GROUP ACTIONS IN A UNIT-REGULAR RING WITH COMMUTING IDEMPOTENTS

Juncheol Han

Abstract

Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will consider some group actions on X by G, the left (resp. right) regular action and the conjugate action. In this paper, by investigating these group actions we can have some results as follows: First, if $E(R)$, the set of all nonzero nonunit idempotents of a unit-regular ring R, is commuting, then $o_{\ell}(x)=o_{r}(x)$, $o_{c}(x)=\{x\}$ for all $x \in X$ where $o_{\ell}(x)$ (resp. $o_{r}(x), o_{c}(x)$) is the orbit of x under the left regular (resp. right regular, conjugate) action on X by G and R is abelian regular. Secondly, if R is a unit-regular ring with unity 1 such that G is a cyclic group and $2=1+1 \in G$, then G is a finite group. Finally, if R is an abelian regular ring such that G is an abelian group, then R is a commutative ring.

1. Introduction and basic definitions

Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the group of all units of R. In this paper, we will consider some group actions of G on X. We call the action, $((g, x) \longrightarrow g x)$ (resp. $\left((g, x) \longrightarrow x g^{-1}\right),((g, x) \longrightarrow$ $\left.g x g^{-1}\right)$) from $G \times X$ to X, left regular (resp. right regular, conjugate) action. If $\phi: G \times X \longrightarrow X$ is one of the above group actions, then for each $x \in X$ we define the orbit of x by $o(x)=\{\phi(g, x): g \in G\}$ and stabilizer of x by $\operatorname{stab}(x)=\{g \in G: \phi(g, x)=x\}$. Recall that G is transitive on X (or G acts transitively on X) if there is an $x \in X$ with $o(x)=X$ and the group action on X by G is trivial if $o(x)=\{x\}$ for all $x \in X$.

A ring R is von Neumann regular (or simply regular) (resp. unit-regular) provided that for any $a \in R$ there exists an element $r \in R$ (resp. $u \in G$) such that $a=$ ara (resp. $a=a u a$). A ring R is strongly regular provided that for any $a \in R$ there exists an element $r \in R$ such that $a=r a^{2}$. Also a ring R is abelian provided all idempotents in R are central. It is known [1] that R is

[^0]an abelian regular ring if and only if R is strongly regular and that an abelian regular ring is unit-regular.

Throughout this paper, unless stated otherwise, R is a ring with unity $1, G$ is the group of all units of R and X is the set of all nonzero, nonunits in R. Also for each $x \in X, o_{\ell}(x)$ (resp. $\left.o_{r}(x), o_{c}(x)\right)$ is considered as the orbit of x under the left regular (resp. right regular, conjugate) action of G on X. Let $E(R)$ be the set of all nonzero, nonunit idempotents of R. Recall that $E(R)$ is said to be commuting if $e f=f e$ for all $e, f \in E(R)$. We use || to denote the cardinality of a set.

It was shown in [3, Lemma 2.3, Theorem 3.3] that R is unit-regular if and only if every orbit under the left regular action is $o_{\ell}(e)$ for some idempotent $e \in X$ and that if R is a unit-regular ring such that G is a cyclic group and 2 $=1+1 \in G$, then the orbit $o_{\ell}(e)$ is finite. In Section 2, we show that (1) if R is a unit-regular ring such that $E(R)$ is commuting, then (1) $o_{\ell}(x)=o_{r}(x)$ for all $x \in X$ and R is abelian regular ring; (2) if for a ring R such that G is a cyclic group and $2=1+1 \in G$ there exists an idempotent $e \in X$ such that $2 e=(1+1) e \neq 0$, then $o_{\ell}(1-e)$ (resp. $o_{r}(1-e)$) is finite; (3) if $X \neq \emptyset$ for a unit-regular ring R such that G is a cyclic group and $2=1+1 \in G$, then G is finite. We also show that if R is an abelian regular ring such that $E(R)$ is finite, then R is isomorphic to the direct sum of a finite number of division rings.

It was shown in [3, Theorem 3.2] that if R is a unit-regular ring with unity 1 such that G is abelian and $2=1+1 \in G$, then R is a commutative ring. In Section 3, we show that if R is a ring with unity such that $E(R)$ is commuting, then $o_{c}(e)=\{e\}$ for all $e \in E(R)$, i.e., $g e=e g$ for all $g \in G$. By using this result we also show that if R is an abelian regular ring such that G is abelian, then R is a commutative ring.

