Bull. Korean Math. Soc. 42 (2005), No. 4, pp. 807-815

GROUP ACTIONS IN A REGULAR RING
JUNCHEOL HAN

ABSTRACT. Let R be a ring with identity, X the set of all nonzero,
nonunits of R and G the group of all units of R. We will consider
two group actions on X by G, the regular action and the conjugate
action. In this paper, by investigating two group actions we can
have some results as follows: First, if G is a finitely generated
abelian group, then the orbit O(z) under the regular action on X
by G is finite for all nilpotents z € X. Secondly, if F is a field in
which 2 is a unit and F \ {0} is a finitley generated abelian group,
then F is finite. Finally, if G in a unit-regular ring R is a torsion
group and 2 is a unit in R, then the conjugate action on X by G is
trivial if and only if G is abelian if and only if R is commutative.

1. Introduction and basic definitions

Let R be a ring with identity 1, X the set of all nonzero, nonunits of
R and G the group of all units of R. In this paper, we will consider two
group actions of G on X. We call the action, ((g,2) — gz) from G x X
to X, regular action and the action, ((g,z) — gzg™!) from G x X to X,
conjugate action. If ¢ : G x X — X is one of the above actions, then
for each = € X, we define the orbit of z by O(z) = {¢(g,z) : g € G}.
We also define the stablizer of x by Stab(z) = {g € G : ¢(g,z) = z}.
Recall that G is transitive on X (or G acts transitively on X ) if there
is an z € X with O(z) = X and the group action on X by G is trivial
if O(z) = {z} for all z € X.

We define the index of a nilpotent x € R by the positive integer n
such that " = 0 and 2™~ # 0 and denote it by ind(z). In particular,
the additive zero 0 in R is nilpotent of index 1. We define the index
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of R by the supremum of the indices of all nilpotents of R and denote
it by ind(R). If ind(R) is finite, then we say that R has a bounded
index. A ring R is von-Newmann regular (or simply regular) (resp.
unit-regular) provided that for any a € R there exists an element r € R
(resp. u € G) such that a = ara (resp. a = aua). A ring R is strongly
regular provided that for any a € R there exists an element r € R such
that a = ra?. Also a regular ring R is abelian provided all idempotents
in R is central. It is known in [1] that R is abelian regular ring if and
only if R is strongly regular and that an abelian regular ring is unit-
regular. It is also known by [1, Corollary 7.1] that if R is regular of
bounded index, then R is unit-regular.

Through this paper, unless stated otherwise, R is a ring with identity
1, G is the group of all units of R and X is the set of all nonzero,
nonunits in B. Also for each x € X, O(z) is considered as an orbit of
z under the given group action. Let N(R) be the set of all nilpotents
of R. In {3], If R is a ring such that X is a finite union of orbits under
the regular action, then the Jacobson radical J is a nil ideal of R, and
so J C N(R).

2. Regular action in regular rings

The following theorem has been proved in [3}:

THEOREM 2.1. Let R be a ring such that X is a finite union of orbits
under the regular action on X by G. Then X is the set of all right zero-
divisors of R. Moreover, if X is a nonempty finite set, then R is a finite
ring.

LEMMA 2.2. Let R be a ring such that X is a union of n orbits under
the regular action on X by G. Then n+ 1 > ind(R).

Proof. Let x € R be any nilpotent such that ind(z) = m (m > 2).
Consider O(z*) and O(27), where i > j. Then O(z*)NO(2?) = §. Indeed,
if O(z Z) NO(x7) # 0, then «* = gz for some g € G. Thus 0 = z™
ziz™ Tt = gaﬂwm ¢ = gx™ "I and so 2™ =0, a contradlctlon
Hence O(z*) NO(z?) = @), where i > j, which implies that O(zx), O(z?),
..., O(z™~1) are disjoint orbits. Therefore, n > m—1, and then n+1 >
ind(R).

In general, the converse of Lemma 3.2 is not true by taking an example
of aring R = Z4 @ Z. Indeed, ind(R) = 2 but X is not a union of finite
number of orbits under the regular action on X by G.
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COROLLARY 2.3. Let R be a ring such that X is a union of a finite
number of orbits under the regular action on X by G. Then R is regular
if and only if R is unit-regular.

Proof. Tt follows from Lemma 2.2 and [1, Corollary 7.11].

PROPOSITION 2.4. Let R be a ring such that X # (). If the regular
action on X by G is transitive, then for all y,z € X, yz = 0.

