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WEIERSTRASS POINTS ON Γ0(p) AND ITS APPLICATION

Dohoon Choi

Abstract. In this note, we study arithmetic properties for the exponents
of modular forms on Γ0(p) for primes p. Our aim is to refine the result

of [4] by using the geometric property of the modular curve of Γ0(p).

1. Introduction and results

Let θ := 1
2πi

d
dz . This operator is called as the Ramanujan theta operator

and plays important roles in number theory. Let N be a positive integer.
Suppose f(z) are modular forms on Γ0(N). When N = 1, Bruinier, Kohnen,
and Ono studied in [3] the images of modular forms under the Ramanujan theta
operator. They also provided a relation between the infinite product expansion
of a modular form and the values of a certain meromorphic modular function
at points in the divisor of f . These results were extended to modular forms on
the genus zero congruence subgroups in [1] and [5]. The author obtained in [4]
analogues of these results for modular forms on Γ0(p), where p is a prime. In
this note, our aim is to refine the result of [4] by using the geometric property
of the modular curve of Γ0(p).

Let p be a prime and g be the genus of Γ0(p). Let H denote the complex
upper half plane. A modular curve X0(p) is defined by

X0(p) := Γ0(p)\H ∪ Q ∪ {∞}.
Note that ∞ is not a Weierstrass point on X0(p) whose genus is larger than
1. This implies that for each integer m ≥ g + 1 there exists a unique modular
function jp,m(z) = q−m +O (q−g) that has its only pole at ∞ and a zero at the
cusp 0 (see Section 2 for details). Let lτ be the order of isotropic subgroup of
Γ0(p) at τ ∈ H. The order of zero or pole of f at τ ∈ H is denoted by ν

(p)
τ (f)

and has the form
ν(p)

τ (f) =
1
lτ

ordτ (f),

where ordτ (f) denotes the order of zero or pole of f at τ as a complex function
on H. With these notations, we state our first theorem.
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Theorem 1. Suppose that f(z) := qh
∏∞

n=1(1−qn)c(n) is a normalized modular
form of weight k on Γ0(p) and that the genus of Γ0(p) is larger than 1. Then∑

m≥g+1

∑
τ∈Hp

ν(p)
τ (f(z))jp,m(τ)qm

is a meromorphic modular form of weight 2. Moreover,

fθ(z) :=
θf(z)
f(z)

− k

12
E2(z) +

∑
m≥g+1

∑
τ∈Hp

ν(p)
τ (f(z))jp,m(τ)qm

+
(

k

12
− h

)
1

p − 1
(pE2(pz) − E2(z))

is a cusp form of weight 2 on Γ0(p).

Remark 1.1. The main difference of our result from [4] is the definition of jp,m.
In [4], jp,m is defined by the sum of eta-quotients. Following the definition of
jp,m in [4], we have that ∑

m≥g+1

∑
τ∈Hp

ν(p)
τ (f(z))jp,m(τ)qm

is not a modular form in general.

Let K be the number field and OK denote the ring of integers in K. Using
Theorem 1, we have the following congruence for the exponents of modular
forms.

Theorem 2. Let f(z) := qh
∏∞

n=1(1− qn)c(n) ∈ OK [[q]] be a normalized mod-
ular form of weight k on Γ0(p) and β - (p − 1) denote a prime ideal of OK .
Suppose that fθ is β-integral, and that s is a positive integer, and that the genus
of Γ0(p) is larger than 1. Then for almost all m coprime to p∑

d|m

d · c(d) ≡
∑

τ∈Hp

ν(p)
τ (f(z))jp,m(τ)

+
2pk − 24h

p − 1
σ1(m) +

24h − 2k

p − 1
pσ1(m/p) (mod βs),

where σk(n) :=
∑

d|n dk.

Remark 1.2. In Theorem 2, we mean “almost all” in the sense of density (i.e.,

x ∼ ♯{0 ≤ m ≤ x |
∑
d|m

d · c(d) ≡
∑

τ∈Hp

ν(p)
τ (f(z))jp,m(τ)

+
2pk − 24h

p − 1
σ1(m) +

24h − 2k

p − 1
pσ1(m/p) (mod βs)}).

Remark 1.3. Our method gives no information on the first g coefficients of θf
f .