2. Regular action in unit-regular rings

Recall that a nonzero element a in a ring R is said to be a right zero-divisor if there exists a nonzero $b \in R$ such that $b a=0$.

The following theorem has been proved in [2]:
Theorem 2.1. Let R be a ring such that X is a finite union of orbits under the left regular action on X by G. Then X is the set of all right zero-divisors of R. Moreover, if X is a nonempty finite set, then R is a finite ring.
Proof. Refer [2, Theorem 2.2].
Lemma 2.2. Let R be a unit-regular ring. Then for all $x \in X, x$ is a zerodivisor.
Proof. Since R is a unit-regular ring, for $x \in X$ there exists an element $g \in G$ with $x=x g x$, and so $x(g x-1)=0=(x g-1) x$. If $g x-1 \in G$, then $x=0$, which is a contradiction. If $g x-1=0$, then $g x=1$, and so $x=g^{-1} \in G$,
which is also a contradiction. Thus $g x-1 \in X$. Similarly, we have $x g-1 \in X$. Hence x is a zero-divisor.
Lemma 2.3. The ring R is unit-regular if and only if every orbit under the left regular action is $o_{\ell}(e)$ for some idempotent $e \in X$.

Proof. Refer [3, Lemma 2.3].
Corollary 2.4. The ring R is unit-regular if and only if every orbit under the right regular action is $o_{r}(e)$ for some idempotent $e \in X$.

Proof. It follows by an argument similar to that in the proof of [3, Lemma 2.3].

Remark 1. Note that if R is a noncommutative ring, then $o_{\ell}(x) \neq o_{r}(x)$ for some $x \in X$. For example, let $R=\left(\begin{array}{ll}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ \mathbb{Z}_{2} & \mathbb{Z}_{2}\end{array}\right)$ be the ring of 2×2 matrices over \mathbb{Z}_{2}, a galois field of order 2 , and take $x=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in X$. Then $o_{\ell}(x)=$ $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)\right\} \neq\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\right\}=o_{r}(x)$.
Lemma 2.5. If $E(R)$ is commuting, then $o_{\ell}(e) \cap E(R)=\{e\} \quad$ (resp. $o_{r}(e) \cap$ $E(R)=\{e\})$ for all $e \in E(R)$.
Proof. Let $e_{1} \in o_{\ell}(e) \cap E(R)$. Then $e_{1}=g e$ for some $g \in G$. Thus $e_{1} e=(g e) e=$ $g e=e_{1}$. Since $e=g^{-1} e_{1}, e=e e_{1}$. Since $E(R)$ is commuting, $e=e e_{1}=e_{1} e=$ e_{1}. Hence $o_{\ell}(e) \cap E(R)=\{e\}$. Similarly, we have $o_{r}(e) \cap E(R)=\{e\}$.
Corollary 2.6. Let R be a unit-regular ring. If $E(R)$ is commuting, then for all $x \in X, o_{\ell}(x) \cap E(R)=\{e\}$ (resp. o $o_{r}(x) \cap E(R)=\{f\}$) for some $e \in E(R)$ (resp. $f \in E(R)$).
Proof. It follows from Lemma 2.3 and Lemma 2.5.
Note that if R is a unit-regular ring such that $E(R)$ is commuting, then the number of orbits under the left (resp. right) regular action on X by G is equal to the cardinality of $E(R)$ by Lemma 2.3 and Corollary 2.6 .

