WEIERSTRASS POINTS ON $\Gamma_{0}(p)$ AND ITS APPLICATION

Dohoon Choi

Abstract

In this note, we study arithmetic properties for the exponents of modular forms on $\Gamma_{0}(p)$ for primes p. Our aim is to refine the result of [4] by using the geometric property of the modular curve of $\Gamma_{0}(p)$.

1. Introduction and results

Let $\theta:=\frac{1}{2 \pi i} \frac{d}{d z}$. This operator is called as the Ramanujan theta operator and plays important roles in number theory. Let N be a positive integer. Suppose $f(z)$ are modular forms on $\Gamma_{0}(N)$. When $N=1$, Bruinier, Kohnen, and Ono studied in [3] the images of modular forms under the Ramanujan theta operator. They also provided a relation between the infinite product expansion of a modular form and the values of a certain meromorphic modular function at points in the divisor of f. These results were extended to modular forms on the genus zero congruence subgroups in [1] and [5]. The author obtained in [4] analogues of these results for modular forms on $\Gamma_{0}(p)$, where p is a prime. In this note, our aim is to refine the result of [4] by using the geometric property of the modular curve of $\Gamma_{0}(p)$.

Let p be a prime and g be the genus of $\Gamma_{0}(p)$. Let \mathbb{H} denote the complex upper half plane. A modular curve $X_{0}(p)$ is defined by

$$
X_{0}(p):=\Gamma_{0}(p) \backslash \mathbb{H} \cup \mathbb{Q} \cup\{\infty\} .
$$

Note that ∞ is not a Weierstrass point on $X_{0}(p)$ whose genus is larger than 1. This implies that for each integer $m \geq g+1$ there exists a unique modular function $j_{p, m}(z)=q^{-m}+O\left(q^{-g}\right)$ that has its only pole at ∞ and a zero at the cusp 0 (see Section 2 for details). Let l_{τ} be the order of isotropic subgroup of $\Gamma_{0}(p)$ at $\tau \in \mathbb{H}$. The order of zero or pole of f at $\tau \in \mathbb{H}$ is denoted by $\nu_{\tau}^{(p)}(f)$ and has the form

$$
\nu_{\tau}^{(p)}(f)=\frac{1}{l_{\tau}} \operatorname{ord}_{\tau}(f)
$$

where $\operatorname{ord}_{\tau}(f)$ denotes the order of zero or pole of f at τ as a complex function on \mathbb{H}. With these notations, we state our first theorem.

Received March 1, 2008.
2000 Mathematics Subject Classification. Primary 11F11; Secondary 11F33.
Key words and phrases. modular forms, one variable, congruences for modular forms.
This work was supported by 2007 Korea Aerospace University Faculty Research Grant.

Theorem 1. Suppose that $f(z):=q^{h} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{c(n)}$ is a normalized modular form of weight k on $\Gamma_{0}(p)$ and that the genus of $\Gamma_{0}(p)$ is larger than 1. Then

$$
\sum_{m \geq g+1} \sum_{\tau \in \mathcal{H}_{p}} \nu_{\tau}^{(p)}(f(z)) j_{p, m}(\tau) q^{m}
$$

is a meromorphic modular form of weight 2. Moreover,

$$
\begin{aligned}
f_{\theta}(z):= & \frac{\theta f(z)}{f(z)}-\frac{k}{12} E_{2}(z)+\sum_{m \geq g+1} \sum_{\tau \in \mathcal{H}_{p}} \nu_{\tau}^{(p)}(f(z)) j_{p, m}(\tau) q^{m} \\
& +\left(\frac{k}{12}-h\right) \frac{1}{p-1}\left(p E_{2}(p z)-E_{2}(z)\right)
\end{aligned}
$$

is a cusp form of weight 2 on $\Gamma_{0}(p)$.
Remark 1.1. The main difference of our result from [4] is the definition of $j_{p, m}$. In [4], $j_{p, m}$ is defined by the sum of eta-quotients. Following the definition of $j_{p, m}$ in [4], we have that

$$
\sum_{m \geq g+1} \sum_{\tau \in \mathcal{H}_{p}} \nu_{\tau}^{(p)}(f(z)) j_{p, m}(\tau) q^{m}
$$

is not a modular form in general.
Let K be the number field and \mathcal{O}_{K} denote the ring of integers in K. Using Theorem 1, we have the following congruence for the exponents of modular forms.