Thus, from the argument of this note we can not obtain an analogue for the
recursive relations of the Fourier coefficients of modular forms in [3], [1] and
[5].
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2. Prerequisites

Suppose that p is a prime. The group Γ0(p) is the congruence subgroup of
SL2(Z) defined as

Γ0(p) =
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod p)

}
.

Let Γ denote SL2(Z) and Fp be a fundamental domain for the action of Γ0(p)
on H. We denote the set of distinct cusps as Sp,

Sp = {0,∞} .

From now on, we suppose that if t is a cusp point, then t is in Sp. The period
of q-expansion at t is denoted by pt, where pt is given by the following way:

pt = 1 if t = ∞ and pt = p if t = 0.

Adjoining the cusps to Γ0(p)\H, we obtain a compact Riemann surface X0(p).
For τ ∈ H∪ Sp, let Qτ be the image of τ by the canonical map from H∪ Sp to
X0(p).

Suppose G is a meromorphic modular form of weight 2 on Γ0(p). The residue
of G at Qτ on X0(p), denoted by ResQτ Gdz, is well defined since we have the
canonical correspondence between a meromorphic modular form of weight 2 on
Γ0(p) and a meromorphic 1-form of X0(p). If ResτG denotes the residue of G
at τ on H, then for τ ∈ H we obtain

ResQτ Gdz =
1
lτ

ResτG.

Here, lτ is the order of isotropy group at τ . Especially, if f is a meromorphic
modular form of weight k on Γ0(p) and G = θf

f , then the residue of G at Qτ

on τ ∈ H is computed with the order of zero or pole of f at τ ∈ H. The order
of zero or pole of f at τ ∈ H is denoted by ν

(p)
τ (f) and has the form

ν(p)
τ (f) =

1
lτ

ordτ (f),

where ordτ (f) denotes the order of zero or pole of f at τ as a complex function
on H. Then we have

(2.1) 2πi · ResQτ

θf

f
= ν(p)

τ (f).

We introduce some notations to formulate ResQtGdz at every cusp t. First,
recall the usual slash operator f(z)|k γ given as

f(z)|k γ = det(γ)
k
2 (cz + d)−kf (γz) ,

where γ =
(

a b
c d

)
∈ GL+

2 (Q) and γz denotes az+b
cz+d . From now on, q denotes

e2πiz. We define a matrix γ
(p)
t as the following way;

γ
(p)
t :=

(
0 −1
1 0

) (
p 0
0 1

)
if t = 0,

γ
(p)
t := ( 1 0

0 1 ) if t = ∞.
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If G has the Fourier expansion of the form at each cusps

G(z) |2 γ
(p)
t =

∞∑
n=mt

at(n)qn at ∞,

then we have

(2.2) ResQtGdz =
at(0)
2πi

for t ∈ Sp .

Now, we recall the definition of Weierstrass point. Let X be a compact
Riemann surface with the genus g. At a given point P of a Riemann surface
X, genus g, we say that m is a gap if no function exists with a pole of order m
at P and regular elsewhere on X. It is known that there are just g gaps at P ,
and that these satisfy 1 ≤ m ≤ 2g − 1; moreover except for finitely many P ,
the gaps are just the integers 1 to g. Those exceptional P for which this is not
so are called Weierstrass points of X. It is known that the point ∞ on X0(p)
is not a Weierstrass point (see [8]). So, for each integer m ≥ g + 1 there exists
a modular function on Γ0(p) such that ord∞(Fm(z)) = −m and that Fm(z)
is holomorphic elsewhere on X0(p). Using Fj(z) for g + 1 ≤ j ≤ m, we can
construct a modular function Gm(z) on X0(p) satisfying the followings:

• Gm(z) = q−m + O(q−g),
• ord0(Gm(z)) ≥ 1,
• Gm(z) is holomorphic on X0(p) except ∞.

Moreover, Gm(z) is uniquely determined by its properties.

3. Proofs

We begin by stating a lemma which was proved by Eholzer and Skoruppa
in [6].

Lemma 3.1. Suppose that f =
∑∞

n=h a(n)qn is a meromorphic modular func-
tion in a neighborhood of q = 0 and that a(h) = 1. Then there are uniquely
determined complex number c(n) such that

f = qh
∞∏

n=1

(1 − qn)c(n),

where the product converges in a small neighborhood of q = 0. Moreover, the
following identity is true

θf

f
= h −

∑
n≥1

∑
d|n

c(d)dqn.

