• 제목/요약/키워드: unit-regular ring

검색결과 25건 처리시간 0.027초

GROUP ACTIONS IN A UNIT-REGULAR RING WITH COMMUTING IDEMPOTENTS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • 제25권4호
    • /
    • pp.433-440
    • /
    • 2009
  • Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will consider some group actions on X by G, the left (resp. right) regular action and the conjugate action. In this paper, by investigating these group actions we can have some results as follows: First, if E(R), the set of all nonzero nonunit idempotents of a unit-regular ring R, is commuting, then $o_{\ell}(x)\;=\;o_r(x)$, $o_c(x)\;=\;\{x\}$ for all $x\;{\in}\;X$ where $o_{\ell}(x)$ (resp. $o_r(x)$, $o_c(x)$) is the orbit of x under the left regular (resp. right regular, conjugate) action on X by G and R is abelian regular. Secondly, if R is a unit-regular ring with unity 1 such that G is a cyclic group and $2\;=\;1\;+\;1\;{\in}\;G$, then G is a finite group. Finally, if R is an abelian regular ring such that G is an abelian group, then R is a commutative ring.

ON A GENERALIZATION OF UNIT REGULAR RINGS

  • Tahire Ozen
    • 대한수학회보
    • /
    • 제60권6호
    • /
    • pp.1463-1475
    • /
    • 2023
  • In this paper, we introduce a class of rings generalizing unit regular rings and being a subclass of semipotent rings, which is called idempotent unit regular. We call a ring R an idempotent unit regular ring if for all r ∈ R - J(R), there exist a non-zero idempotent e and a unit element u in R such that er = eu, where this condition is left and right symmetric. Thus, we have also that there exist a non-zero idempotent e and a unit u such that ere = eue for all r ∈ R - J(R). Various basic characterizations and properties of this class of rings are proved and it is given the relationships between this class of rings and some well-known classes of rings such as semiperfect, clean, exchange and semipotent. Moreover, we obtain some results about when the endomorphism ring of a module in a class of left R-modules X is idempotent unit regular.

RINGS CLOSE TO SEMIREGULAR

  • Aydogdu, Pinar;Lee, Yang;Ozcan, A. Cigdem
    • 대한수학회지
    • /
    • 제49권3호
    • /
    • pp.605-622
    • /
    • 2012
  • A ring $R$ is called semiregular if $R/J$ is regular and idem-potents lift modulo $J$, where $J$ denotes the Jacobson radical of $R$. We give some characterizations of rings $R$ such that idempotents lift modulo $J$, and $R/J$ satisfies one of the following conditions: (one-sided) unit-regular, strongly regular, (unit, strongly, weakly) ${\pi}$-regular.

ON SOME TYPE ELEMENTS OF ZERO-SYMMETRIC NEAR-RING OF POLYNOMIALS

  • Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.183-195
    • /
    • 2019
  • Let R be a commutative ring with unity. In this paper, we characterize the unit elements, the regular elements, the ${\pi}$-regular elements and the clean elements of zero-symmetric near-ring of polynomials $R_0[x]$, when $nil(R)^2=0$. Moreover, it is shown that the set of ${\pi}$-regular elements of $R_0[x]$ forms a semigroup. These results are somewhat surprising since, in contrast to the polynomial ring case, the near-ring of polynomials has substitution for its "multiplication" operation.

STRUCTURES CONCERNING GROUP OF UNITS

  • Chung, Young Woo;Lee, Yang
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.177-191
    • /
    • 2017
  • In this note we consider the right unit-duo ring property on the powers of elements, and introduce the concept of weakly right unit-duo ring. We investigate first the properties of weakly right unit-duo rings which are useful to the study of related studies. We observe next various kinds of relations and examples of weakly right unit-duo rings which do roles in ring theory.

GROUP ACTIONS IN A REGULAR RING

  • HAN, Jun-Cheol
    • 대한수학회보
    • /
    • 제42권4호
    • /
    • pp.807-815
    • /
    • 2005
  • Let R be a ring with identity, X the set of all nonzero, nonunits of Rand G the group of all units of R. We will consider two group actions on X by G, the regular action and the conjugate action. In this paper, by investigating two group actions we can have some results as follows: First, if G is a finitely generated abelian group, then the orbit O(x) under the regular action on X by G is finite for all nilpotents x $\in$ X. Secondly, if F is a field in which 2 is a unit and F $\backslash\;\{0\}$ is a finitley generated abelian group, then F is finite. Finally, if G in a unit-regular ring R is a torsion group and 2 is a unit in R, then the conjugate action on X by G is trivial if and only if G is abelian if and only if R is commutative.

A QUESTION ON ⁎-REGULAR RINGS

  • Cui, Jian;Yin, Xiaobin
    • 대한수학회보
    • /
    • 제55권5호
    • /
    • pp.1333-1338
    • /
    • 2018
  • A ${\ast}-ring$ R is called ${\ast}-regular$ if every principal one-sided ideal of R is generated by a projection. In this note, several characterizations of ${\ast}-regular$ rings are provided. In particular, it is shown that a matrix ring $M_n(R)$ is ${\ast}-regular$ if and only if R is regular and $1+x^*_1x_1+{\cdots}+x^*_{n-1}x_{n-1}$ is a unit for all $x_i$ of R; which answers a question raised in the literature recently.

WEAKLY STABLE CONDITIONS FOR EXCHANGE RINGS

  • Chen, Huanyin
    • 대한수학회지
    • /
    • 제44권4호
    • /
    • pp.903-913
    • /
    • 2007
  • A ring R has weakly stable range one provided that aR+bR=R implies that there exists a $y{\in}R$ such that $a+by{\in}R$ is right or left invertible. We prove, in this paper, that every regular element in an exchange ring having weakly stable range one is the sum of an idempotent and a weak unit. This generalize the corresponding result of one-sided unit-regular ring. Extensions of power comparability and power cancellation are also studied.