Theorem 2. Let $f(z):=q^{h} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{c(n)} \in \mathcal{O}_{K}[[q]]$ be a normalized modular form of weight k on $\Gamma_{0}(p)$ and $\beta \nmid(p-1)$ denote a prime ideal of \mathcal{O}_{K}. Suppose that f_{θ} is β-integral, and that s is a positive integer, and that the genus of $\Gamma_{0}(p)$ is larger than 1. Then for almost all m coprime to p

$$
\begin{aligned}
\sum_{d \mid m} d \cdot c(d) \equiv & \sum_{\tau \in \mathcal{H}_{p}} \nu_{\tau}^{(p)}(f(z)) j_{p, m}(\tau) \\
& +\frac{2 p k-24 h}{p-1} \sigma_{1}(m)+\frac{24 h-2 k}{p-1} p \sigma_{1}(m / p) \quad\left(\bmod \beta^{s}\right)
\end{aligned}
$$

where $\sigma_{k}(n):=\sum_{d \mid n} d^{k}$.
Remark 1.2. In Theorem 2, we mean "almost all" in the sense of density (i.e.,

$$
\begin{aligned}
x \sim \sharp\{0 \leq m \leq x \mid & \sum_{d \mid m} d \cdot c(d) \equiv \sum_{\tau \in \mathcal{H}_{p}} \nu_{\tau}^{(p)}(f(z)) j_{p, m}(\tau) \\
& \left.\left.+\frac{2 p k-24 h}{p-1} \sigma_{1}(m)+\frac{24 h-2 k}{p-1} p \sigma_{1}(m / p) \quad\left(\bmod \beta^{s}\right)\right\}\right)
\end{aligned}
$$

Remark 1.3. Our method gives no information on the first g coefficients of $\frac{\theta f}{f}$. Thus, from the argument of this note we can not obtain an analogue for the recursive relations of the Fourier coefficients of modular forms in [3], [1] and [5].

2. Prerequisites

Suppose that p is a prime. The group $\Gamma_{0}(p)$ is the congruence subgroup of $S L_{2}(\mathbb{Z})$ defined as

$$
\Gamma_{0}(p)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0(\bmod p)\right\} .
$$

Let Γ denote $S L_{2}(\mathbb{Z})$ and \mathcal{F}_{p} be a fundamental domain for the action of $\Gamma_{0}(p)$ on \mathbb{H}. We denote the set of distinct cusps as S_{p},

$$
S_{p}=\{0, \infty\}
$$

From now on, we suppose that if t is a cusp point, then t is in S_{p}. The period of q-expansion at t is denoted by p_{t}, where p_{t} is given by the following way:

$$
p_{t}=1 \text { if } t=\infty \text { and } p_{t}=p \text { if } t=0
$$

Adjoining the cusps to $\Gamma_{0}(p) \backslash \mathbb{H}$, we obtain a compact Riemann surface $X_{0}(p)$. For $\tau \in \mathbb{H} \cup S_{p}$, let Q_{τ} be the image of τ by the canonical map from $\mathbb{H} \cup S_{p}$ to $X_{0}(p)$.

Suppose G is a meromorphic modular form of weight 2 on $\Gamma_{0}(p)$. The residue of G at Q_{τ} on $X_{0}(p)$, denoted by $\operatorname{Res}_{Q_{\tau}} G d z$, is well defined since we have the canonical correspondence between a meromorphic modular form of weight 2 on $\Gamma_{0}(p)$ and a meromorphic 1-form of $X_{0}(p)$. If $\operatorname{Res}_{\tau} G$ denotes the residue of G at τ on \mathbb{H}, then for $\tau \in \mathbb{H}$ we obtain

$$
\operatorname{Res}_{Q_{\tau}} G d z=\frac{1}{l_{\tau}} \operatorname{Res}_{\tau} G .
$$

