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GROUP ACTIONS IN A UNIT-REGULAR RING WITH
COMMUTING IDEMPOTENTS

Juncheol Han

Abstract. Let R be a ring with unity, X the set of all nonzero, nonunits

of R and G the group of all units of R. We will consider some group

actions on X by G, the left (resp. right) regular action and the conjugate
action. In this paper, by investigating these group actions we can have

some results as follows: First, if E(R), the set of all nonzero nonunit
idempotents of a unit-regular ring R, is commuting, then o`(x) = or(x),

oc(x) = {x} for all x ∈ X where o`(x) (resp. or(x), oc(x)) is the orbit

of x under the left regular (resp. right regular, conjugate) action on
X by G and R is abelian regular. Secondly, if R is a unit-regular ring

with unity 1 such that G is a cyclic group and 2 = 1 + 1 ∈ G, then G is

a finite group. Finally, if R is an abelian regular ring such that G is an
abelian group, then R is a commutative ring.

1. Introduction and basic definitions

Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the
group of all units of R. In this paper, we will consider some group actions of G
on X. We call the action, ((g, x) −→ gx) (resp. ((g, x) −→ xg−1), ((g, x) −→
gxg−1)) from G×X to X, left regular (resp. right regular, conjugate) action.
If φ : G × X −→ X is one of the above group actions, then for each x ∈ X
we define the orbit of x by o(x) = {φ(g, x) : g ∈ G} and stabilizer of x by
stab(x) = {g ∈ G : φ(g, x) = x}. Recall that G is transitive on X (or G acts
transitively on X) if there is an x ∈ X with o(x) = X and the group action on
X by G is trivial if o(x) = {x} for all x ∈ X.

A ring R is von Neumann regular (or simply regular ) (resp. unit-regular )
provided that for any a ∈ R there exists an element r ∈ R (resp. u ∈ G) such
that a = ara (resp. a = aua). A ring R is strongly regular provided that for
any a ∈ R there exists an element r ∈ R such that a = ra2. Also a ring R
is abelian provided all idempotents in R are central. It is known [1] that R is
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an abelian regular ring if and only if R is strongly regular and that an abelian
regular ring is unit-regular.

Throughout this paper, unless stated otherwise, R is a ring with unity 1, G
is the group of all units of R and X is the set of all nonzero, nonunits in R.
Also for each x ∈ X, o`(x) (resp. or(x), oc(x)) is considered as the orbit of x
under the left regular (resp. right regular, conjugate) action of G on X. Let
E(R) be the set of all nonzero, nonunit idempotents of R. Recall that E(R) is
said to be commuting if ef = fe for all e, f ∈ E(R). We use | | to denote the
cardinality of a set.

It was shown in [3, Lemma 2.3, Theorem 3.3] that R is unit-regular if and
only if every orbit under the left regular action is o`(e) for some idempotent
e ∈ X and that if R is a unit-regular ring such that G is a cyclic group and 2
= 1 + 1 ∈ G, then the orbit o`(e) is finite. In Section 2, we show that (1) if
R is a unit-regular ring such that E(R) is commuting, then (1) o`(x) = or(x)
for all x ∈ X and R is abelian regular ring; (2) if for a ring R such that G is a
cyclic group and 2 = 1 + 1 ∈ G there exists an idempotent e ∈ X such that
2e = (1 + 1)e 6= 0, then o`(1 − e) (resp. or(1 − e)) is finite; (3) if X 6= ∅ for
a unit-regular ring R such that G is a cyclic group and 2 = 1 + 1 ∈ G, then
G is finite. We also show that if R is an abelian regular ring such that E(R)
is finite, then R is isomorphic to the direct sum of a finite number of division
rings.

It was shown in [3, Theorem 3.2] that if R is a unit-regular ring with unity
1 such that G is abelian and 2 = 1 + 1 ∈ G, then R is a commutative ring. In
Section 3, we show that if R is a ring with unity such that E(R) is commuting,
then oc(e) = {e} for all e ∈ E(R), i.e., ge = eg for all g ∈ G. By using this
result we also show that if R is an abelian regular ring such that G is abelian,
then R is a commutative ring.