Proof. By Lemma 2.2, 2 > ind(R). Since X # @, 2 = ind(R) and
so there exists x € X with #2 = 0. Since the regular action on X by
G is transitive, X = O(z). For all y,z € X, y = gz, 2 = hx for some
g,h € G, and then yz = (gz)(hz) = g(zh)z = g(kz)z = (gk)z* = 0 for
some k € G.

REMARK 1. (1) By Propositon 2.4, we can observe that if R is a ring
such that X # 0 and the regular action on X by G is transitive, then
XU{0}=N(R)and for all y,z € X, y+ z € X. Since for all y, 2z € X,
yz =0, R is a local ring, i.e., J = X U {0}.

(2) In general, we can observe that if R is a ring such that X is a union
of n orbits under the regular action on X by G, then there exists x € X
with ind(z) = n + 1 if and only if R is a local ring.

(3) In any regular ring R with X # 0, there is no transitive regular
action on X by G.

ExXAMPLE 1. Let p be any prime number, k£ be any positive integer
and let Z,» = {0,1,...,p* — 1} be the ring of integers modulo p*. Then
X =0(p)uO®®)---UO@1) = J\ {0} is a union of k — 1 orbits
O(p), ... ,0(p*1) under the regular action, and so Z,x is a local ring.

EXAMPLE 2. Let p be any prime number and let Z,2 = {0, 1,... P —
1} be the ring of integers modulo p?. Then N(Z,2) = {0,p,2p,... ,(p—

1)p} = X U {0} and so in Z,2 there is a transitive regular action on X
by G, ie., X = O(p).

PROPOSITION 2.5. Let R be a ring. If g € G is of a finite order
such that O(1 — g) = {1 — g} under the regular action on X by G, then
ind(1-g) =2andg+g~! = 2.

Proof. Since g € G is of a finite order, 1 — g € X for all g(# 1) € G.
If O(1 —g) = {1 — g} for some g € G under the regular action on X by
G, then g(1 —g) = 1 — g, and so (1 — g)2 = 0. Hence ind(1 — g) = 2,
and then g+ ¢! = 2.
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EXAMPLE 3. Let n be any positive integer and let Z4,, = {0,1,. ..,
4n — 1} be the ring of integers modulo 4n. Then under the regular
action on X by G, O(2n) = {2n} and 1 —2n € G is an involution. Thus
1-2n)+(1-2n)"t=(1~-2n)+(1-2n)=2.

PROPOSITION 2.6. A ring R is strongly regular if and only if O(z) =
O(z?) for all x € X under the regular action on X by G.

Proof. Suppose that R is strongly-regular and let z € X be arbitrary.
Since strongly regular ring is unit-regular, there exists g € G such that
x = zgz. Since strongly regular ring is also abelian-regular, the idem-
potent gz is central, and so z = z(gz) = (gx)r = gz?. Hence for all
z € X, O(z) = O(x?) under the regular action on X by G. Conversely,
suppose that O(z) = O(2?) for all z € X under the regular action on
X by G. Let a € R be an arbitrary element. If a € G, then ¢~ 'a? = a.
If @ € X, then by assumption, O(a?) = O(a) and so ga? = a for some
g € G. Hence R is strongly regular.

PROPOSITION 2.7. Let R be a ring whose characteristic is not 2. If
z(# 0) € N(R) with ind(z) =n and 1 + x € G is of finite order k, then
kz" ! =0 and 2k'z" "1 =0 foralli=1,... ,n—2.

Proof. Since z(# 0) € N(R) with ind(z) = n, 2™ = 0 # "~ L. Since
1+ z€Ghasorderk, 1= (1+z)*=1+kz+ (5)a?+ ()2 +. - + 2.
Thus we have an equation kz + (£)z2 + (¥)2% + .- + 2% = 0-(1). By
multiplying 2”2 to both sides of (1), we can have kz"~! = 0 since
2™ = 0 # 2"~ 1. Next, by multiplying 2kz”~3 to both sides of (1), we
can have 2kz™~2 = 0 since " = 0 and k2"~ ! = 0. By mathematical
induction on n and by multiplying 2k*~1z"~*=2 to both sides of (1), we
can have 2k'z" ! =Qforalli=1,... ,n— 2.

EXAMPLE 4. Let Zggs = {0,1,...,287} be the ring of integers mod-
ulo 288. Let 6 € N(Zgss) be an element of ind(6) = 5. Note that the
order of 7 ( = 1 + 6) is 12. Then we can have 12-6% =2-12-6% =
2-122.62=2-123-6=0.

