DOI QR코드

DOI QR Code

FINITE TIME BLOW UP OF SOLUTIONS FOR A STRONGLY DAMPED NONLINEAR KLEIN-GORDON EQUATION WITH VARIABLE EXPONENTS

  • Received : 2018.07.09
  • Accepted : 2018.11.06
  • Published : 2018.12.25

Abstract

This paper, we investigate a strongly damped nonlinear Klein-Gordon equation with nonlinearities of variable exponent type $$u_{tt}-{\Delta}u-{\Delta}u_t+m^2u+{\mid}u_t{\mid}^{p(x)-2}u_t={\mid}u{\mid}^{q(x)-2}u$$ associated with initial and Dirichlet boundary conditions in a bounded domain. We obtain a nonexistence of solutions if variable exponents p (.), q (.) and initial data satisfy some conditions.

Keywords

References

  1. Y. Chen, S. Levine, M. Rao, Variable Exponent, Linear Growth Functionals in Image Restoration, SIAM Journal on Applied Mathematics, 66(2006) 1383-1406. https://doi.org/10.1137/050624522
  2. L. Diening, P. Hasto, P. Harjulehto, M.M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, 2011.
  3. J. Esquivel-Avila, Remarks on the qualitative behavior of the undamped Klein-Gordon equation, Math. Meth. Appl. Sci. (2017) 1-9.
  4. X.L. Fan, J.S. Shen, D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001) 749-760.
  5. V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source term, J. Differ. Equations, 109 (1994) 295-308. https://doi.org/10.1006/jdeq.1994.1051
  6. O. Kovacik , J. Rakosnik, On spaces $L^{p(x)}(\Omega)$, and $W^{k,p(x)}(\Omega)$, Czechoslovak Mathematical Journal, 41(116) (1991) 592-618.
  7. S.A. Messaoudi, A.A. Talahmeh, J.H. Al-Shail, Nonlinear damped wave equation: Existence and blow-up, Comp. Math. Appl., 74 (2017) 3024-3041. https://doi.org/10.1016/j.camwa.2017.07.048
  8. E. Piskin, Sobolev Spaces, Seckin Publishing, 2017. (in Turkish).
  9. X. Runzhang, Global existence, blow up and asymptotic behaviour of solutions for nonlinear Klein-Gordon equation with dissipative term, Math. Meth. Appl. Sci. 33 (2010) 831-844.
  10. M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer (2000).