2. Regular action in unit-regular rings

Recall that a nonzero element a in a ring R is said to be a right zero−divisor
if there exists a nonzero b ∈ R such that ba = 0.

The following theorem has been proved in [2]:

Theorem 2.1. Let R be a ring such that X is a finite union of orbits under
the left regular action on X by G. Then X is the set of all right zero-divisors
of R. Moreover, if X is a nonempty finite set, then R is a finite ring.

Proof. Refer [2, Theorem 2.2]. �

Lemma 2.2. Let R be a unit-regular ring. Then for all x ∈ X, x is a zero-
divisor.

Proof. Since R is a unit-regular ring, for x ∈ X there exists an element g ∈ G
with x = xgx, and so x(gx − 1) = 0 = (xg − 1)x. If gx − 1 ∈ G, then x = 0,
which is a contradiction. If gx − 1 = 0, then gx = 1, and so x = g−1 ∈ G,
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which is also a contradiction. Thus gx−1 ∈ X. Similarly, we have xg−1 ∈ X.
Hence x is a zero-divisor. �

Lemma 2.3. The ring R is unit-regular if and only if every orbit under the
left regular action is o`(e) for some idempotent e ∈ X.

Proof. Refer [3, Lemma 2.3]. �

Corollary 2.4. The ring R is unit-regular if and only if every orbit under the
right regular action is or(e) for some idempotent e ∈ X.

Proof. It follows by an argument similar to that in the proof of [3, Lemma
2.3]. �

Remark 1. Note that if R is a noncommutative ring, then o`(x) 6= or(x) for

some x ∈ X. For example, let R =
(

Z2 Z2

Z2 Z2

)
be the ring of 2 × 2 matrices

over Z2, a galois field of order 2, and take x =
(

1 0
0 0

)
∈ X. Then o`(x) ={(

1 0
0 0

)
,

(
0 0
1 0

)
,

(
1 0
1 0

)}
6=
{(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
1 1
0 0

)}
= or(x).

Lemma 2.5. If E(R) is commuting, then o`(e) ∩ E(R) = {e} (resp. or(e) ∩
E(R) = {e}) for all e ∈ E(R).

Proof. Let e1 ∈ o`(e)∩E(R). Then e1 = ge for some g ∈ G. Thus e1e = (ge)e =
ge = e1. Since e = g−1e1, e = ee1. Since E(R) is commuting, e = ee1 = e1e =
e1. Hence o`(e) ∩ E(R) = {e}. Similarly, we have or(e) ∩ E(R) = {e}. �

Corollary 2.6. Let R be a unit-regular ring. If E(R) is commuting, then for
all x ∈ X, o`(x) ∩E(R) = {e} (resp. or(x) ∩E(R) = {f}) for some e ∈ E(R)
(resp. f ∈ E(R)).

Proof. It follows from Lemma 2.3 and Lemma 2.5. �

Note that if R is a unit-regular ring such that E(R) is commuting, then the
number of orbits under the left (resp. right) regular action on X by G is equal
to the cardinality of E(R) by Lemma 2.3 and Corollary 2.6.

Theorem 2.7. If E(R) is commuting, then o`(e) = or(e) for all e ∈ E(R).

Proof. Let e ∈ E(R) be arbitrary. Then o`(e) ⊆ or(e1) for some e1 ∈ E(R).
Indeed, if y ∈ o`(e) is arbitrary, then y = ge for some g ∈ G. Thus e = g−1y =
(g−1y)(g−1y) = e2, and then y = yg−1y. Let e1 = yg−1. Thus e1 ∈ E(R)
and y = e1g ∈ or(e1). Hence o`(e) ⊆ or(e1). Similarly, we can have that
or(e1) ⊆ o`(e2) for some e2 ∈ E(R). Thus e ∈ o`(e) ⊆ or(e1) ⊆ o`(e2).
Since E(R) is commuting, o`(e2) ∩ E(R) = {e2} and so e = e2. Therefore,
o`(e) ⊆ or(e1) ⊆ o`(e), which implies that o`(e) = or(e1), and thus e1 = e by
Lemma 2.5. Consequently, o`(e) = or(e) for all e ∈ E(R). �
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Corollary 2.8. Let R be a unit-regular ring. If E(R) is commuting, then
o`(x) = or(x) for all x ∈ X.