Theorem 2.7. If $E(R)$ is commuting, then $o_{\ell}(e)=o_{r}(e)$ for all $e \in E(R)$.
Proof. Let $e \in E(R)$ be arbitrary. Then $o_{\ell}(e) \subseteq o_{r}\left(e_{1}\right)$ for some $e_{1} \in E(R)$. Indeed, if $y \in o_{\ell}(e)$ is arbitrary, then $y=g e$ for some $g \in G$. Thus $e=g^{-1} y=$ $\left(g^{-1} y\right)\left(g^{-1} y\right)=e^{2}$, and then $y=y g^{-1} y$. Let $e_{1}=y g^{-1}$. Thus $e_{1} \in E(R)$ and $y=e_{1} g \in o_{r}\left(e_{1}\right)$. Hence $o_{\ell}(e) \subseteq o_{r}\left(e_{1}\right)$. Similarly, we can have that $o_{r}\left(e_{1}\right) \subseteq o_{\ell}\left(e_{2}\right)$ for some $e_{2} \in E(R)$. Thus $e \in o_{\ell}(e) \subseteq o_{r}\left(e_{1}\right) \subseteq o_{\ell}\left(e_{2}\right)$. Since $E(R)$ is commuting, $o_{\ell}\left(e_{2}\right) \cap E(R)=\left\{e_{2}\right\}$ and so $e=e_{2}$. Therefore, $o_{\ell}(e) \subseteq o_{r}\left(e_{1}\right) \subseteq o_{\ell}(e)$, which implies that $o_{\ell}(e)=o_{r}\left(e_{1}\right)$, and thus $e_{1}=e$ by Lemma 2.5. Consequently, $o_{\ell}(e)=o_{r}(e)$ for all $e \in E(R)$.

Corollary 2.8. Let R be a unit-regular ring. If $E(R)$ is commuting, then $o_{\ell}(x)=o_{r}(x)$ for all $x \in X$.
Proof. Let $x \in X$ be arbitrary. Then $o_{\ell}(x)=o_{\ell}(e)=o_{r}(e)$ for some $e \in E(R)$ by from Lemma 2.3 and Theorem 2.7. Since $x \in o_{r}(e), o_{r}(x)=o_{r}(e)$. Hence we have $o_{\ell}(x)=o_{r}(x)$ for all $x \in X$.

Lemma 2.9. Let R be a unit-regular ring. If $o_{\ell}(x)=o_{r}(x)$ for all $x \in X$, then R is abelian regular.
Proof. By [1, Theorem 3.2], it is enough to show that R has no nonzero nilpotent elements. Assume that there exists a nonzero nilpotent element $x \in R$ such that $x^{n}=0 \neq x^{n-1}$ for some positive integer n. By Lemma 2.3, $x=g e$ for some idempotent $e \in X$ and some $g \in G$. Since $o_{\ell}(x)=o_{r}(x), 0=x^{n}=h e^{n}$ for some $h \in G$. Thus $e^{n}=e=0$, which is a contradiction.
Corollary 2.10. Let R be a unit-regular ring. Then $E(R)$ is commuting if and only if R is abelian regular.

Proof. If $E(R)$ is commuting, then R is abelian regular by Corollary 2.8 and Lemma 2.9. The converse is clear.

Remark 2. If R is a unit-regular ring in which $X=E(R)$, then R is abelian regular.

Theorem 2.11. Let R be a unit-regular ring. Then the following are equivalent:
(1) $X=E(R)$;
(2) the left (resp. right) regular group action on X by G is trivial;
(3) R is a Boolean ring in which $G=\{1\}$.

Proof. (2) \Rightarrow (1). It follows from Lemma 2.3 and Corollary 2.4.
$(1) \Rightarrow(3)$. Suppose that $X=E(R)$. Then $o_{\ell}(e)=o_{r}(e)=\{e\}$ for all $e \in E(R)$ by $(1) \Leftrightarrow(2)$. Assume that $G \neq\{1\}$. Then there exist $g, h \in G$ such that $g \neq h$. Since $g e=e=h e$ for any $e \in X=E(R),(g-h) e=0$. If $g-h \in G$, then $e=0$, a contradiction. Thus $g-h \in X=E(R)$. Since $o_{\ell}(g-h)=o_{r}(g-h)=$ $\{g-h\}$, we have $g-h=g(g-h)=(g-h) g$, and so $g h=h g$. Also we have $g-h=g(g-h)=(-h)(g-h)$, and so $g^{2}=h^{2}$. Since $g-h \in X=E(R)$, $g-h=(g-h)^{2}=g^{2}-2 g h+h^{2}=2 g^{2}-2 g h=2(g(g-h))=2(g-h)$, and then $g-h=0$, which is a contradiction. Therefore $G=\{1\}$. Since $X=E(R)$ and $G=\{1\}, R$ is a Boolean ring.
$(3) \Rightarrow(2)$. Clear.

Example 1. Let $R=\prod_{i=1}^{\infty} \mathbb{Z}_{2}$ where \mathbb{Z}_{2} is a galois field of order 2. Then R is a unit-regular ring such that $X=E(R)$, and is equivalently a Boolean ring in which $G=\{1\}$ by Theorem 2.11.

