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RINGS CLOSE TO SEMIREGULAR

Pınar Aydoğdu, Yang Lee, and A. Çiğdem Özcan

Abstract. A ring R is called semiregular if R/J is regular and idem-

potents lift modulo J , where J denotes the Jacobson radical of R. We
give some characterizations of rings R such that idempotents lift modulo
J , and R/J satisfies one of the following conditions: (one-sided) unit–

regular, strongly regular, (unit, strongly, weakly) π–regular.

1. Introduction

Throughout this paper, R denotes an associative ring with identity, and all
modules are unitary right R–modules.

Recall that an element a of a ring R is called regular if there exists b ∈ R
such that a = aba. R is said to be (von Neumann) regular if every element
of R is regular. R is called semiregular if R/J is regular and idempotents
lift modulo J (i.e., if, whenever a2 − a ∈ J , there exists e2 = e ∈ R such that
e−a ∈ J), where J = J(R) denotes the Jacobson radical of R. The well-known
characterization of a semiregular ring can be given as follows:

Theorem 1.1 ([20], [21, Theorem 28]). The following are equivalent for a ring
R :

(1) R is semiregular.
(2) For any a ∈ R, there exists a regular element d in R such that a−d ∈ J .
(3) For any a ∈ R, there exists a regular element d ∈ aR (resp. d ∈ aRa)

such that a− d ∈ J .
(4) For any a ∈ R, there exists an idempotent e ∈ aR such that (1−e)a ∈ J .
(5) For any a ∈ R, there exists an idempotent e ∈ Ra such that a(1−e) ∈ J .
(6) For any a ∈ R, R/aR has a projective cover.
(7) For any a ∈ R, R/Ra has a projective cover. When these conditions

hold,
(8) eRe is semiregular for every e2 = e ∈ R.
(9) R/I is semiregular for every ideal I of R.
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In the following proper implications, we see the rings close to regular. Their
definitions can be found in the text.

strongly regular ⇒ unit–regular ⇒ one-sided unit–regular ⇒ regular ⇒
weakly regular,

strongly regular ⇒ strongly π–regular ⇒ unit π–regular ⇒ π–regular ⇒
weakly π–regular.

In this article, we investigate rings close to semiregular by the motivation of
the characterization of semiregular rings and the rings mentioned above.

We call a ring R semi (∗)–regular if idempotents lift modulo J , and R/J
satisfies (∗), where (∗) is (one-sided) unit–regular or strongly regular or (unit,
strongly, weakly) π–regular.

In Section 2, we give several characterizations of semi (one-sided) unit–
regular and semi strongly regular rings. We prove among other things that R
is semi one-sided unit–regular if and only if there exists a complete orthogonal
set {e1, . . . , en} of idempotents of R such that all eiRej are semi one-sided
unit–regular.

Section 3 is concerned with π–regularity. We give some characterizations of
semi strongly π–regular and semi unit π–regular rings as in Section 2. Also, we
consider a generalization of weak π–regularity and investigate the relationship
between this generalization and semi weak π–regularity. In addition, we obtain
a characterization of a ring R such that R/J is Eulerian and idempotents
lift modulo J , among others. Furthermore, we show that some rings, we are
interested in, coincide if the ring is abelian or right quasi-duo. Although semi
π–regular rings are exchange rings, semi weakly π–regular rings need not be
exchange rings. We give an example in order to support this fact.

Following Crawley and Jonsson [11], a module M is said to have the (full)
exchange property if for any module X and decompositions X = M ′ ⊕ Y =
⊕i∈INi, where M ′ ∼= M , there exist submodules N ′

i ⊆ Ni for each i such that
X = M ′ ⊕ (⊕N ′

i). If this condition holds for finite sets I (equivalently for
|I| = 2), the module M is said to have the finite exchange property. Warfield
[25] calls a ring R exchange if R has the exchange property as a right R-
module. Also, it is proved in [25] that the notion of exchange rings is left-right
symmetric.

2. Semi (one-sided) unit–regular, semi strongly regular rings

In this section, we give some characterizations of semi (one-sided) unit–
regular and semi strongly regular rings. We begin with unit-regularity. An
element a of R is called unit–regular if there exists a unit u ∈ R such that
a = aua. R is called unit–regular if every element of R is unit–regular.

Recall that a ring R is said to have stable range 1 if, for any a, b ∈ R
satisfying aR + bR = R, there exists y ∈ R such that a + by is a (right) unit
[24]. We know from [12] that unit–regular rings have stable range 1. Also,
R has stable range 1 if and only if R/J has stable range 1 by [24]. If R has
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stable range 1, then every regular element is unit–regular by [12, the proof
of Proposition 4.12] or [4]. The converse is true if R is an exchange ring [4,
Theorem 3].