Here, l_{τ} is the order of isotropy group at τ. Especially, if f is a meromorphic modular form of weight k on $\Gamma_{0}(p)$ and $G=\frac{\theta f}{f}$, then the residue of G at Q_{τ} on $\tau \in \mathbb{H}$ is computed with the order of zero or pole of f at $\tau \in \mathbb{H}$. The order of zero or pole of f at $\tau \in \mathbb{H}$ is denoted by $\nu_{\tau}^{(p)}(f)$ and has the form

$$
\nu_{\tau}^{(p)}(f)=\frac{1}{l_{\tau}} \operatorname{ord}_{\tau}(f)
$$

where $\operatorname{ord}_{\tau}(f)$ denotes the order of zero or pole of f at τ as a complex function on \mathbb{H}. Then we have

$$
\begin{equation*}
2 \pi i \cdot \operatorname{Res}_{Q_{\tau}} \frac{\theta f}{f}=\nu_{\tau}^{(p)}(f) \tag{2.1}
\end{equation*}
$$

We introduce some notations to formulate $\operatorname{Res}_{Q_{t}} G d z$ at every cusp t. First, recall the usual slash operator $\left.f(z)\right|_{k} \gamma$ given as

$$
\left.f(z)\right|_{k} \gamma=\operatorname{det}(\gamma)^{\frac{k}{2}}(c z+d)^{-k} f(\gamma z)
$$

where $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}^{+}(\mathbb{Q})$ and γz denotes $\frac{a z+b}{c z+d}$. From now on, q denotes $e^{2 \pi i z}$. We define a matrix $\gamma_{t}^{(p)}$ as the following way;

$$
\begin{array}{ll}
\gamma_{t}^{(p)}:=\left(\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right) & \text { if } t=0 \\
\gamma_{t}^{(p)}:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \text { if } t=\infty
\end{array}
$$

If G has the Fourier expansion of the form at each cusps

$$
\left.G(z)\right|_{2} \gamma_{t}^{(p)}=\sum_{n=m_{t}}^{\infty} a_{t}(n) q^{n} \text { at } \infty
$$

then we have

$$
\begin{equation*}
\operatorname{Res}_{Q_{t}} G d z=\frac{a_{t}(0)}{2 \pi i} \text { for } t \in S_{p} \tag{2.2}
\end{equation*}
$$

Now, we recall the definition of Weierstrass point. Let X be a compact Riemann surface with the genus g. At a given point P of a Riemann surface X, genus g, we say that m is a gap if no function exists with a pole of order m at P and regular elsewhere on X. It is known that there are just g gaps at P, and that these satisfy $1 \leq m \leq 2 g-1$; moreover except for finitely many P, the gaps are just the integers 1 to g. Those exceptional P for which this is not so are called Weierstrass points of X. It is known that the point ∞ on $X_{0}(p)$ is not a Weierstrass point (see [8]). So, for each integer $m \geq g+1$ there exists a modular function on $\Gamma_{0}(p)$ such that $\operatorname{ord}_{\infty}\left(F_{m}(z)\right)=-m$ and that $F_{m}(z)$ is holomorphic elsewhere on $X_{0}(p)$. Using $F_{j}(z)$ for $g+1 \leq j \leq m$, we can construct a modular function $G_{m}(z)$ on $X_{0}(p)$ satisfying the followings:

- $G_{m}(z)=q^{-m}+O\left(q^{-g}\right)$,
- $\operatorname{ord}_{0}\left(G_{m}(z)\right) \geq 1$,
- $G_{m}(z)$ is holomorphic on $X_{0}(p)$ except ∞.

Moreover, $G_{m}(z)$ is uniquely determined by its properties.

3. Proofs

We begin by stating a lemma which was proved by Eholzer and Skoruppa in [6].

