Browse > Article
http://dx.doi.org/10.4134/JKMS.j170540

BOUNDEDNESS OF THE COMMUTATOR OF THE INTRINSIC SQUARE FUNCTION IN VARIABLE EXPONENT SPACES  

Wang, Liwei (School of Mathematics and Physics Anhui Polytechnic University)
Publication Information
Journal of the Korean Mathematical Society / v.55, no.4, 2018 , pp. 939-962 More about this Journal
Abstract
In this paper, we show that the commutator of the intrinsic square function with BMO symbols is bounded on the variable exponent Lebesgue spaces $L^{p({\cdot})}({\mathbb{R}}^n)$ applying a generalization of the classical Rubio de Francia extrapolation. As a consequence we further establish its boundedness on the variable exponent Morrey spaces $\mathcal{M_{p({\cdot}),u}$, Morrey-Herz spaces $M{\dot{K}}^{{\alpha}({\cdot}),{\lambda}}_{q,p({\cdot})}({\mathbb{R}}^n)$ and Herz type Hardy spaces $H{\dot{K}}^{{\alpha}({\cdot}),q}_{p({\cdot})}({\mathbb{R}}^n)$, where the exponents ${\alpha}({\cdot})$ and $p({\cdot})$ are variable. Observe that, even when ${\alpha}({\cdot}){\equiv}{\alpha}$ is constant, the corresponding main results are completely new.
Keywords
the intrinsic square function; commutator; variable exponents; Morrey spaces; Herz type spaces;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Almeida and D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl. 394 (2012), no. 2, 781-795.   DOI
2 Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406.   DOI
3 D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical Harmonic Analysis, Birkhauser, Springer, Heidelberg, 2013.
4 D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223-238.
5 D. Cruz-Uribe, SFO, A. Fiorenza, J. Martell, and C. Perez, The boundedness of classical operators on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239-264.
6 L. Diening, Maximal function on generalized Lebesgue spaces $L^{p({\cdot})}$, Math. Inequal. Appl. 7 (2004), no. 2, 245-253.
7 L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), no. 8, 657-700.   DOI
8 L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.
9 B. Dong and J. Xu, Variable exponent Herz type Hardy spaces and their applications, Anal. Theory Appl. 31 (2015), no. 4, 321-353.
10 D. Drihem and F. Seghiri, Notes on the Herz-type Hardy spaces of variable smoothness and integrability, Math. Inequal. Appl. 19 (2016), no. 1, 145-165.
11 C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.   DOI
12 C. Fefferman and E. M. Stein, $Hp$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193.   DOI
13 V. Guliyev, M. Omarova, and Y. Sawano, Boundedness of intrinsic square functions and their commutators on generalized weighted Orlicz-Morrey spaces, Banach J. Math. Anal. 9 (2015), no. 2, 44-62.   DOI
14 K.-P. Ho, Atomic decompositions of weighted Hardy-Morrey spaces, Hokkaido Math. J. 42 (2013), no. 1, 131-157.   DOI
15 Y. Han, M.-Y. Lee, and C.-C. Lin, Atomic decomposition and boundedness of operators on weighted Hardy spaces, Canad. Math. Bull. 55 (2012), no. 2, 303-314.   DOI
16 P. Harjulehto, P. Hasto, U. V. Le, and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal. 72 (2010), no. 12, 4551-4574.   DOI
17 K.-P. Ho, The fractional integral operators on Morrey spaces with variable exponent on unbounded domains, Math. Inequal. Appl. 16 (2013), no. 2, 363-373.
18 K.-P. Ho, Intrinsic square functions on Morrey and block spaces with variable exponents, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 3, 995-1010.   DOI
19 Y. Hu and Y. Wang, The commutators of intrinsic square functions on weighted Herz spaces, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 4, 1421-1437.   DOI
20 M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo (2) 59 (2010), no. 3, 461-472.   DOI
21 S. Lu, D. Yang, and G. Hu, Herz Type Spaces and Their Applications, Science Press, Beijing, 2008.
22 M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J. 40 (2010), no. 3, 343-355.
23 O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41 (1991), 592-618.
24 A. K. Lerner, Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals, Adv. Math. 226 (2011), no. 5, 3912-3926.   DOI
25 Y. Liang and D. Yang, Intrinsic square function characterizations of Musielak-Orlicz Hardy spaces, Trans. Amer. Math. Soc. 367 (2015), no. 5, 3225-3256.   DOI
26 S. Lu and L. Xu, Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces, Hokkaido Math. J. 34 (2005), no. 2, 299-314.   DOI
27 Y. Lu and Y. P. Zhu, Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents, Czechoslovak Math. J. 64(139) (2014), no. 4, 969-987.   DOI
28 E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665-3748.   DOI
29 A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}$ (${\mathbb{R}}$), Math. Inequal. Appl. 7 (2004), no. 2, 255-265.
30 M. Ruzicka, Electrorheological Fluids: modeling and mathematical theory, Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000.
31 J. Tan, Z. Liu, and J. Zhao, On some multilinear commutators in variable Lebesgue spaces, J. Math. Inequal. 11 (2017), no. 3, 715-734.
32 A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure and Applied Mathematics, 123, Academic Press, Inc., Orlando, FL, 1986.
33 M. Wilson, The intrinsic square function, Rev. Mat. Iberoam. 23 (2007), no. 3, 771-791.
34 H. Wang, Intrinsic square functions on the weighted Morrey spaces, J. Math. Anal. Appl. 396 (2012), no. 1, 302-314.   DOI
35 H. Wang, Endpoint estimates for commutators of intrinsic square functions in Morrey type spaces, Math. Inequal. Appl. 18 (2015), no. 3, 801-826.
36 H. Wang, Commutators of singular integral operator on Herz-type Hardy spaces with variable exponent, J. Korean Math. Soc. 54 (2017), no. 3, 713-732.   DOI
37 H. Wang and H. Liu, The intrinsic square function characterizations of weighted Hardy spaces, Illinois J. Math. 56 (2012), no. 2, 367-381.
38 H. Wang and Z. Liu, The Herz-type Hardy spaces with variable exponent and their applications, Taiwanese J. Math. 16 (2012), no. 4, 1363-1389.   DOI
39 M. Wilson, Weighted Littlewood-Paley Theory and Exponential-Square integrability, Lecture Notes in Mathematics, 1924, Springer, Berlin, 2008.
40 X. Yan, D. Yang, W. Yuan, and C. Zhuo, Variable weak Hardy spaces and their applications, J. Funct. Anal. 271 (2016), no. 10, 2822-2887.   DOI
41 D. Yang, C. Zhuo, and E. Nakai, Characterizations of variable exponent Hardy spaces via Riesz transforms, Rev. Mat. Complut. 29 (2016), no. 2, 245-270.   DOI
42 D. Yang, C. Zhuo, and W. Yuan, Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal. 9 (2015), no. 4, 146-202.   DOI
43 D. Yang, C. Zhuo, and W. Yuan, Besov-type spaces with variable smoothness and integrability, J. Funct. Anal. 269 (2015), no. 6, 1840-1898.   DOI
44 C. Zhuo, Y. Sawano, and D. Yang, Hardy spaces with variable exponents on RD-spaces and applications, Dissertationes Math. (Rozprawy Mat.) 520 (2016), 74 pp.
45 C. Zhuo, D. Yang, and Y. Liang, Intrinsic square function characterizations of Hardy spaces with variable exponents, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 4, 1541-1577.   DOI