Chen [8] calls a ring R strongly stable if, whenever aR+bR = R, there exists
w ∈ Q(R) such that a + bw is unit in R, where Q(R) = {x ∈ R : ∃e − e2 ∈ J
and a unit u such that x = eu}.

The following theorem states several characterizations of semiregular rings
with stable range one or semiregular strongly stable rings.

Theorem 2.1. The following are equivalent for a ring R :
(1) R/J is unit–regular and idempotents lift modulo J .
(2) For any a ∈ R, there exists a unit–regular element d in R such that

a− d ∈ J .
(3) For any a ∈ R, there exists a unit–regular element d ∈ aR (resp. d ∈

aRa) such that a− d ∈ J .
(4) For any a ∈ R, there exist an idempotent e and a unit b in R such that

e ∈ aR, (1− e)a ∈ J and ba− (ba)2 ∈ J .
(5) For any a ∈ R, there exist an idempotent e and a unit b in R such that

e ∈ Ra, a(1− e) ∈ J and ab− (ab)2 ∈ J .
(6) For any a ∈ R, R/aR has a projective cover and R/aR ∼= rR(a) as right

R–modules, where R = R/J and rR is the right annihilator.

(7) For any a ∈ R, R/Ra has a projective cover and R/Ra ∼= lR(a) as left

R–modules, where R = R/J and lR is the left annihilator.
(8) R is a semiregular ring with stable range 1.
(9) R is a semiregular strongly stable ring.

Proof. (1) ⇒ (2) Since R/J is unit–regular, it has stable range 1. This implies
that R has stable range 1 and hence every regular element of R is unit–regular.
By Theorem 1.1, (2) holds.

(2) ⇒ (1) It is obvious.
(1) ⇔ (3) Similar to that of (1) ⇔ (2).
(1) ⇒ (4) Let a ∈ R. Then there exists a unit b in R such that a− aba ∈ J .

So ba− (ba)2 ∈ J . By hypothesis, there exists an idempotent f ∈ R such that
f − ba ∈ J . Then 1− f + ba = u is a unit in R. If we let e = au−1fb, then we
obtain that e2 = e ∈ aRb. Since u + J = u = 1, we have that af = aba = a.
This implies that a− ea = 0. Hence, (1− e)a ∈ J .

(4) ⇒ (1) Let a ∈ R. Choose e and b as in (4). Since e ∈ aR = aRb, R is
semiregular by Theorem 1.1. Let e = arb, where r ∈ R. Since (1 − e)a ∈ J ,
a = ea = arba. Multiplying this equation by ba from the right, we have
aba = a, where b is a unit. Hence, R/J is unit–regular.

(1) ⇔ (5) Follows from the symmetry of the condition (1).
(1) ⇔ (6) It is well-known that R is unit–regular if and only if aR is a direct

summand of R and R/aR ∼= rR(a) as right R–modules for every a ∈ R.
(1) ⇔ (7) Follows from the symmetry of the condition (1).
(1) ⇒ (8) Since R/J has stable range 1, R has stable range 1.
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(8) ⇒ (1) Since R/J has stable range 1 and is regular, it is unit–regular by
[12, Proposition 4.12].

(8) ⇔ (9) By [8, p. 2774], it is obvious. □

We call an element a ∈ R semi unit–regular if a satisfies the condition (2)
of Theorem 2.1. A ring R is called semi unit–regular if R satisfies one of the
equivalent conditions of Theorem 2.1 (see also [5]). Also, Chen calls this class
of rings unit semiregular in [8]. In the following we see a semi unit-regular ring
but not (unit-)regular.

Example 2.2. Let K be a field and R = K[[x]] be the (formal) power series
ring with indeterminate x over K. Note that R is not π-regular and J =
xK[[x]]. So R/J ∼= K is unit-regular. Let f(x)2 − f(x) ∈ J and f(x) =
a0 + a1x + · · · ∈ R. Then a20 = a0 and this yields that a0 = 0 or a0 = 1.
When a0 = 0, 0 − f(x) ∈ J . When a0 = 1, f(x) = 1 + a1x + · · · and so
1− f(x) = a1x+ · · · ∈ J . These imply that idempotents lift modulo J .

The following are easy consequences of Theorem 2.1.

Corollary 2.3. If a − b ∈ J and b is semi unit–regular, then a is semi unit–
regular.