Theorem 2.12. Let R be an abelian regular ring. If $E(R)$ is finite, then $R \simeq D_{1} \times D_{2} \times \cdots \times D_{n}$ where all D_{i} are division rings for some positive integer n. In fact, $|E(R)|=2^{n}$.
Proof. Since $E(R)$ is finite, there exists a finite number of orbits under the left regular action on X by G by Lemma 2.3. Observe that every left ideal of R is G-invariant and is a union of orbits under the left regular action. Since there exists a finite number of orbits under the left regular action, every left ideal of R is a union of finite number of orbits under the left regular action. Hence R is a left artinian ring. Since $E(R)$ is central, by the Wedderburn-Artin Theorem we have $R \simeq D_{1} \times D_{2} \times \cdots \times D_{n}$ where all D_{i} are division rings for some positive integer n and $|E(R)|=2^{n}$.
Corollary 2.13. Let R be an abelian regular ring. If $E(R)$ is finite, then. Then the following are equivalent:
(1) G is finite;
(2) X is finite;
(3) R is finite.

Proof. (1) $\Rightarrow(2)$. Let $|E(R)|=n$. Then X is the union of n orbits $o\left(x_{1}\right), \ldots, o\left(x_{n}\right)$ for some $x_{1}, \ldots, x_{n} \in X$ by Corollary 2.6. Since G is finite, X is clearly finite.
$(2) \Rightarrow(3)$. It follows from Theorem 2.1.
$(3) \Rightarrow(1)$. It is clear.
Theorem 2.14. Let R be a ring such that G is a cyclic group. If $e \in X$ is an idempotent such that $2 e \neq 2(=1+1)$, then the orbit $o_{\ell}(e)$ (resp. or $\left.(e)\right)$ is finite.
Proof. If $o_{\ell}(e)=\{e\}$ or $G=\{1\}$ for an idempotent $e \in X$, then $o_{\ell}(e)=\{e\}$, and so $o_{\ell}(e)$ is finite. Suppose that $o_{\ell}(e) \neq\{e\}$ and $G \neq\{1\}$. Then $\left|o_{\ell}(e)\right|>1$ and $\operatorname{Stab}(e)=\{g \in G \mid g e=e\}$ is a proper subgroup of G. Let $H=\operatorname{Stab}(e)$ and let a be a generator of G. Since $e \in X$ is an idempotent and $2 e \neq 2$, $2 e-1(\neq 1) \in G$. Thus $(2 e-1) e=e$ implies that $2 e-1 \in H$ and so $H \neq\{1\}$. Since H is a proper subgroup of G, H is generated by a^{s} for some nonnegative integer $s(s \geq 2)$. Since $a^{s} \in H, a^{s} e=e$. For all $g \in G, g=a^{m}$ for some $m \in \mathbb{Z}$. By the division algorithm for $\mathbb{Z}, m=r+q s$ form some $g, r \in \mathbb{Z}$, where $s-1 \geq r \geq 0$. Thus for all $g \in G$, ge $=a^{m} e=a^{r+q s} e=a^{r} e$. Therefore $o_{\ell}(e)=\left\{a^{r} e: 0,1, \ldots, s-1\right\}$ is finite. Similarly, we can show that $o_{r}(e)$ is finite for an idempotent $e \in X$ such that $2 e \neq 2$.

Corollary 2.15. Let R be a ring such that G is a cyclic group. If $e \in X$ is an idempotent such that $2 e=(1+1) e \neq 0$, then $o_{\ell}(1-e)$ (resp. $\left.o_{r}(1-e)\right)$ is finite.
Proof. Since $2 e \neq 0,2(1-e) \neq 2$. Hence it follows from Theorem 2.14.
Corollary 2.16. Let R be a ring such that G is a cyclic group. If there exists an idempotent $e \in X$ such that $2 e=(1+1) e \neq 0,2$, then G is a finite group.

Proof. Since for all $g \in G, g=g e+g(1-e) \in o_{\ell}(e)+o_{\ell}(1-e)$. Since $2 e \neq 0,2$, both $o_{\ell}(e)$ and $o_{\ell}(1-e)$ are finite by Theorem 2.14 and Corollary 2.15. Hence G is a finite group.