Lemma 3.1. Suppose that $f=\sum_{n=h}^{\infty} a(n) q^{n}$ is a meromorphic modular function in a neighborhood of $q=0$ and that $a(h)=1$. Then there are uniquely determined complex number $c(n)$ such that

$$
f=q^{h} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{c(n)}
$$

where the product converges in a small neighborhood of $q=0$. Moreover, the following identity is true

$$
\frac{\theta f}{f}=h-\sum_{n \geq 1} \sum_{d \mid n} c(d) d q^{n}
$$

Proof of Theorem 1. Let

$$
F(z)=\frac{\theta f(z)}{f(z)}-\frac{k}{12} E_{2}(z)+\left(\frac{k}{12}-h\right) \frac{1}{p-1}\left(p E_{2}(p z)-E_{2}(z)\right) .
$$

Here, $E_{2}(z)$ is the usual normalized Eisenstein series of weight 2 defined by

$$
E_{2}(z)=1-24 \sum_{n \geq 1} \sigma_{1}(n) q^{n}
$$

The function $F(z)$ is a meromorphic modular form of weight 2 on $\Gamma_{0}(p)$ and has the q-expansion of the form

$$
F(z)=\sum_{n=1}^{\infty} a_{F}(n) q^{n} .
$$

Since ∞ is not a Weierstrass point on $X_{0}(p)$ for each integer $v, 1 \leq v \leq g$, there exits a cusp form $w(z)$ of weight 2 such that $\operatorname{ord}_{\infty}(w)=v$ (see [7] or [2]). So, we can choose a cusp form $g(z):=\sum_{n=1}^{\infty} a_{g}(n)$ of weight 2 such that $a_{g}(n)=a_{F}(n)$ for $1 \leq n \leq g$.

Let $F^{\prime}(z)=F(z)-g(z)$. Its Fourier expansion at $t \in S_{N}$ is given by

$$
\begin{aligned}
& \left.F^{\prime}(z)\right|_{2} \gamma_{t}^{(p)}=\left.\left(\frac{\theta f(z)}{f(z)}\right)\right|_{2} \gamma_{t}^{(p)}+\left.\frac{p(k-12 h)}{12(p-1)} E_{2}(p z)\right|_{2} \gamma_{t}^{(p)} \\
& -\left.\frac{p k-12 h}{12(p-1)} E_{2}(z)\right|_{2} \gamma_{t}^{(p)}-\left.g(z)\right|_{2} \gamma_{t}^{(p)} \\
& =\frac{\theta\left(\left.f\right|_{k} \gamma_{t}^{(p)}\right)}{\left.f\right|_{k} \gamma_{t}^{(p)}}+\left.\frac{p(k-12 h)}{12(p-1)} E_{2}(p z)\right|_{2} \gamma_{t}^{(p)} \\
& -\left.\frac{p k-12 h}{12(p-1)} E_{2}(z)\right|_{2} \gamma_{t}^{(p)}-\left.g(z)\right|_{2} \gamma_{t}^{(p)} .
\end{aligned}
$$

Since $F^{\prime}(z) j_{p, m}(z) d z$ is a meromorphic 1-form on $X_{0}(p)$, we obtain from (2.2) that

$$
\begin{aligned}
& 2 \pi i \operatorname{Res}_{Q_{\infty}} F^{\prime}(z) j_{p, m}(z) d z \\
= & -a_{g}(m)-\left(\sum_{d \mid m} c_{t}(d) d\right)+\frac{2 p k-24 h}{p-1} \sigma_{1}(m)+\frac{24 h-2 k}{p-1} p \sigma_{1}(m / p),
\end{aligned}
$$

and that $2 \pi i \operatorname{Res}_{Q_{0}} F^{\prime}(z) j_{p, m}(z) d z=0$ since $\operatorname{ord}_{0}\left(j_{p, m}(z)\right) \geq 1$ and $F^{\prime}(z)$ is holomorphic at 0 . Next we compute $\operatorname{Res}_{Q_{\tau}} F^{\prime}(z) j_{p, m}(z) d z$ for $\tau \in \mathbb{H}$. For each $\tau \in \mathbb{H}$, we obtain that from (2.1)

