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ON SOME TYPE ELEMENTS OF ZERO-SYMMETRIC

NEAR-RING OF POLYNOMIALS

Ebrahim Hashemi and Fatemeh Shokuhifar

Abstract. Let R be a commutative ring with unity. In this paper, we

characterize the unit elements, the regular elements, the π-regular ele-
ments and the clean elements of zero-symmetric near-ring of polynomials

R0[x], when nil(R)2 = 0. Moreover, it is shown that the set of π-regular

elements of R0[x] forms a semigroup. These results are somewhat sur-
prising since, in contrast to the polynomial ring case, the near-ring of

polynomials has substitution for its “multiplication” operation.

1. Introduction and preliminary definitions

Through this paper, all rings are commutative with unity and all near-
rings are abelian left near-ring with unity. A set N together with two binary
operations “ + ” and “ · ” is called left near-ring if (N,+) is a group, (N, ·) is a
semigroup and a · (b+ c) = a · b+ a · c for each a, b, c ∈ N . If (N,+) is abelian,
then we call N abelian.

For a near-ring N , N0 = {a ∈ N | 0 · a = 0} is called the zero-symmetric
part of N , Nc = {a ∈ N | 0 · a = a} is called the constant part of N . A near-
ring N is called zero-symmetric if N = N0. A near-ring N is called constant
near-ring if Nc = N . Also, a subgroup M of a near-ring N with MM ⊆ M
is called a subnear-ring of N . Thus N0 and Nc are subnear-rings of N . The
most general class of examples of zero-symmetric near-rings comes from the
following construction: Let (G,+) be a not necessarily abelian group. Then
the set M0(G) of all functions f : G → G with f(0) = 0 under pointwise
addition + and function composition ◦ determines a zero-symmetric near-ring
(M0(G),+, ◦). Evidently, also each ring is a zero-symmetric (left) near-ring
and so we may view near-rings as generalized rings. For basic definitions and
comprehensive discussion on near-rings, we refer the reader to [11].
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Recall that, a near-ring N is a near-field, if every nonzero element a ∈ N
has multiplicatively inverse a−1. Thus the nonzero elements of N form a group
under multiplication.

A subgroup M of (N,+) is called N -subgroup, if MN ⊆ M . It is proved
that N is a zero-symmetric near-ring if and only if each right ideal of N is an
N -subgroup of N by [11, Proposition 1.34]. A zero-symmetric near-ring N is
called local if L = {k ∈ N | kN 6= N} is an N -subgroup. Near-fields are local
near-rings with L = 0. Maxson in [9, Theorem 4.2], proved that if N is a local
near-ring, then N contains no idempotent other than 0 and 1. A near-ring N
is called integral, if N has no nonzero zero divisor.

For a near-ring N , nil(N), idem(N) and U(N) denote the set of all nilpotent
elements of N , the set of all idempotent elements of N and the set of all units
of N , respectively. Given a ring or near-ring N , we say that it is reduced if it
has no nonzero nilpotent element. Also, we write Z`(N), Zr(N) and Z(N) for
the set of all left zero divisors of N , the set of all right zero divisors and the
set Z`(N) ∪ Zr(N), respectively.

An element a of a near-ring N is called regular if there exists b ∈ N such that
a = aba. The set of all regular elements of N is denoted by vnr(N). A near-ring
N is called regular, whenever vnr(N) = N . For example, every constant near-
ring is regular. Further, Beidleman in [2], proved that the near-rings M(G)
and M0(G) are regular. Also, he showed that a regular near-ring with identity
contains no nonzero nil N -subgroup. In [4], Chao proved that if N is a reduced
zero-symmetric near-ring with unity, then N is regular if and only if aN is a
direct summand of N for each a ∈ N . According to [11, p. 347], a regular
near-ring with identity is integral if and only if it is a near-field. Properties of
regular near-rings have been studied by Ghoudhari, Goyal, Heatherly, Hongan,
Ligh, Mason and Murty. Their main results are suggested in the book [11].

A near-ring N is said to be π-regular if for each element a ∈ N , there exists
a positive integer n such that an is a regular element, that is, an = anban for
some b ∈ N . Such an element a is called π-regular. The set of all π-regular
elements of N is denoted by π − r(N). Clearly every regular near-ring is π-
regular, but Cho in [5] gives an example of a π-regular near-ring which is not
regular. As in [10] for a ring, we say that an element a of a near-ring N is clean
if a is the sum of a unit and an idempotent of R. The set of all clean elements
of N is denoted by cln(N). Moreover, N is said to be a clean near-ring if
cln(N) = N .

We say that a subset S of a ring or near-ring is locally nilpotent if for any finite
subset {s1, s2, . . . , sn} ⊆ S, there exists an integer k such that any product of
k elements from {s1, s2, . . . , sn} is zero. In other words, S is locally nilpotent
if any subring without identity generated by a finite number of elements in S
is nilpotent.

Let R be a ring. Since R[x] is an abelian near-ring under addition and sub-
stitution, it is natural to investigate the near-ring of polynomials (R[x],+, ◦).
The binary operation of substitution, denoted by “ ◦ ”, of one polynomial into
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another is both natural and important in the theory of polynomials. We adopt
the convention that for polynomials (x)f =

∑m
i=0 aix

i and (x)g ∈ R[x],

(x)g ◦ (x)f =

m∑
i=0

ai((x)g)i.