Corollary 2.17. Let R be a unit-regular ring such that $X \neq \emptyset$. If G is a cyclic group and $2=1+1 \in G$, then G is a finite group.

Proof. It follows from Lemma 2.3 and Corollary 2.16.
Remark 3. Let R be a unit-regular ring such that $X \neq \emptyset$. If G is a cyclic group and $2=1+1 \in G$, then R is a commutative ring by [3, Theorem 3.2] and G is a finite group by the above Corollary 2.17. Hence we have that every orbit $o_{\ell}(x)=o_{r}(x)$ is finite for all $x \in X$. By Lemma 2.3, we have $o_{\ell}(x)=o_{\ell}(e)$ for some $e \in E(R)$. Since G is abelian, $\operatorname{stab}(x)=\operatorname{stab}(e)$. Since $2 \in G, 2 e-1 \in \operatorname{stab}(e)$ and so $\operatorname{stab}(e) \neq\{e\}$. Since $o_{\ell}(x)$ is finite, $\left|o_{\ell}(x)\right|=\left|o_{\ell}(e)\right|=|G| /|\operatorname{stab}(e)|$. In particular, if G is a cyclic group of prime order, then $o_{\ell}(x)=o_{r}(x)=\{x\}$, i.e., the left (right) regular action on X by G is trivial (which is equivalent to $X=E(R)$ by Theorem 2.11).

3. Conjugate action in unit-regular rings

Theorem 3.1. Let R be a ring such that G is a cyclic group. If $e \in X$ is an idempotent such that $2 e \neq 2(=1+1)$, then the orbit $o_{c}(e)$ (resp. o o $\left.(1-e)\right)$ is finite.

Proof. The proof is similar to that of Theorem 2.14. If $o_{c}(e)=\{e\}$ or $G=\{1\}$ for an idempotent $e \in X$, then $o_{c}(e)=\{e\}$, and so $o_{c}(e)$ is finite. Suppose that $o_{c}(e) \neq\{e\}$ and $G \neq\{1\}$. Then $\left|o_{c}(e)\right|>1$ and $\operatorname{stab}(e)=\left\{g \in G \mid\right.$ geg $\left.^{-1}=e\right\}$ is a proper subgroup of G. Let $H=\operatorname{stab}(e)$ and let a be a generator of G. Since $e \in X$ is an idempotent and $2 e \neq 2,2 e-1(\neq 1) \in G$. Thus $(2 e-1) e(2 e-1)^{-1}=$ $(2 e-1) e(2 e-1)=e$ implies that $2 e-1 \in H$ and so $H \neq\{1\}$. Since H is a proper subgroup of G, H is generated by a^{s} for some nonnegative integer s $(s \geq 2)$. Since $a^{s} \in H, a^{t} e=e$. For all $g \in G, g=a^{m}$ for some $m \in \mathbb{Z}$. By the division algorithm for $\mathbb{Z}, m=r+q s$ form some $g, r \in \mathbb{Z}$, where $s-1 \geq r \geq 0$. Thus for all $g \in G, g e g^{-1}=a^{m} e a^{-m}=a^{r+q s} e a^{-(r+q s)}=a^{r} e a^{-r}$. Therefore $o_{c}(e)=\left\{a^{r} e a^{-r}: 0,1, \ldots, s-1\right\}$ is finite.

Corollary 3.2. Let R be a ring such that G is a cyclic group. If $e \in X$ is an idempotent such that $2 e \neq 0$, then the orbit $o_{c}(e)$ (resp. $o_{c}(1-e)$) is finite.

Proof. Since $2 e \neq 0,2(1-e) \neq 2$. Hence it follows from Theorem 3.1.
Lemma 3.3. If $E(R)$ is commuting, then $o_{c}(e) \subseteq o_{\ell}(e)\left(=o_{r}(e)\right)$ for all $e \in$ $E(R)$.
Proof. Since $E(R)$ is commuting, $o_{\ell}(e)=o_{r}(e)$ for all $e \in E(R)$ by Theorem 2.7. Let $g e g^{-1} \in o_{c}(e)(\forall g \in G)$ be arbitrary. Since $o_{\ell}(e)=o_{r}(e), e g^{-1}=h e$
for some $h \in G$, and so $g e g^{-1}=(g h) e \in o_{\ell}(e)$. Thus $o_{c}(e) \subseteq o_{\ell}(e)\left(=o_{r}(e)\right)$ for all $e \in E(R)$.
Lemma 3.4. If $E(R)$ is commuting, then $o_{c}(e)=\{e\}$ for all $e \in E(R)$, i.e., ge $=$ eg for all $g \in G$.