Proof. Let x ∈ X be arbitrary. Then o`(x) = o`(e) = or(e) for some e ∈ E(R)
by from Lemma 2.3 and Theorem 2.7. Since x ∈ or(e), or(x) = or(e). Hence
we have o`(x) = or(x) for all x ∈ X. �

Lemma 2.9. Let R be a unit-regular ring. If o`(x) = or(x) for all x ∈ X, then
R is abelian regular.

Proof. By [1, Theorem 3.2], it is enough to show that R has no nonzero nilpo-
tent elements. Assume that there exists a nonzero nilpotent element x ∈ R
such that xn = 0 6= xn−1 for some positive integer n. By Lemma 2.3, x = ge
for some idempotent e ∈ X and some g ∈ G. Since o`(x) = or(x), 0 = xn = hen

for some h ∈ G. Thus en = e = 0, which is a contradiction. �

Corollary 2.10. Let R be a unit-regular ring. Then E(R) is commuting if
and only if R is abelian regular.

Proof. If E(R) is commuting, then R is abelian regular by Corollary 2.8 and
Lemma 2.9. The converse is clear. �

Remark 2. If R is a unit-regular ring in which X = E(R), then R is abelian
regular.

Theorem 2.11. Let R be a unit-regular ring. Then the following are equiva-
lent:
(1) X = E(R);
(2) the left (resp. right) regular group action on X by G is trivial;
(3) R is a Boolean ring in which G = {1}.

Proof. (2) ⇒ (1). It follows from Lemma 2.3 and Corollary 2.4.
(1)⇒ (3). Suppose that X = E(R). Then o`(e) = or(e) = {e} for all e ∈ E(R)
by (1)⇔ (2). Assume that G 6= {1}. Then there exist g, h ∈ G such that g 6= h.
Since ge = e = he for any e ∈ X = E(R), (g − h)e = 0. If g − h ∈ G, then
e = 0, a contradiction. Thus g−h ∈ X = E(R). Since o`(g−h) = or(g−h) =
{g − h}, we have g − h = g(g − h) = (g − h)g, and so gh = hg. Also we have
g − h = g(g − h) = (−h)(g − h), and so g2 = h2. Since g − h ∈ X = E(R),
g − h = (g − h)2 = g2 − 2gh + h2 = 2g2 − 2gh = 2(g(g − h)) = 2(g − h), and
then g − h = 0, which is a contradiction. Therefore G = {1}. Since X = E(R)
and G = {1}, R is a Boolean ring.
(3) ⇒ (2). Clear.

�

Example 1. Let R =
∏∞

i=1 Z2 where Z2 is a galois field of order 2. Then R is
a unit-regular ring such that X = E(R), and is equivalently a Boolean ring in
which G = {1} by Theorem 2.11.
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Theorem 2.12. Let R be an abelian regular ring. If E(R) is finite, then
R ' D1 × D2 × · · · × Dn where all Di are division rings for some positive
integer n. In fact, |E(R)| = 2n.

Proof. Since E(R) is finite, there exists a finite number of orbits under the left
regular action on X by G by Lemma 2.3. Observe that every left ideal of R is
G-invariant and is a union of orbits under the left regular action. Since there
exists a finite number of orbits under the left regular action, every left ideal of
R is a union of finite number of orbits under the left regular action. Hence R is
a left artinian ring. Since E(R) is central, by the Wedderburn-Artin Theorem
we have R ' D1 × D2 × · · · × Dn where all Di are division rings for some
positive integer n and |E(R)| = 2n. �

Corollary 2.13. Let R be an abelian regular ring. If E(R) is finite, then.
Then the following are equivalent:
(1) G is finite;
(2) X is finite;
(3) R is finite.

Proof. (1)⇒ (2). Let |E(R)| = n. ThenX is the union of n orbits o(x1), . . . , o(xn)
for some x1, . . . , xn ∈ X by Corollary 2.6. Since G is finite, X is clearly finite.
(2) ⇒ (3). It follows from Theorem 2.1.
(3) ⇒ (1). It is clear. �

Theorem 2.14. Let R be a ring such that G is a cyclic group. If e ∈ X is
an idempotent such that 2e 6= 2(= 1 + 1), then the orbit o`(e) (resp. or(e)) is
finite.