For example, (a0 + a1x) ◦ x2 = (a0 + a1x)2 = a20 + (a0a1 + a1a0)x + a21x
2.

However, the operation ◦, left distributes but does not right distribute over
addition. Thus (R[x],+, ◦) forms a left near-ring but not a ring. We use R[x]
to denote the left near-ring (R[x],+, ◦) with coefficients from R and R0[x] =
{(x)f | (x)f has zero constant term} is the zero-symmetric left near-ring of
polynomials with coefficients in R. Also, for each (x)f =

∑m
i=0 aix

i and (x)g =∑n
j=0 bjx

j ∈ R[x], we write (x)f(x)g =
∑n+m

k=0 (
∑

i+j=k aibj)x
k.

In this paper, we characterize all of the unit elements, the regular elements,
the π-regular elements and the clean elements of the zero-symmetric near-
ring R0[x], when R is a commutative ring with nil(R)2 = 0. Also, we prove
that vnr(R0[x]) is a subnear-ring of R0[x] if and only if vnr(R) is a subring
of R. Moreover, it is shown that the set of π-regular elements of R0[x] is
multiplicatively closed. These results are somewhat surprising since, in contrast
to the polynomial ring case, the near-ring of polynomials has substitution for
its “multiplication” operation.

2. Regular elements

In this section we investigate regular elements of the near-ring R0[x], when
R is a commutative ring with nil(R)2 = 0.

Theorem 2.1. Let N be a near-ring with central idempotents.

(1) Let a ∈ N . If aba = a for some b ∈ N , then ab = ba is an idempotent
of N .

(2) vnr(N) is multiplicatively closed.
(3) vnr(N) ∩ nil(N) = {0}.
(4) U(N) ∪ Idem(N) ⊆ vnr(N) ⊆ U(N) ∪ Z(N).
(5) vnr(N) = U(N) ∪ {0} if and only if Idem(N) = {0, 1}. In particular,

vnr(N) = U(N) ∪ {0} if N is either integral or local.
(6) vnr(N) contains a nonzero nonunit if and only if Idem(N) 6= {0, 1}.

Proof. (1) Let a ∈ vnr(N). Then a = aba for some b ∈ N . Hence ab = (ab)2 =
abab = a(ba)b = (ba)ab = b(ab)a = (ba)2 = ba, since ab and ba are central
idempotents.

(2) Let a, a′ ∈ vnr(N). Then a = aba and a′ = a′ca′ for some b, c ∈ R. Since
idempotent elements of N are central, it follows that aa′ = (aba)(a′ca′) =
aa′(cb)aa′ by (1).

By a similar argument one can prove the other statements. �

Proposition 2.2. Let N be a near-ring which whose idempotents are central.
If a ∈ vnr(N), then there exists a unique b ∈ N with aba = a and bab = b.
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Proof. Suppose that a ∈ vnr(N). Then a = aca for some c ∈ N . Let b = cac,
hence ca = ac ∈ Idem(N) by Theorem 2.1. Thus aba = a and bab = b. Now
assume that there exists b1 ∈ N such that ab1a = a and b1ab1 = b1. Thus
b1a = ab1 ∈ Idem(N) by Theorem 2.1. So we have b1 = b1ab1 = b1(aba)b1 =
b1(ab1a)b = b1ab = b1(aba)b = bab1ab = b. Therefore b is unique. �

Since every idempotent is central in each commutative ring, then by [7,
Lemma 2.1], we have the following result.

Lemma 2.3. Let R be a commutative ring and (x)f ∈ R0[x]. Then (x)f is
an idempotent element of the near-ring R0[x] if and only if (x)f = e1x, where
e1 is an idempotent of R. In particular, the idempotent elements of R0[x] are
central.

For each (x)f ∈ R0[x] and positive integer n, we write

((x)f)(n) = (x)f ◦ (x)f ◦ · · · ◦ (x)f︸ ︷︷ ︸
n

.

Lemma 2.4. Let R be a reduced commutative ring and (x)f =
∑m

i=1 aix
i,

(x)g =
∑n

j=1 bjx
j ∈ R0[x]. If (x)g ◦ (x)f = cx, then a1b1 = c and aibj = 0 for

i+ j 6= 2.

Proof. Let n = 1. Then (x)g ◦ (x)f = a1(b1x) + · · · + am(b1x)m = cx. Hence
a1b1 = c and aib1 = 0 for i = 2, . . . ,m, since aib

i
1 = 0 and R is reduced. Now

assume that n > 1. Then we have

(2.1) (x)g ◦ (x)f = a1((x)g) + a2((x)g)2 + · · ·+ am((x)g)m = cx,

which implies that a1b1 = c and amb
m
n = 0, since it is the leading coefficient of

Eq. (2.1). Thus ambn = bnam = 0, since R is reduced. By multiplying bn to
Eq. (2.1), we obtain

(2.2) bna1((x)g) + bna2((x)g)2 + · · ·+ bnam−1((x)g)m−1 = bncx.