Proof. Since $E(R)$ is commuting, $o_{\ell}(e) \cap E(R)=\{e\}$ by Lemma 2.5 and also $o_{c}(e) \subseteq o_{\ell}(e)$ by Lemma 3.3 for all $e \in E(R)$. Since $o_{c}(e) \subseteq E(R), o_{c}(e) \subseteq$ $o_{\ell}(e) \cap E(R)=\{e\}$, and so $o_{c}(e)=\{e\}$.
Theorem 3.5. Let R be a unit-regular ring in which $E(R)$ is commuting. If G is an abelian group, then R is a commutative ring.

Proof. Since $E(R)$ is commuting, $g e=e g$ for all $e \in E(R)$ and all $g \in G$ by Lemma 3.4. Let $x \in X$ and $g \in G$ be arbitrary. Then $x=h e_{1}$ for some $e_{1} \in E(R)$ and some $h \in G$ by Lemma 2.3. Since G is abelian, we have $g x=g\left(h e_{1}\right)=(g h) e_{1}=e_{1}(g h)=e_{1}(h g)=\left(e_{1} h\right) g=\left(h e_{1}\right) g=x g$. Let $y \in X$ be arbitrary. Then $y=k e_{2}$ for some $e_{2} \in E(R)$ and some $k \in G$ by Lemma 2.3. Since $E(R)$ is commuting, $x y=\left(h e_{1}\right)\left(k e_{2}\right)=(h k)\left(e_{1} e_{2}\right)=(k h)\left(e_{2} e_{1}\right)=$ $\left(k e_{2}\right)\left(h e_{1}\right)=y x$. Consequently, R is commutative.
Corollary 3.6. Let R be an abelian regular ring. If G is an abelian group, then R is a commutative ring.

Proof. It follows from Corollary 2.10 and Theorem 3.5.
Theorem 3.7. Let R be an abelian regular ring such that G is a torsion group. Then the following are equivalent:
(1) The conjugate action on X by G is trivial;
(2) G is abelian;
(3) R is commutative.

Proof. (1) \Rightarrow (2). Let $g, h \in G$ be arbitrary. Since the order of g is finite, $1-g \in$ X. Since the conjugate action on X by G is trivial, the orbit $o(1-g)=\{1-g\}$, i.e., $h(1-g) h^{-1}=1-g$ and so $g h=h g$. Hence G is abelian.
$(2) \Rightarrow(3)$. It follows from Corollary 3.6.
$(3) \Rightarrow(1)$. It is clear.
Note that $(2) \Rightarrow(1)$ in Theorem 3.7 may not be true in a ring which is not an abelian regular ring by the following example:
Example 2. Let $R=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right): a, b, c \in \mathbb{Z}_{2}\right\}$. Then R is a noncommutative ring but $G=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\}$ is an abelian group. The orbit of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in$ X under the conjugate action on X by G is equal to $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\right\} \neq$ $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right\}$, and so the conjugate action on X by G is not trivial.

Acknowledgements. The author thanks the referee for his/her helpful comments for the improvement of the paper, also the author thanks Prof. E. Puczylowski for reading this paper and for kind suggestions.

References

[1] K. R. Goodearl, von Neumann Regular Rings, Pitman Publishing Limited, London, 1979.
[2] J. Han, Regular action in a ring with a finite number of orbits, Comm. in Algebra 25(7) (1997), 2227-2236.
[3] J. Han, Group actions in a unit-regular ring, Comm. in Algebra 27(7) (1999), 33533361.

Juncheol Han
Department of Mathematics Education
Pusan National University
Pusan, 609-735, Korea
E-mail address: jchanpusan.ac.kr

[^0]: Received March 3, 2009; Accepted October 14, 2009.
 2000 Mathematics Subject Classification. Primary: 16W22; Secondary: 16E50.
 Key words and phrases. unit-regular ring, abelian regular ring, regular action, conjugate action, orbit, stablizer, commuting idempotents.

 This work was supported for two years by Pusan National University Research Grant.