Proof. If o`(e) = {e} or G = {1} for an idempotent e ∈ X, then o`(e) = {e},
and so o`(e) is finite. Suppose that o`(e) 6= {e} and G 6= {1}. Then |o`(e)| > 1
and Stab(e) = {g ∈ G|ge = e} is a proper subgroup of G. Let H = Stab(e)
and let a be a generator of G. Since e ∈ X is an idempotent and 2e 6= 2,
2e− 1( 6= 1) ∈ G. Thus (2e− 1)e = e implies that 2e− 1 ∈ H and so H 6= {1}.
Since H is a proper subgroup of G, H is generated by as for some nonnegative
integer s (s ≥ 2). Since as ∈ H, ase = e. For all g ∈ G, g = am for some
m ∈ Z. By the division algorithm for Z, m = r+ qs form some g, r ∈ Z, where
s − 1 ≥ r ≥ 0. Thus for all g ∈ G, ge = ame = ar+qse = are. Therefore
o`(e) = {are : 0, 1, . . . , s − 1} is finite. Similarly, we can show that or(e) is
finite for an idempotent e ∈ X such that 2e 6= 2. �

Corollary 2.15. Let R be a ring such that G is a cyclic group. If e ∈ X is
an idempotent such that 2e = (1 + 1)e 6= 0, then o`(1− e) (resp. or(1− e)) is
finite.

Proof. Since 2e 6= 0, 2(1− e) 6= 2. Hence it follows from Theorem 2.14. �

Corollary 2.16. Let R be a ring such that G is a cyclic group. If there exists
an idempotent e ∈ X such that 2e = (1 + 1)e 6= 0, 2, then G is a finite group.
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Proof. Since for all g ∈ G, g = ge+g(1−e) ∈ o`(e)+o`(1−e). Since 2e 6= 0, 2,
both o`(e) and o`(1− e) are finite by Theorem 2.14 and Corollary 2.15. Hence
G is a finite group. �

Corollary 2.17. Let R be a unit-regular ring such that X 6= ∅. If G is a cyclic
group and 2 = 1 + 1 ∈ G, then G is a finite group.

Proof. It follows from Lemma 2.3 and Corollary 2.16. �

Remark 3. Let R be a unit-regular ring such that X 6= ∅. If G is a cyclic
group and 2 = 1 + 1 ∈ G, then R is a commutative ring by [3, Theorem
3.2] and G is a finite group by the above Corollary 2.17. Hence we have that
every orbit o`(x) = or(x) is finite for all x ∈ X. By Lemma 2.3, we have
o`(x) = o`(e) for some e ∈ E(R). Since G is abelian, stab(x) = stab(e).
Since 2 ∈ G, 2e − 1 ∈ stab(e) and so stab(e) 6= {e}. Since o`(x) is finite,
|o`(x)| = |o`(e)| = |G|/|stab(e)|. In particular, if G is a cyclic group of prime
order, then o`(x) = or(x) = {x}, i.e., the left (right) regular action on X by G
is trivial (which is equivalent to X = E(R) by Theorem 2.11).

3. Conjugate action in unit-regular rings

Theorem 3.1. Let R be a ring such that G is a cyclic group. If e ∈ X is an
idempotent such that 2e 6= 2(= 1 + 1), then the orbit oc(e) (resp. oc(1− e)) is
finite.

Proof. The proof is similar to that of Theorem 2.14. If oc(e) = {e} or G = {1}
for an idempotent e ∈ X, then oc(e) = {e}, and so oc(e) is finite. Suppose that
oc(e) 6= {e} and G 6= {1}. Then |oc(e)| > 1 and stab(e) = {g ∈ G|geg−1 = e} is
a proper subgroup of G. Let H = stab(e) and let a be a generator of G. Since
e ∈ X is an idempotent and 2e 6= 2, 2e−1( 6= 1) ∈ G. Thus (2e−1)e(2e−1)−1 =
(2e − 1)e(2e − 1) = e implies that 2e − 1 ∈ H and so H 6= {1}. Since H is
a proper subgroup of G, H is generated by as for some nonnegative integer s
(s ≥ 2). Since as ∈ H, ate = e. For all g ∈ G, g = am for some m ∈ Z. By the
division algorithm for Z, m = r + qs form some g, r ∈ Z, where s− 1 ≥ r ≥ 0.
Thus for all g ∈ G, geg−1 = amea−m = ar+qsea−(r+qs) = area−r. Therefore
oc(e) = {area−r : 0, 1, . . . , s− 1} is finite. �

Corollary 3.2. Let R be a ring such that G is a cyclic group. If e ∈ X is an
idempotent such that 2e 6= 0, then the orbit oc(e) (resp. oc(1− e)) is finite.

Proof. Since 2e 6= 0, 2(1− e) 6= 2. Hence it follows from Theorem 3.1. �

Lemma 3.3. If E(R) is commuting, then oc(e) ⊆ o`(e)(= or(e)) for all e ∈
E(R).

Proof. Since E(R) is commuting, o`(e) = or(e) for all e ∈ E(R) by Theorem
2.7. Let geg−1 ∈ oc(e) (∀g ∈ G) be arbitrary. Since o`(e) = or(e), eg−1 = he
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for some h ∈ G, and so geg−1 = (gh)e ∈ o`(e). Thus oc(e) ⊆ o`(e)(= or(e)) for
all e ∈ E(R). �

Lemma 3.4. If E(R) is commuting, then oc(e) = {e} for all e ∈ E(R), i.e.,
ge = eg for all g ∈ G.

Proof. Since E(R) is commuting, o`(e) ∩ E(R) = {e} by Lemma 2.5 and also
oc(e) ⊆ o`(e) by Lemma 3.3 for all e ∈ E(R). Since oc(e) ⊆ E(R), oc(e) ⊆
o`(e) ∩ E(R) = {e}, and so oc(e) = {e}. �

Theorem 3.5. Let R be a unit-regular ring in which E(R) is commuting. If
G is an abelian group, then R is a commutative ring.

Proof. Since E(R) is commuting, ge = eg for all e ∈ E(R) and all g ∈ G by
Lemma 3.4. Let x ∈ X and g ∈ G be arbitrary. Then x = he1 for some
e1 ∈ E(R) and some h ∈ G by Lemma 2.3. Since G is abelian, we have
gx = g(he1) = (gh)e1 = e1(gh) = e1(hg) = (e1h)g = (he1)g = xg. Let y ∈ X
be arbitrary. Then y = ke2 for some e2 ∈ E(R) and some k ∈ G by Lemma
2.3. Since E(R) is commuting, xy = (he1)(ke2) = (hk)(e1e2) = (kh)(e2e1) =
(ke2)(he1) = yx. Consequently, R is commutative. �

Corollary 3.6. Let R be an abelian regular ring. If G is an abelian group,
then R is a commutative ring.

Proof. It follows from Corollary 2.10 and Theorem 3.5. �

Theorem 3.7. Let R be an abelian regular ring such that G is a torsion group.
Then the following are equivalent:
(1) The conjugate action on X by G is trivial;
(2) G is abelian;
(3) R is commutative.

Proof. (1)⇒(2). Let g, h ∈ G be arbitrary. Since the order of g is finite, 1−g ∈
X. Since the conjugate action on X by G is trivial, the orbit o(1−g) = {1−g},
i.e., h(1− g)h−1 = 1− g and so gh = hg. Hence G is abelian.
(2)⇒(3). It follows from Corollary 3.6.
(3)⇒(1). It is clear. �

Note that (2)⇒(1) in Theorem 3.7 may not be true in a ring which is not
an abelian regular ring by the following example:

Example 2. Let R =
{(

a b
0 c

)
: a, b, c ∈ Z2

}
. Then R is a noncommutative

ring but G =
{(

1 0
0 1

)
,

(
1 1
0 1

)}
is an abelian group. The orbit of

(
1 0
0 0

)
∈

X under the conjugate action on X by G is equal to
{(

1 0
0 0

)
,

(
1 1
0 0

)}
6={(

1 0
0 0

)}
, and so the conjugate action on X by G is not trivial.
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