Hence bnam−1(bn)m−1 = 0, since it is the leading coefficient of Eq. (2.2).
Therefore bnam−1 = am−1bn = 0, since R is reduced. Inductively, we have

bnai = aibn = 0 for i = 1, . . . ,m. Hence from Eq. (2.1) we have (
∑n−1

j=1 bjx
j) ◦

(
∑m

i=1 aix
i) = cx. Continuing this process, one can prove that bjai = aibj = 0

for i+ j 6= 2. �

It is well known that if R is a commutative ring, then (x)f =
∑m

i=0 aix
i

is a unit element of the polynomial ring R[x] if and only if a0 ∈ U(R) and
a1, . . . , am ∈ nil(R). In the next theorem, we determine unit elements of the
near-ring R0[x], when R is a commutative ring with nil(R)2 = 0.

Theorem 2.5. Let R be a commutative ring with nil(R)2 = 0. Then (x)f =∑m
i=1 aix

i ∈ U(R0[x]) if and only if a1 ∈ U(R) and a2, . . . , am ∈ nil(R).
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Proof. Suppose that (x)f ∈ U(R0[x]). Then (x)f ◦ (x)g = (x)g ◦ (x)f = x for
some (x)g =

∑n
j=1 bjx

j ∈ R0[x]. Since nil(R) is an ideal of R, it follows that

R = R/nil(R) is reduced and so (x)f ◦ (x)g = (x)g ◦ (x)f = 1x = (1 + nil(R))x,
where (x)f =

∑m
i=1(ai+nil(R))xi and (x)g =

∑n
j=1(bj +nil(R))xj . By Lemma

2.4, a1b1 = b1a1 = 1 and b1ai = 0 for i = 2, . . . ,m, which implies that ai = 0
for i = 2, . . . ,m. Since nil(R) ⊆ J(R), it follows that a1 ∈ U(R) and ai ∈ nil(R)
for i = 2, . . . ,m.

Conversely, let (x)f = a0x + a1x
2 + · · · + anx

n+1, where a0 ∈ U(R) and
a1, a2, . . . , an ∈ nil(R). We show that (x)f has right and left inverse. Since R
is commutative, then (x)f1 = a0 + a1x + · · · + anx

n is a unit element of the
polynomial ring R[x]. Thus there exists (x)g = b0+b1x+· · ·+bmxm of R[x] such
that (x)f1(x)g = (x)g(x)f1 = 1. Hence b0 ∈ U(R) and b1, . . . , bm ∈ nil(R).
Since nil(R[x]) = nil(R)[x], it follows that (x)g1 = b1x+· · ·+bmxm is a nilpotent
element of the polynomial ring R[x] and so there is a non-negative integer k such
that ((x)g1)k = 0, which implies that deg[((x)g)t] ≤ (k − 1)m for each t ≥ k.
Put r = (k−1)m. We have to find (x)h = h1x+h2x

2 + · · ·+hr+1x
r+1 ∈ R0[x]

such that (x)f ◦ (x)h = x. Then we have

(x)f ◦ (x)h = x

⇔ h1((x)f) + h2((x)f)2 + · · ·+ hr+1((x)f)r+1 = x

⇔ [h1 + h2((x)f) + · · ·+ hr+1((x)f)r](x)f = x

⇔ [h1 + h2((x)f) + · · ·+ hr+1((x)f)r](x)f1 = 1

⇔ [h1 + h2((x)f) + · · ·+ hr+1((x)f)r] = (x)g

⇔ [h2x((x)f1) + · · ·+ hr+1x
r((x)f1)r] = (x)g − h1

⇔ [h2x+ · · ·+ hr+1x
r((x)f1)r−1]((x)f1) = (x)g − h1

⇔ [h2x+ · · ·+ hr+1x
r((x)f1)r−1] = ((x)g − h1)(x)g

⇔ [h3x
2((x)f1)+· · ·+hr+1x

r((x)f1)r−1]=((x)g)2−h1((x)g)−h2x
⇔ [h3x

2+· · ·+hr+1x
r((x)f1)r−2]((x)f1)=((x)g)2−h1((x)g)−h2x

⇔ [h3x
2+· · ·+hr+1x

r((x)f1)r−2]=((x)g)3−h1((x)g)2−h2x((x)g)

...

⇔ ((x)g)r+1 − h1((x)g)r − · · · − hrxr−1(x)g − hr+1x
r = 0

⇔ h1 = b0, h2 = b0b1, h3 = b20b2 + b0b
2
1, . . . ,

hr+1 =
∑

i1+···+ir+1=r

bi1 . . . bir+1
− h1

∑
i1+···+ir=r

bi1 . . . bir − · · · − hrb1,

where bij ∈ {b0, b1, . . . , bm} for j = 1, . . . , r + 1. Hence (x)h is a right inverse
for (x)f .



188 E. HASHEMI AND F. SHOKUHIFAR

Since b0 ∈ U(R) and {b1, . . . , bm} ⊆ nil(R), hence h1 ∈ U(R) and {h2, . . .,
hr+1} ⊆ nil(R). Thus with a similar argument as used in the previous para-
graph, one can find (x)k ∈ R0[x] such that (x)h ◦ (x)k = x. Hence (x)h ∈
U(R0[x]), which implies that (x)f ∈ U(R0[x]). �

Corollary 2.6. Let R be a commutative ring with nil(R)2 = 0. Then U(R0[x])
= U(R)x + nil(R0[x]). In particular, if R is reduced, then U(R0[x]) = {ux |
u ∈ U(R)}.

Corollary 2.7. Let R be a commutative ring with nil(R)2 = 0 and (x)f ∈
R0[x]. If (x)f has right or left inverse, then (x)f is invertible in R0[x].