Corollary 2.4. If R is semi unit–regular, then so is every homomorphic image
of R and so is every subring of the form eRe, where e2 = e ∈ R.

Proof. Let I be an ideal of R and a ∈ R/I. By Theorem 2.1, there exists a unit–
regular element d ∈ R such that a− d ∈ J . Then a− d ∈ (J + I)/I ⊆ J(R/I)
and d is unit–regular in R/I. Hence, R/I is semi unit–regular.

Let e be an idempotent of R. Then eRe is semiregular by [20, Lemma B.42]
and eRe has stable range 1 by [8, Lemma 3.2]. It follows that eRe is semi
unit–regular. □

Wu [26] defines rings with weak stable range 1 by considering one-sided units
instead of units in the definition of rings with stable range 1. That is, a ring R
is said to have weak stable range 1 if, for any a, b, x ∈ R satisfying ax+ b = 1,
there exists an element y in R such that a+ by is a one-sided unit.

If R is an exchange ring, then R has weak stable range 1 if and only if every
regular element of R is one-sided unit–regular by [18] and [27].

A ring R is called directly finite if all one-sided inverses are two–sided, i.e.,
if ab = 1 for any a, b ∈ R, then ba = 1. Hence, R has stable range 1 if and
only if R has weak stable range 1 and is directly finite.

As we mentioned before, it is known that a ring R has stable range 1 if and
only if R/J has stable range 1. A similar result holds for rings which have weak
stable range 1:

Lemma 2.5. Let I be an ideal of a ring R such that I ⊆ J . R has weak stable
range 1 if and only if R/I has weak stable range 1.
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Proof. (⇒) Let a, b, x ∈ R = R/I satisfying ax+ b = 1. Since I ⊆ J , ax+ b is
a unit in R. Let u be in R such that (ax+ b)u = 1. By hypothesis, there exists
y ∈ R such that a+ buy is a one-sided unit. Hence, a+ buy is a one-sided unit.

(⇐) Let a, b, x ∈ R such that ax+ b = 1. Since R has weak stable range 1,
there exists y ∈ R such that a+ by is a one-sided unit. Assume that a+ by is
a right unit. Then there exists u ∈ R such that 1 − (a + by)u ∈ I ⊆ J . This
implies that a+ by is a right unit. □

Corollary 2.6. R has weak stable range 1 if and only if R/J has weak stable
range 1.

Using the idea of Vaserstein’s proof given in [24, Theorem 2.8] we obtain the
following lemma.

Lemma 2.7. If R has weak stable range 1, then eRe has weak stable range 1
for any idempotent e of R.

Proof. Let a, b, x ∈ S = eRe such that ax+b = e. Then aS+bS = S. Consider
a+1−e and b in R. Since (1−e)S = 0, we have e ∈ aS+bS ⊆ (a+1−e)R+bR.
But a(1− e) = 0 = b(1− e) implies that 1− e = (a+1− e)(1− e) + b(1− e) ∈
(a+1−e)R+bR. Hence, we have (a+1−e)R+bR = R. Let y, z ∈ R such that
(a+1−e)y+bz = 1. There exists t ∈ R such that (a+1−e)+bzt is a one-sided
unit. Assume that it is a right unit. Since [1− bzt(1− e)][1 + bzt(1− e)] = 1,
we have that R = (1− bzt(1− e))(a+ (1− e) + bzt)R = (a+ (1− e) + bzte)R.
This implies that S = (a+ bzte)S. Hence, there exists an element y ∈ S such
that a+ by is a right unit. Similarly, if (a+1− e)+ bzt is a left unit in R, then
there exists an element y ∈ S such that a+ by is a left unit. □

The next theorem characterizes semiregular rings with weak stable range 1.

Theorem 2.8. The following are equivalent for a ring R:
(1) R/J is one-sided unit–regular and idempotents lift modulo J .
(2) For any a ∈ R, there exists a one-sided unit–regular element d ∈ R such

that a− d ∈ J .
(3) For any a ∈ R, there exists a one-sided unit–regular element d ∈ aR

(resp. d ∈ aRa) such that a− d ∈ J .
(4) R is a semiregular ring with weak stable range 1.
(5) For any a ∈ R, there exist a one-sided unit b ∈ R and an idempotent

e ∈ aRb such that (1− e)a ∈ J and ba− (ba)2 ∈ J .
(6) For any a ∈ R, there exist a one-sided unit b ∈ R and an idempotent

e ∈ bRa such that a(1− e) ∈ J and ab− (ab)2 ∈ J .