$$
2 \pi i \operatorname{Res}_{Q_{\tau}} F^{\prime}(z) j_{p, m}(z) d z=2 \pi i \frac{1}{l_{\tau}} \operatorname{Res}_{\tau} \frac{\theta f(z)}{f(z)} j_{p, m}(z)=\nu_{\tau}^{(N)}(f) j_{p, m}(z)
$$

since $E_{2}(z)$ and $j_{p, m}(z)$ are holomorphic on \mathbb{H}.
The residue theorem implies that

$$
2 \pi i \sum_{Q_{\tau} \in X_{0}(N)} \operatorname{Res}_{Q_{\tau}} F^{\prime}(z) j_{p, m}(z) d z=0
$$

since $X_{0}(N)$ is a compact Riemann surface. Thus, we have

$$
\begin{aligned}
& -\sum_{m \geq g+1} \sum_{\tau \in \mathcal{H}_{p}} \nu_{\tau}^{(p)}(f(z)) j_{p, m}(\tau) q^{m} \\
= & F^{\prime}(z)=F(z)-g(z) \\
= & \frac{\theta f(z)}{f(z)}-g(z)+\frac{-k p+12 h}{12(p-1)} E_{2}(z)+\frac{-12 h+k}{12(p-1)} p E_{2}(p z) .
\end{aligned}
$$

Therefore, this completes the proof.
To prove Theorem 2 we need the following proposition.
Proposition 3.2 (Serre [9], Corollaire du Théorème 1). Let

$$
f(z)=\sum_{n=0}^{\infty} c_{f}(n) q^{n / M}, M \geq 1
$$

be a modular form of integral weight $k \geq 1$ on a congruence subgroup of $S L_{2}(\mathbb{Z})$, and suppose that the coefficients $c_{f}(n)$ lie in the ring of integers of an algebraic number field K. Then for any integer $m \geq 1$,

$$
c_{f}(n) \equiv 0 \quad(\bmod m)
$$

for almost all n.
Proof of Theorem 2. Theorem 1 implies that

$$
\begin{aligned}
g(z):= & \sum_{m \geq g+1} \sum_{\tau \in \mathcal{H}_{p}} \nu_{\tau}^{(p)}(f(z)) j_{p, m}(\tau) q^{m}+\frac{\theta f(z)}{f(z)} \\
& +\frac{-k p+12 h}{12(p-1)} E_{2}(z)+\frac{-12 h+k}{12(p-1)} p E_{2}(p z)
\end{aligned}
$$

is a cusp form. From the assumption the coefficients of $g(z)$ are β-integral. Applying Proposition 3.2 to $g(z)$, we complete the proof.

References

[1] S. Ahlgren, The theta-operator and the divisors of modular forms on genus zero subgroups, Math. Res. Lett. 10 (2003), 787-798.
[2] S. Ahlgren and K. Ono Weierstrass points on $X_{0}(p)$ and supersingular j-invariants, Math. Ann. 325 (2003), no. 2, 355-368.
[3] J. Bruinier, W. Kohnen, and K. Ono, The arithmetic of the values of modular functions and the divisors of modular forms, Compos. Math. 140 (2004), 552-566.
[4] D. Choi, On values of a modular form on $\Gamma_{0}(N)$, Acta Arith. 121 (2006), no. 4, 299-311.
[5] S. Choi, The values of modular functions and modular forms, Canad. Math. Bull. 49 (2006), no. 4, 526-535.
[6] W. Eholzer and N.-P. Skoruppa, Product expansions of conformal characters, Phys. Lett. B 388 (1996), no. 1, 82-89.
[7] H. M. Farkas and I. Kra, Riemann Surfaces, Springer-Verlag, New York, 1992.
[8] A. Ogg, On the Weierstrass points of $X_{0}(N)$, Illinois J. Math. 22 (1978), no. 1, 31-35.
[9] J.-P. Serre, Divisibilite des coefficients des formes modulaires de poids entier, C. R. Acad. Sci. Paris Ser. A 279 (1974), 679-682.

School of Liberal Arts and Sciences
Korea Aerospace University
Gyeonggi 412-791, Korea
E-mail address: choija@kau.ac.kr