Proof. It follows from the proof of Theorem 2.5. �

Let R be a commutative ring and a ∈ R. Anderson and Badawi [1, Theorem
2.2], proved that a ∈ vnr(R) if and only if a = ue for some u ∈ U(R) and
e ∈ Idem(R). In the next proposition, we extend this result to the near-ring
R0[x].

Proposition 2.8. Let R be a commutative ring and (x)f ∈ R0[x]. Then the
following statements are equivalent:

(1) (x)f ∈ vnr(R0[x]).
(2) (x)f = (x)f ◦ (x)u ◦ (x)f for some (x)u ∈ U(R0[x]).
(3) (x)f = (x)u ◦ (x)h for some (x)h ∈ Idem(R0[x]) and (x)u ∈ U(R0[x]).

Proof. (1) ⇒ (2) Let (x)f ∈ vnr(R0[x]). Then (x)f = (x)f ◦ (x)g ◦ (x)f for
some (x)g ∈ R0[x] and so we have (x)f ◦ (x)g = (x)g ◦ (x)f ∈ Idem(R0[x])
by Theorem 2.1. Thus (x)f ◦ (x)g = ex for some e ∈ Idem(R) by Lemma 2.3.
Clearly, 1− e is an idempotent of R. Let (x)u = ex ◦ (x)g+ (1− e)x. Then by
using Lemma 2.3, we have

(x)u ◦ [(x)f + (1− e)x]

= (x)u ◦ (x)f + (x)u ◦ (1− e)x
= [ex ◦ (x)g + (1− e)x] ◦ ex ◦ (x)f + [ex ◦ (x)g + (1− e)x] ◦ (1− e)x
= ex ◦ [ex ◦ (x)g + (1− e)x] ◦ (x)f + [ex ◦ (x)g + (1− e)x] ◦ (1− e)x
= ex ◦ (x)g ◦ (x)f + (1− e)x
= ex+ (1− e)x
= x

and so (x)u is invertible in R0[x] by Corollary 2.7. Further, (1− e)x ◦ (x)f =
(x)f ◦ (1− e)x = (x)f − (x)f ◦ ex = (x)f − (x)f ◦ (x)g ◦ (x)f = 0 by Lemma
2.3. Hence (x)f ◦ (x)u ◦ (x)f = (x)f ◦ [ex ◦ (x)g + (1− e)x)] ◦ (x)f = [((x)f ◦
ex) ◦ (x)g + (x)f ◦ (1− e)x] ◦ (x)f = (x)f ◦ (x)g ◦ (x)f = (x)f .

(2) ⇒ (3) Assume that (x)f = (x)f ◦ (x)v ◦ (x)f for some (x)v ∈ U(R0[x])
and let u(x) = (x)v−1 ∈ U(R0[x]). Since (x)h = (x)v ◦ (x)f ∈ Idem(R0[x]), it
follows that (x)u ◦ (x)h = (x)v−1 ◦ (x)v ◦ (x)f = (x)f .
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(3) ⇒ (1) Suppose that (x)f = (x)u ◦ (x)h, where (x)u ∈ U(R0[x]) and
(x)h ∈ Idem(R0[x]). Hence by Lemma 2.3, (x)h = ex for some e ∈ Idem(R). So
(x)f = (x)u◦ex = ex◦(x)u, since ex is central. Therefore (x)f ◦(x)u−1◦(x)f =
(ex◦(x)u)◦(x)u−1 ◦(x)f = ex◦(x)f = ex◦(x)u◦ex = (x)f , since idempotents
of R0[x] are central. �

Now we give a characterization of regular elements of R0[x], when R is a
commutative ring with nil(R)2 = 0.

Theorem 2.9. Let R be a commutative ring with nil(R)2 = 0. Then
vnr(R0[x]) =

{∑n
i=1 aix

i ∈ R0[x] | n ≥ 1, a1 = ue and ai ∈ e(nil(R)) for each

i ≥ 2,where u ∈ U(R) and e ∈ Idem(R)
}

.

Proof. It follows directly from Proposition 2.8, Theorem 2.5 and Lemma 2.3.
�

Corollary 2.10. Let R be a commutative ring with nil(R)2 = 0. If R is
reduced, then vnr(R0[x]) = (vnr(R))x. In particular, if vnr(R) is a subring of
R, then vnr(R0[x]) = (vnr(R))x.

Proof. If nil(R) = 0, then vnr(R0[x]) = (vnr(R))x by Theorem 2.9. Now,
assume that vnr(R) be a subring of R. Then by [1, Theorem 2.9], R is reduced
and so the result follows. �

Theorem 2.11. Let R be a commutative ring with nil(R)2 = 0. If vnr(R0[x])
is a subnear-ring of R0[x], then R is reduced and vnr(R0[x]) = (vnr(R))x.

Proof. Let (x)f be a nilpotent element of R0[x]. Then by Theorem 2.5, x +
(x)f ∈ U(R0[x]) ⊆ vnr(R0[x]). Since vnr(R0[x]) is a subnear-ring of R0[x],
we have (x)f = −x + (x + (x)f) ∈ vnr(R0[x]), which implies that (x)f ∈
vnr(R0[x]) ∩ nil(R0[x]) = {0} by Theorem 2.1. Therefore nil(R0[x]) = {0} and
R is reduced by [3, Proposition 3.1]. Also, vnr(R0[x]) = (vnr(R))x by Corollary
2.10. �

Let R be a commutative ring. Anderson and Badawi [1, Theorem 2.1],
proved that the set of regular elements of R, is multiplicatively closed. Thus
we have the following result.