REMARK 2. (1) Let R be a ring whose characteristic is 2. If z(#
0) € N(R) with ind(z) = n and 1 + z € G is of finite order k, then k is
even and =¥ = 0. Indeed, if k is odd, then we have z + 21 + 2% = 0
from an equation (1 +2z)* =14+ + 214+ 2F =1, and so 2* ! =0,
a contradiction. Hence k is even and then we have 2¥ = 0 from an
equation (1 +z)* =14z = 1.
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(2) Let R be a ring with the characteristic 0 in which there is no left
(or right) zero-divisors and let M,,(R) (m > 2) be a full matrix ring of
m X m over R. Then if z(# 0) € M,,(R) is nilpotent, then the order
of 1 + x is not finite. In fact, assume that there exists a nilpotent
x(# 0) € M,,(R) such that ind(z) = n and 1+ z € G is of finite order
k. Since z"7! # 0 and kz™ ! = 0 by Proposition 2.7, there exists
a(# 0) € R such that ka = 0. Since a # 0 and R has no left (or
right) zero divisors, we have k - 1 = 0, which is a contradiction to the
assumption that the characteristic of R is 0.

COROLLARY 2.8. Let R be a ring such that X # @ and the regular
action on X by G is transitive. If the order of 1 + x € G is finite for
some x € X, then the order of 1 + y € G is equal to the order of 1 + x
forally € X, ie, 1+ J is a torsion group.

Proof. Let k be the order of 1+ x. Since the regular action on X by
G is transitive, X U{0} = J, y?> = 0 for all y € X and y = gz for some
g € G by Proposition 2.4. Since the order of 1 + z is k and 22 = 0,
kx = 0 by Proposition 2.7. Note that kz = 0 if and only if ky = 0 for
all y € X and also the order of 1 + x is equal to the one of 1 + y for all
y € X. Hence 1 + J is a torsion group.

EXAMPLE 5. Let p be any prime number. By Example 2, in a ring
Zy2 there is a transitive regular action on X by G. Note that the order
of 1+yispforall y e X.

THEOREM 2.9. Let R be a ring in which G is a finitely generated
abelian group. If z(# 0) € N(R), then the orbit O(x) under the regular
action on X by G is finite.

Proof. If O(x) = {z} or G = {1}, then O(z) = {z}, and so O(z) is
finite. Thus suppose that O(z) # {z} and G # {1}. Then |O(z)| >
and Stab(z) is a proper subgroup of G. Let H = Stab(z) and let S =
{a1,a2,... ,ax} be the set of generators of G. Since z(# 0) € N(R),
z™ = 0 and 2"~ ! # 0 for some positive integer n. Thus (1+z" Nz =2
implies that 1+2"~! € H and so H # {1}. Since H is a proper subgroup
of G, H is generated by {a}',a5?,... ,a;*} for some nonnegative integers
$1,82,...,8; but not all s;, = 1. Let g = Hle aﬁ" € (G be arbitrary.
Then gz = (Hle afi) T = <H8i22 a?) x. For each s; > 2, by the
division algorithm for Z, t; = r; + ¢;s; for some r;,q; € Z where s; —1 >
r; > 0. Thus for all g € G, gz = (Hsi>2 af"> T = <Hsi22 af”) x, and so
O(x) is finite.
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COROLLARY 2.10. Let R be a ring such that X # 0 and the regular
action on X by G is transitive. If G is a finitely generated abelian group,
then R is finite. In addition, if 2 is a unit in G, then R is commutative.

Proof. R is finite by Theorem 2.1 and Theorem 2.9. Also if 2 is a
unit in G, then R is commutative by [2, Theorem 2.11].

THEOREM 2.11. Let R be a ring such that G is a finitely generated
abelian group and 2 is a unit in G. If e € X is idempotent, then O(e)
under the regular action is finite.

Proof. The proof is similar to the one of Theorem 2.9. If O(e) =
O(e?) = {e} or G = {1} for idempotent e € X, then O(e) = {e},
and so O(e) is finite. Suppose that O(e) # {e} and G # {1}. Then
|O(e)| > 1 and Stab(e) is a proper subgroup of G. Let H = Stab(e) and
let S = {ai,az,...,ar} be the set of generators of G. Since e € X is
idempotent and 2 is a unit in G, 2e — 1(# 1) € G. Thus (2e —l)e = ¢
implies that 2e — 1 € H and so H # {1}. Since H is a proper subgroup
of G, H is generated by {a7*, a3, ... ,a;"} for some nonnegative integers
$1,82,... ,8k > 0 but not all s;, = 1. Let g = ]—[z_1 a;' € G be arbitrary.

