Browse > Article
http://dx.doi.org/10.14317/jami.2014.137

INFINITELY MANY SMALL SOLUTIONS FOR THE p(x)-LAPLACIAN OPERATOR WITH CRITICAL GROWTH  

Zhou, Chenxing (College of Mathematics, Changchun Normal University)
Liang, Sihua (College of Mathematics, Changchun Normal University)
Publication Information
Journal of applied mathematics & informatics / v.32, no.1_2, 2014 , pp. 137-152 More about this Journal
Abstract
In this paper, we prove, in the spirit of [3, 12, 20, 22, 23], the existence of infinitely many small solutions to the following quasilinear elliptic equation $-{\Delta}_{p(x)}u+{\mid}u{\mid}^{p(x)-2}u={\mid}u{\mid}^{q(x)-2}u+{\lambda}f(x,u)$ in a smooth bounded domain ${\Omega}$ of ${\mathbb{R}}^N$. We also assume that $\{q(x)=p^*(x)\}{\neq}{\emptyset}$, where $p^*(x)$ = Np(x)/(N - p(x)) is the critical Sobolev exponent for variable exponents. The proof is based on a new version of the symmetric mountainpass lemma due to Kajikiya [22], and property of these solutions are also obtained.
Keywords
p(x)-Laplacian; Generalized Lebesgue-Sobolev spaces; Symmetric mountain-pass lemma; Concentration-compactness principle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Acerbi, G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Rational Mech. Anal. 156 (2001) 121-140.   DOI
2 I. Andrei, Existence of solutions for a p(x)-Laplacian nonhomogeneous equations, E. J. Differential Equations Vol. 2009(2009), No.72, pp. 1-12.
3 Azorero Garcia J, Aloson Peral I., Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc. 323 (1991) 877-895.   DOI
4 Y. Chen, S. Levine and R. Rao, Functionals with p(x) growth in image processing, SIAM J. Appl. Math. 66 (2006) 1383-1406.   DOI   ScienceOn
5 X.L. Fan, D. Zhao, On the spaces $L^{p(x)}{\Omega}$) and $W^{m,p(x)}{\Omega}$), J. Math. Anal. Appl. 263 (2001) 424-446.   DOI   ScienceOn
6 X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}{\Omega}$), J. Math. Anal. Appl. 262 (2001) 749-760.   DOI   ScienceOn
7 X. L. Fan, Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 1843-1852.   DOI   ScienceOn
8 X. L. Fan, Q. H. Zhang, D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005) 306-317.   DOI   ScienceOn
9 X. L. Fan, X. Y. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in $\mathbb{R}^N$, Nonlinear Anal. 59 (2004) 173-188.
10 X. L. Fan, Global $C^{1,{\alpha}}$ regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007) 397-417.   DOI   ScienceOn
11 X. L. Fan, D. Zhao, On the generalized Orlicz-Sobolev space $W^{k,p(x)}{\Omega}$), J. Gansu Educ. College 12(1) (1998) 1-6.
12 J. Fernandez Bonder, A. Silva, The concentration-compactness principle for variable exponent spaces and applications, arXiv: 0906. 1992v2 [Math.AP].
13 Y. Fu, The principle of concentration compactness in $L^{p(x)}{\Omega}$) spaces and its application, Nonlinear Anal. 71 (2009) 1876-1892.   DOI   ScienceOn
14 Y. Q. Fu, Existence of solutions for p(x)-Laplacian problem on an unbounded domain, Topol. Methods Nonlinear Anal. 30 (2007) 235-249.
15 X. Zhang, Y. Q. Fu, Multiple solutions for a class of p(x)-Laplacian equations involving the critical exponent, Ann. Polon. Math. 98 (2010) 91-102.   DOI
16 Y. Q. Fu, X. Zhang, Multiple solutions for a class of p(x)-Laplacian equations in $\mathbb{R}^n$ involving the critical exponent, Proc. R. Soc. Lond. Ser. A, 466 (2010) 1667-1686.   DOI   ScienceOn
17 J. Chabrowski, Y. Q. Fu, Existence of Solutions for p(x)-Laplacian problems on a bounded domain, J. Math. Anal. Appl., 306 (2005) 604-618.   DOI   ScienceOn
18 N. Ghoussoub, C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Am. Math. Soc. 352 (2000) 5703-5743.   DOI   ScienceOn
19 T. C. Halsey, Electrorheological fluids, Science 258 (1992) 761-766.   DOI   ScienceOn
20 X. M. He, W. M. Zou, Infinitely many arbitrarily small solutions for sigular elliptic problems with critical Sobolev-Hardy exponents, Proc. Edinburgh Math. Society 52 (2009) 97-108.   DOI   ScienceOn
21 O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{1,p(x)}$, Czech. Math. J. 41 (1991) 592-618.
22 R. Kajikiya, A critical-point theorem related to the symmetric mountain-pass lemma and its applications to elliptic equations, J. Funct. Analysis 225 (2005) 352-370.   DOI   ScienceOn
23 S. Li, W. Zou, Remarks on a class of elliptic problems with critical exponents, Nonlin. Analysis 32 (1998) 769-774.   DOI   ScienceOn
24 P. H. Rabinowitz, Minimax methods in critical-point theory with applications to differential equations, CBME Regional Conference Series in Mathematics, Volume 65 (American Mathematical Society, Providence, RI, 1986).
25 G.B. Li, G. Zhang, Multiple solutions for the p&q-Laplacian problem with critical exponent, Acta Math. Scientia, 29B (2009) 903-918.   DOI   ScienceOn
26 P. L. Lions, The concentration-compactness principle in the caculus of variation: the limit case, I, Rev. Mat. Ibero. 1 (1985) 45-120.
27 P. L. Lions, The concentration-compactness principle in the caculus of variation: the limit case, II, Rev. Mat. Ibero. 1 (1985) 145-201.
28 M. Ruzicka, Electrorheological Fluids Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.
29 I. Sharapudinov, On the topology of the space $L^{p(t)}$([0, 1]), Matem. Zametki 26 (1978) 613-632.
30 V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv. 29 (1987) 33-66.   DOI   ScienceOn
31 Q.H. Zhang, Existence of radial solutions for p(x)-Laplacian equations in $\mathbb{R}^N$, J. Math. Anal. Appl. 315 (2) (2006) 506-516.   DOI   ScienceOn