Corollary 2.12. Let R be a commutative ring with nil(R)2 = 0. Then
vnr(R0[x]) is a subnear-ring of R0[x] if and only if vnr(R) is a subring of
R.

Proof. If vnr(R0[x]) is a subnear-ring of R0[x], then vnr(R0[x]) = (vnr(R))x
by Theorem 2.11. Hence (vnr(R))x is a subgroup of (R0[x],+), which implies
that vnr(R) is a subring of R by [1, Theorem 2.1].

Conversely, assume that vnr(R) is a subring of R. Thus vnr(R0[x]) =
(vnr(R))x by Corollary 2.10. Then vnr(R0[x]) is a subgroup of (R0[x],+),
and so the result follows from Theorem 2.1. �
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Theorem 2.13. Let R be a commutative ring with nil(R)2 = 0 and 2 ∈ U(R).
Then every (x)f ∈ vnr(R0[x]) is the sum of two units of R0[x].

Proof. Let (x)f =
∑m

i=1 aix
i be a regular element of R0[x]. Then a1 = ue

and ai ∈ e(nil(R)) for some u ∈ U(R) and e ∈ Idem(R) by Theorem 2.9.
Hence a1 ∈ vnr(R) by [1, Theorem 2.2]. Since 2 ∈ U(R), it follows that
a1 = u′ + v′ for some u′, v′ ∈ U(R) by [1, Theorem 2.10]. Let (x)g = u′x and
(x)h = v′x+ a2x

2 + · · ·+ amx
m. Then (x)g, (x)h ∈ U(R0[x]) by Theorem 2.5.

Hence (x)f = (x)g + (x)h is the sum of two units of R0[x]. �

Theorem 2.14. Let R be a commutative ring with nil(R)2 = 0 and 2 ∈ U(R).
Then the following statements are equivalent.

(1) vnr(R0[x]) is a subnear-ring of R0[x].
(2) The sum of any four units of R0[x] is a regular element of R0[x].

Proof. (1)⇒ (2) It is clear since U(R0[x]) ⊆ vnr(R0[x]) by Theorem 2.1.
(2) ⇒ (1) By Theorem 2.1, vnr(R0[x]) is multiplicatively closed. Now, let

(x)f, (x)g ∈ vnr(R0[x]). Hence there exist (x)u1, (x)u2, (x)v1, (x)v2 ∈ U(R0[x])
such that (x)f = (x)u1+(x)u2 and (x)g = (x)v1+(x)v2 by Theorem 2.13. Thus
(x)f + (x)g is the sum of four units of R0[x], which implies that (x)f + (x)g ∈
vnr(R0[x]) by hypothesis. �

Corollary 2.15. Let R be a commutative ring with nil(R)2 = 0 and 2 ∈
U(R). If the sum of any four units of R0[x] is a regular element of R0[x], then
vnr(R0[x]) = (vnr(R))x.

Proof. It follows from Theorem 2.14 and Corollaries 2.12 and 2.10. �

3. π-regular elements and clean elements of R0[x]

In this section, we investigate π-regular and clean elements of R0[x] when R
is a commutative ring with nil(R)2 = 0.

Theorem 3.1. Let N be a near-ring with central idempotents. Then

(1) vnr(N) ⊆ π − r(N). In particular, each regular near-ring is π-regular
near-ring.

(2) vnr(N) ∪ nil(N) ⊆ π − r(N) ⊆ U(N) ∪ Z(N).
(3) π − r(N) = U(N) ∪ nil(N) if and only if Idem(N) = {0, 1}. In partic-

ular, π − r(N) = U(N) ∪ nil(N) if N is either integral or local.
(4) π − r(N) contains a non-nilpotent nonunit if and only if Idem(N) 6=
{0, 1}.

Proof. By a similar way as used in the proof of [1, Theorem 4.1], one can prove
it. �

Theorem 3.2. Let R be a commutative ring and (x)f ∈ R0[x]. Then (x)f is
π-regular if and only if there exists (x)g ∈ Idem(R0[x]) such that (x)g ◦ (x)f is
regular and (x− (x)g) ◦ (x)f ∈ nil(R0[x]).
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Proof. Since (x)f is π-regular, then ((x)f)(n) is regular for some n ≥ 1. Hence
((x)f)(n) = (x)u ◦ (x)g for some (x)u ∈ U(R0[x]) and (x)g ∈ Idem(R0[x]) by
Proposition 2.8. By Lemma 2.3, there exists e ∈ Idem(R) such that (x)g = ex.
First we show that ex ◦ (x)f is regular. Since idempotents of R0[x] are central,
we have ex◦ (x)f ◦ [((x)f)(n−1) ◦ (x)u−1]◦ ex◦ (x)f = [ex◦ ((x)f)(n) ◦ (x)u−1]◦
ex◦ (x)f = [ex◦ (x)u◦ex◦ (x)u−1]◦ex◦ (x)f = [ex◦ (x)u◦ (x)u−1]◦ex◦ (x)f =
ex◦ (x)f , which implies that ex◦ (x)f ∈ vnr(R0[x]). Also ((1−e)x◦ (x)f)(n) =
(1 − e)x ◦ ((x)f)(n) = (1 − e)x ◦ (x)u ◦ ex = 0, since (1 − e)x ∈ Idem(R0[x]).
Hence (1− e)x ◦ (x)f ∈ nil(R0[x]).