Then ge = (Hk a?’)e = (Hs >2 f’) e. For each s; > 2, by the

i=1"1
division algorithm for Z, t; = r; + ¢;s; for some r;, q; € Z, where s; —1 >
r; > 0. Thus for all g € G, gz = (Hs,-z2 af") e= (Hs >20; ) e, and so
O(e) is finite.

COROLLARY 2.12. Let R be a unit-regular ring. If G is a finitely
generated abelian group and 2 is a unit in G, then every orbit under the
regular action is a finite set.

Proof. By [4, Lemma 2.3], every orbit is O(e) for some 1dempotent
e € X and so is O(e) is a finite set by Theorem 2.11.

COROLLARY 2.13. Let R be a regular ring such that X # () and G
is a finitely generated abelian group and 2 is a unit in G. Then the
following are equivalent:

(1) X is a union of finite number of orbits under the regular action
on X by G;

(2) X is finite;

(3) R is finite commutative.
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Proof. (1) = (2). Suppose that X is a union of finite number of orbits
under the regular action on X by G. Since ind(R) is finite, a regular
ring R is unit-regular by Corollary 2.3. Since G is abelian group, R is
commutative by [4, Theorem 3.2]. By Corollary 2.12, every orbit under
the regular action on X by G is finite. Since there exists a finite number
of orbits under the regular action on X by G, X is finite.

(2) = (3). It follows from Theorem 2.1.
(3) = (1). It is clear.

It is well-known in the field theory that if F' is a finite field, then
F\ {0} is a cyclic group. But in [4, Theorem 3.7} the converse could
be true in case that 2 is a unit in F. In general, we have the following
Theorem:

THEOREM 2.14. Let F be a field in which 2 is a unit. If F\ {0} isa
finitely generated abelian group, then F is a finite field.

Proof. Consider a ring R = F x F. Then R is a unit-regular ring
and (2, 2) is a unit in R. Since F'\ {0} is a finitely generated abelian
group, the group of units of R is a finitely generated abelian group.
Take an idempotent (1,0) € R. Then the orbit O((1,0)) is equal to
{(g,0) : g € F\ {0}} under the regular action on X by G. By Theorem
2.11, O((1,0)) is a finite set, i.e., |O((1,0))| = |F \ {0}|. Hence F is a
finite field.

3. Conjugate action in regular rings

We begin with the following Lemma:

LEMMA 3.1. Let R be a ring such that G is a torsion group. If the
conjugate action on X by G is trivial, then G is abelian.

Proof. Let g,h € G be arbitrary. Since the order of g is finite, 1 —
g € X. Since the conjugate action on X by G is trivial, the orbit
O(1 —g)={1-g}, ie, h(1l —g)h™' =1— g and so gh = hg. Hence G
is abelian.

Note that the converse of Lemma 3.1 is not true by the following
example:
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a b

EXAMPLE 6. Let R = 0

:a,b,c € Zy p. Then R is a non-
1 11
0 01

0
e (§ B ume( (3 8).(3 D} #{(2 D)

and so the conjugate action on X by G is not trivial.

commutative ring but G = is an abelian group.

PROPOSITION 3.2. Let R be a unit-regualr ring such that G is a
torsion group and 2 is a unit. Then the following are equivalent:

(1) The conjugate action on X by G is trivial,
(2) G is abelian;
(3) R is commutative.

Proof. (1) = (2). It follows from the Lemma 3.1.
(2) = (3). It follows from [4, Theorem 3.2].
(3) = (1). It is clear.

ProrosiTION 3.3. Let R be a ring such that the conjugate action
on X by G is transitive. If N(R) # {0}, then for ally,z € X, yz = 0.

Proof. Since N(R) # {0}, there exists a nonzero € N(R) such that
ind(z) = n for some positive integer n. Then O(z?) = 0. Indeed, if
O(z?) # 0, then O(x) = O(z?) = X since the conjugate action on X
by G is transitive, and so z? = gzg~! for some g € G, which implies
that ind(x) < n, a contradiction. Next, for all y,2 € X,y = hzh™1,z =
kxk~! for some h,k € G, and so y? = ha?h~! = 0, 22 = kz?k~! = 0.
Note that for all y,2 € X, y + z € X and then 0 = (y + 2)? = yz + 2y,
and so yz = —zy. Hence yz = (hzh™1)(kzk™!) = hax(h lkz)k™! =
—h(h=lkz)zk™! = —k2?k~! = 0.

REMARK 3. By Proposition 3.3, if R is a ring such that the conjugate
action on X by G is transitive and N(R) # {0}, then R is a local ring
and J2? = (0).
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