′
(B)/Ps(B) be a unique function such that

`(g) =

∫
Bj

fj(x)g(x) dx.

Then, we see that, for any i, j ∈ N with i < j, fj |Bi = fi. From this and the

fact that, for any g ∈ (H
p(·), q, s
A )∗, there exists a j0 ∈ N such that g ∈ Lq0(Bj0).

Thus, for any g ∈ (H
p(·), q, s
A )∗, we have

`(g) =

∫
B

b(x)g(x) dx,(4.5)

where b(x) := fj(x) with x ∈ Bj .
Next we need to show that b ∈ Lp(·), q

′, s
A . From (4.5) and (4.4), we conclude

that, for any q ∈ (1, ∞], B ∈ B,

‖b‖(Lq0(B))∗ ≤
‖χB‖Lp(·)
|B|1/q

‖`‖
(H

p(·), q, s
A )∗

.(4.6)

Moreover, by [2, (8.12)], we know that

‖b‖(Lq0(B))∗ = inf
P∈Ps

‖b− P‖(Lq′ (B)).

From this and (4.6), we conclude that, for any q ∈ (1, ∞],

‖b‖Lp(·), q′, sA

= sup
B∈B

|B|1/q

‖χB‖Lp(·)
inf
P∈Ps

‖b− P‖(Lq′ (B))

= sup
B∈B

|B|1/q

‖χB‖Lp(·)
‖b‖(Lq0(B))∗

≤ ‖`‖
(H

p(·), q, s
A )∗

<∞.

This finishes the proof of Theorem 4.4. �
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