Conversely, suppose that for some e ∈ Idem(R), ex ◦ (x)f ∈ vnr(R0[x]) and
(1 − e)x ◦ (x)f ∈ nil(R0[x]). Then for some n ≥ 1, 0 = ((1 − e)x ◦ (x)f)(n) =
(1− e)x◦ ((x)f)(n) = ((x)f)(n) ◦ (1− e)x, since (1− e)x is a central idempotent
of R0[x]. Hence

(3.1) ((x)f)(n) = ex ◦ ((x)f)(n).

Since ex ◦ (x)f is regular, ex ◦ (x)f = (x)u ◦ cx for some (x)u ∈ U(R0[x])
and c ∈ Idem(R) by Proposition 2.8 and Lemma 2.3. Thus (ex ◦ (x)f)(n) =
((x)u ◦ cx)(n) = cx ◦ ((x)u)(n). But (ex ◦ (x)f)(n) = ex ◦ ((x)f)(n) = ((x)f)(n)

by Eq. (3.1). Hence ((x)f)(n) = cx ◦ ((x)u)(n). Let (x)g = cx ◦ ((x)u−1)(n).
Then ((x)f)(n) ◦ (x)g ◦ ((x)f)(n) = ((x)f)(n) ◦ cx ◦ ((x)u−1)(n) ◦ ((x)f)(n) =
cx ◦ ((x)u)(n) = ((x)f)(n), since idempotents of the near-ring R0[x] are central.
Therefore (x)f is π-regular. �

Lemma 3.3. Let R be a commutative ring and (x)f be a π-regular element of
the near-ring R0[x]. Then for some (x)g ∈ Idem(R0[x]) and (x)u ∈ U(R0[x])
we have (x)g ◦ (x)f = (x)g ◦ (x)u.

Proof. Since (x)f is π-regular, by Proposition 2.8, we have ((x)f)(n) = (x)u ◦
(x)g for some (x)g ∈ Idem(R0[x]), (x)u ∈ U(R0[x]) and n ≥ 1. By Lemma
2.3, (x)g = ex for some e ∈ Idem(R). As shown in the proof of Theorem 3.2,
ex ◦ (x)f is regular. Hence ex ◦ (x)f = cx ◦ (x)v for some c ∈ Idem(R) and
(x)v ∈ U(R0[x]) by Proposition 2.8 and Lemma 2.3. Now we show that e = c.
Since ex ◦ (x)f = ex ◦ (ex ◦ (x)f) = ex ◦ (cx ◦ (x)v), we have ecx ◦ (x)v =
cx ◦ (x)v and therefore ec = c. Since ex and cx are central, (ex ◦ (x)f)(n) =
ex ◦ ((x)f)(n) = cx ◦ ((x)v)(n). Thus ex ◦ ((x)f)(n) = ex ◦ (x)u = cx ◦ ((x)v)(n),
since ((x)f)(n) = (x)u ◦ ex. Hence ex = cx ◦ ((x)v)(n) ◦ (x)u−1. Thus ecx =
ex ◦ cx = cx ◦ ((x)v)(n) ◦ (x)u−1 ◦ cx = cx ◦ ((x)v)(n) ◦ (x)u−1, which implies
that ec = e. Thus e = c, since ec = c. Therefore (x)g ◦ (x)f = (x)g ◦ (x)v. �

Lemma 3.4 ([8, Theorem 21.28]). Let R be a ring with unity and I a two-
sided nil ideal of R. If c+ I ∈ Idem(R/I), then there is e ∈ Idem(R) such that
c+ I = e+ I in R/I.

Let R be a commutative ring. Then nil(R) is a locally nilpotent ideal of R,
and so nil(R[x]) = nil(R)0[x] is a right ideal of the near-ring R[x] by [6, The-
orem 3 and Proposition 8]. Since nil(R[x]) = nil(R0[x]), then nil(R0[x]) is a
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right ideal of R0[x]. Let (x)f =
∑m

i=1 aix
i ∈ nil(R0[x]) and (x)g =

∑n
j=1 bjx

j ∈
R0[x]. Hence (x)g◦(x)f = a1((x)g)+· · ·+am((x)g)m ∈ nil(R)0[x] = nil(R0[x]),
since ai ∈ nil(R). Therefore nil(R0[x]) is a two-sided ideal of the near-ring
R0[x]. One can easy show that the map ϕ : R0[x] −→ (R/nil(R))0[x] with
ϕ(
∑n

i=1 aix
i) =

∑n
i=1 aix

i, where ai = ai + nil(R) is a near-ring epimomor-
phism. Hence R0[x]/nil(R0[x]) ∼= (R/nil(R))0[x].

Theorem 3.5. Let R be a commutative ring with nil(R)2 = 0 and (x)f ∈
R0[x]. Then (x)f is π-regular if and only if (x)f + nil(R0[x]) is regular.