Proof of Theorem 1. Let

F (z) =
θf(z)
f(z)

− k

12
E2(z) +

(
k

12
− h

)
1

p − 1
(pE2(pz) − E2(z)).
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Here, E2(z) is the usual normalized Eisenstein series of weight 2 defined by

E2(z) = 1 − 24
∑
n≥1

σ1(n)qn.

The function F (z) is a meromorphic modular form of weight 2 on Γ0(p) and
has the q-expansion of the form

F (z) =
∞∑

n=1

aF (n)qn.

Since ∞ is not a Weierstrass point on X0(p) for each integer v, 1 ≤ v ≤ g,
there exits a cusp form w(z) of weight 2 such that ord∞(w) = v (see [7] or
[2]). So, we can choose a cusp form g(z) :=

∑∞
n=1 ag(n) of weight 2 such that

ag(n) = aF (n) for 1 ≤ n ≤ g.
Let F ′(z) = F (z) − g(z). Its Fourier expansion at t ∈ SN is given by

F ′(z) |2 γ
(p)
t =

(
θf(z)
f(z)

)∣∣∣∣
2

γ
(p)
t +

p(k − 12h)
12(p − 1)

E2(pz)|2 γ
(p)
t

− pk − 12h

12(p − 1)
E2(z)|2 γ

(p)
t − g(z)|2γ(p)

t

=
θ(f |kγ

(p)
t )

f |kγ
(p)
t

+
p(k − 12h)
12(p − 1)

E2(pz)|2 γ
(p)
t

− pk − 12h

12(p − 1)
E2(z)|2 γ

(p)
t − g(z)|2γ(p)

t .

Since F ′(z)jp,m(z)dz is a meromorphic 1-form on X0(p), we obtain from (2.2)
that

2πiResQ∞F ′(z)jp,m(z)dz

= − ag(m) −

∑
d|m

ct(d)d

 +
2pk − 24h

p − 1
σ1(m) +

24h − 2k

p − 1
pσ1(m/p),

and that 2πiResQ0F
′(z)jp,m(z)dz = 0 since ord0(jp,m(z)) ≥ 1 and F ′(z) is

holomorphic at 0. Next we compute ResQτ F ′(z)jp,m(z)dz for τ ∈ H. For each
τ ∈ H, we obtain that from (2.1)

2πiResQτ F ′(z)jp,m(z)dz = 2πi
1
lτ

Resτ
θf(z)
f(z)

jp,m(z) = ν(N)
τ (f)jp,m(z)

since E2(z)and jp,m(z) are holomorphic on H.
The residue theorem implies that

2πi
∑

Qτ∈X0(N)

ResQτ F ′(z)jp,m(z)dz = 0
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since X0(N) is a compact Riemann surface. Thus, we have

−
∑

m≥g+1

∑
τ∈Hp

ν(p)
τ (f(z))jp,m(τ)qm

= F ′(z) = F (z) − g(z)

=
θf(z)
f(z)

− g(z) +
−kp + 12h
12(p − 1)

E2(z) +
−12h + k

12(p − 1)
pE2(pz).

Therefore, this completes the proof. ¤
To prove Theorem 2 we need the following proposition.

Proposition 3.2 (Serre [9], Corollaire du Théorème 1). Let

f(z) =
∞∑

n=0

cf (n)qn/M , M ≥ 1

be a modular form of integral weight k ≥ 1 on a congruence subgroup of SL2(Z),
and suppose that the coefficients cf (n) lie in the ring of integers of an algebraic
number field K. Then for any integer m ≥ 1,

cf (n) ≡ 0 (mod m)

for almost all n.

Proof of Theorem 2. Theorem 1 implies that

g(z) :=
∑

m≥g+1

∑
τ∈Hp

ν(p)
τ (f(z))jp,m(τ)qm +

θf(z)
f(z)

+
−kp + 12h

12(p − 1)
E2(z) +

−12h + k

12(p − 1)
pE2(pz)

is a cusp form. From the assumption the coefficients of g(z) are β-integral.
Applying Proposition 3.2 to g(z), we complete the proof. ¤
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