Proof. Suppose that (x)f is π-regular and (x)f = (x)f + nil(R0[x]). Then
((x)f)(n) = ((x)f)(n) ◦ (x)g ◦ ((x)f)(n) for some (x)g ∈ R0[x] and n ≥ 1. Hence
((x)f)(n) ◦ (x)g ∈ Idem(R0[x]). Thus by Lemma 2.3, ((x)f)(n) ◦ (x)g = ex,
for some e ∈ Idem(R). Therefore ((1− e)x ◦ (x)f)(n) = (1− e)x ◦ ((x)f)(n) =
(1 − e)x ◦ ex ◦ ((x)f)(n) = 0, since idempotents of R0[x] are central. Hence
[x−((x)f)(n)◦(x)g]◦(x)f = (1−e)x◦(x)f ∈ nil(R0[x]). Since x−((x)f)(n)◦(x)g
is idempotent, hence we have

(x)f − (x)f ◦ [((x)f)(n−1) ◦ (x)g] ◦ (x)f

= (x)f − ((x)f)(n) ◦ (x)g ◦ (x)f

= (x)f − (x)f ◦ ((x)f)(n) ◦ (x)g

= (x)f ◦ [x− ((x)f)(n) ◦ (x)g]

= [x− ((x)f)(n) ◦ (x)g] ◦ (x)f ∈ nil(R0[x])

which implies that (x)f + nil(R0[x]) = (x)f ◦ [((x)f)(n−1) ◦ (x)g] ◦ (x)f +
nil(R0[x]). Hence (x)f is regular.

Conversely, assume that

(x)f = (x)f + nil(R0[x])

is regular in R0[x]/nil(R0[x]), where (x)f =
∑m

i=1 aix
i. Then (x)f = (x)u ◦

(x)c for some (x)u ∈ U(R0[x]/nil(R0[x])) and c ∈ Idem(R0[x]/nil(R0[x])) by
Proposition 2.8. Since R0[x]/nil(R0[x]) ∼= (R/nil(R))0[x], we have (x)u ∈
U((R/nil(R))0[x]) and (x)c ∈ Idem((R/nil(R))0[x]). Hence by Corollary 2.6,
(x)u = vx for some v ∈ U(R/nil(R)). Since nil(R) ⊆ J(R), (x)u = v′x for some
v′ ∈ U(R). Furthermore, by Lemmas 2.3 and 3.4, (x)c = ex = (e + nil(R))x
for some e ∈ Idem(R). Thus (x)f = v′x ◦ ex = v′ex = v′ex. Therefore
(x)f =

∑m
i=1 aix

i = v′ex, which implies that a1−v′e, ai ∈ nil(R) for each i ≥ 2.
Then a1 = v′e+ b for some b ∈ nil(R). Hence (x)w = bx+a2x

2 + · · ·+amx
m ∈

nil(R)0[x] = nil(R0[x]) and a1 is π-regular by [1, Theorem 4.2]. Therefore
(x)f = v′x ◦ ex + (x)w. By Theorem 2.5, v′x + (x)w ∈ U(R0[x]), hence
ex ◦ (x)f = ex ◦ (ex ◦ v′x+ (x)w) = ex ◦ (v′x+ (x)w) is regular by Proposition
2.8. Further, (1 − e)x ◦ (x)f = (x)f − (x)f ◦ ex = (v′x ◦ ex + (x)w) − (v′x ◦
ex + (x)w) ◦ ex = (x)w − ex ◦ (x)w ∈ nil(R0[x]), since idempotents of R0[x]
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are central and nil(R0[x]) is an ideal of R0[x]. Therefore (x)f is π-regular by
Theorem 3.2. �

From Theorem 3.5 we conclude that R0[x] is not π-regular. Now we give a
characterization of π-regular elements of R0[x], when R is a commutative ring
with nil(R)2 = 0.

Theorem 3.6. Let R be a commutative ring with nil(R)2 = 0 and (x)f ∈
R0[x]. Then the following statements are equivalent:

(1) (x)f ∈ π − r(R0[x]).
(2) ((x)f)(n) ∈ vnr(R0[x]) for some n ≥ 1.
(3) ((x)f)(n) =(x)u◦(x)h for some (x)u∈U(R0[x]) and (x)h∈ Idem(R0[x]).
(4) (x)f = (x)g+ (x)w for some (x)g ∈ vnr(R0[x]) and (x)w ∈ nil(R0[x]).
(5) (x)f = (x)u◦(x)h+(x)w for some (x)u ∈ U(R0[x]), (x)h∈ Idem(R0[x])

and (x)w∈nil(R0[x]).
(6) (x)f + nil(R0[x]) ∈ vnr(R0[x]/nil(R0[x])).

Proof. (1)⇔ (2) It is clear.
(2)⇔ (3) and (4)⇔ (5) It follows from Proposition 2.8.
(1)⇒ (5) It follows from Theorem 3.5.
(4)⇒ (6) It is clear.
(6)⇒ (1) It follows from Theorem 3.5. �

Corollary 3.7. Let R be a commutative ring with nil(R)2 = 0. Then we have:

(1) π − r(R0[x]) = vnr(R0[x]) + nil(R0[x]).
(2) π − r(R0[x])/nil(R0[x]) = vnr(R0[x]/nil(R0[x])).
(3) π − r(R0[x]) = vnr(R0[x]) if and only if R is reduced.
(4) If 2 ∈ U(R), then every (x)f ∈ π − r(R0[x]) is the sum of two units of

R0[x].

Proof. (1) This follows from the equivalence of (1) and (4) in Theorem 3.6.
(2) This follows from the equivalence of (1) and (6) in Theorem 3.6.
(3) Since by Theorem 2.1, nil(R0[x]) ∩ vnr(R0[x]) = {0}, the result follows

from (1).
(4) By (1), (x)f = (x)g+(x)w with (x)g ∈ vnr(R0[x]) and (x)w ∈ nil(R0[x]).

Then (x)g = (x)u+(x)v for some (x)u, (x)v ∈ U(R0[x]) by Theorem 2.13. Thus
(x)u′ = (x)v+ (x)w ∈ U(R0[x]) by Theorem 2.5. Hence (x)f = (x)u+ (x)u′ is
the sum of two units of R0[x]. �

Proposition 3.8. If R is a commutative ring with nil(R)2 = 0, then π −
r(R0[x]) is multiplicatively closed.

Proof. Let (x)f1, (x)f2 ∈ π−r(R0[x]). Thus (x)f1 = u1e1x+(x)h1 and (x)f2 =
u2e2x + (x)h2 for some u1, u2 ∈ U(R), e1, e2 ∈ Idem(R) and (x)h1, (x)h2 ∈
nil(R0[x]) by Corollary 3.7. Thus (x)w1 = u2e2((x)h1) and (x)w2 = (x)f1 ◦
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(x)h2 are nilpotent elements of R0[x], since nil(R0[x]) is an ideal of R0[x].
Hence

(x)f1 ◦ (x)f2 = (u1e1x+ (x)h1) ◦ (u2e2x+ (x)h2)

= (u1e1x+ (x)h1) ◦ u2e2x+ (u1e1x+ (x)h1) ◦ (x)h2

= u2e2(u1e1x+ (x)h1) + (x)w2

= u2e2u1e1x+ (x)w1 + (x)w2.

Then by [1, Theorem 2.1], u2e2u1e1 ∈ vnr(R). Also, (x)w1+(x)w2 ∈ nil(R0[x]),
since nil(R0[x]) is an ideal of R0[x]. Therefore (x)f1 ◦ (x)f2 ∈ π − r(R0[x]) by
Corollary 3.7. �

Theorem 3.9. Let R be a commutative ring with nil(R)2 = 0. Then π −
r(R0[x]) = vnr(R0[x]) ∪ nil(R0[x]) if and only if either Idem(R) = {0, 1} or R
is reduced.

Proof. Suppose that π − r(R0[x]) = vnr(R0[x]) ∪ nil(R0[x]) and there ex-
ists e ∈ Idem(R) \ {0, 1}. Thus Idem(R0[x]) 6= {0, x} by Lemma 2.3. Let
(x)f ∈ nil(R0[x]). Then ex+ (x)f ∈ vnr(R0[x]) + nil(R0[x]) = π − r(R0[x]) =
vnr(R0[x]) ∪ nil(R0[x]) by Corollary 3.7 and hypothesis. Thus ex + (x)f ∈
vnr(R0[x]), since e 6= 0. Hence by Theorem 2.1, (x)f − ex ◦ (x)f = (1− e)x ◦
(x)f = (1 − e)x ◦ (ex + (x)f) ∈ vnr(R0[x]), since idempotents of R0[x] are
central. Also, (x)f − ex ◦ (x)f = (1 − e)x ◦ (x)f ∈ nil(R0[x]), since nil(R0[x])
is an ideal of R0[x]. Hence by Theorem 2.1, (x)f − ex ◦ (x)f = 0. By replacing
ex with (1−e)x, a similar argument yields that ex◦ (x)f = 0, and so (x)f = 0.
Therefore nil(R) = {0} by [3, Proposition 3.1].

Conversely, if Idem(R) = {0, 1}, then Idem(R0[x]) = {0, x} by Lemma 2.3.
Hence by Theorem 2.1, vnr(R0[x]) = U(R0[x]) ∪ {0}. Thus π − r(R0[x]) =
U(R0[x]) + nil(R0[x]) = U(R0[x]) by Corollaries 2.6 and 3.7. Also, if nil(R) =
{0}, then nil(R0[x]) = nil(R)0[x] = {0}. Therefore by Corollary 3.7, π −
r(R0[x]) = vnr(R0[x]). Hence π − r(R0[x]) = vnr(R0[x]) ∪ nil(R0[x]). �

Theorem 3.10. Let R be a commutative ring with nil(R)2 = 0. Then

(1) cln(R0[x]) = (cln(R))x+ (nil(R0[x]))x
=
{∑n

i=1 aix
i | a1 ∈ cln(R), ai ∈ nil(R) for every i ≥ 2

}
.

(2) R0[x] is never a clean near-ring.

Proof. (1) By Theorem 2.5 and Lemma 2.3, we have cln(R0[x]) = U(R0[x]) +
Idem(R0[x]) =

{∑n
i=1 aix

i | a1 = u + e for some u ∈ U(R), e ∈ Idem(R) and

ai ∈ nil(R) for every i ≥ 2
}

=
{∑n

i=1 aix
i | a1 ∈ cln(R), ai ∈ nil(R) for every

i ≥ 2
}

.

(2) It follows from (1), since x2 /∈ cln(R0[x]). �
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