Proof. (2) ⇒ (1) Since R is semiregular, idempotents lift modulo J .
(1) ⇒ (2) Since R is semiregular, R/J is an exchange ring by [25, Theorem

3]. Hence, by [18] and Corollary 2.6, R has weak stable range 1. Again by
[18], every regular element of R is one-sided unit–regular in R. Hence, by
Theorem 1.1, (2) holds.
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(1) ⇔ (3) Similar to that of (1) ⇔ (2).
(1) ⇒ (4) By the proof of (1) ⇒ (2), R has weak stable range 1.
(4) ⇒ (1) By [18] and [27], every regular element is a one-sided regular

element.
(1) ⇔ (5) and (1) ⇔ (6) can be seen by a proof similar to that of (1) ⇔ (4)

in Theorem 2.1. □
An element a ∈ R is called semi one-sided unit–regular if it satisfies the

condition (2) in Theorem 2.8. A ring R is called a semi one-sided unit–regular
ring if R satisfies one of the equivalent conditions of Theorem 2.8. Example
2.2 provides a semi one-sided unit–regular ring but not one-sided unit-regular.

Corollary 2.9. If a − b ∈ J and b is semi one-sided unit–regular, then a is
semi one-sided unit–regular.

Corollary 2.10. If R is a semi one-sided unit–regular ring, then so is every
homomorphic image of R and so is every subring of the form eRe, where e2 = e.

Proof. Follows from Theorem 2.8, Lemma 2.7 and the proof of Corollary 2.4.
□

According to [9, Theorem 3.5], R is semi unit–regular if and only if there
exists a complete orthogonal set {e1, . . . , en} of idempotents of R such that all
eiRej are semi unit–regular. We show that a similar result is also valid for semi
one-sided unit–regular rings. Before proving this result we need the following
lemma.

Following [27], a module M is said to satisfy outer weak cancellation if M ⊕
K ∼= M ⊕ L implies that there exists a splitting epimorphism between K and
L.

Lemma 2.11. Let M = M1 ⊕M2. If M1 and M2 satisfy outer weak cancella-
tion, then so does M .

Proof. Let M1 ⊕ M2 ⊕ K ∼= M1 ⊕ M2 ⊕ L. Since M1 satisfies outer weak
cancellation, there exists a splitting epimorphism f : M2 ⊕K → M2 ⊕ L. Let
g : M2 ⊕L → M2 ⊕K be the monomorphism such that fg = 1M2⊕L. Then we
obtain that M2⊕K = Kerf ⊕ Img. It follows that M2⊕K ∼= M2⊕ (Kerf ⊕L)
and hence there exists a splitting epimorphism α : K → Kerf ⊕L, because M2

satisfies outer weak cancellation. Thus, πα : K → L is a splitting epimorphism,
where π is the projection from Kerf ⊕ L onto L. □

By induction we obtain the following result.

Corollary 2.12. Let M = ⊕n
i=1Mi. If Mi satisfies outer weak cancellation for

all i = 1, . . . , n, then so does M .

In [18], it is proved that if M has the finite exchange property, then M
satisfies outer weak cancellation if and only if EndR(M) has weak stable range
1. Considering this fact, we now prove the result mentioned above.
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Theorem 2.13. The following are equivalent for a ring R:
(1) R is semi one-sided unit–regular.
(2) There exists a complete orthogonal set {e1, . . . , en} of idempotents of R

such that all eiRej are semi one-sided unit–regular.

Proof. (1) ⇒ (2) Trivial by taking e = 1.
(2) ⇒ (1) By [9, Theorem 2.2], R is semiregular. By hypothesis, End(eiR) ∼=

eiRei is semiregular and has weak stable range 1 for all i = 1, . . . , n. It follows
from [25, Theorem 2] that all eiR have the finite exchange property and so all
eiR satisfy outer weak cancellation. By Corollary 2.12, ⊕n

i=1eiR satisfies outer
weak cancellation and hence End(⊕n

i=1eiR) has weak stable range 1, because
R ∼= e1R⊕. . .⊕enR has the finite exchange property. Thus, R is semi one-sided
unit–regular. □

In the final part of this section, we consider strongly regular rings.
A ring R is called strongly regular if, for any a ∈ R, there exists x ∈ R such

that a = a2x (see [2]). A ring R is called abelian if all idempotents of R are
central. It is well-known that R is strongly regular if and only if R is regular
and abelian, if and only if R is unit–regular and abelian, if and only if, for any
a ∈ R, there exist an idempotent e and a unit u in R such that a = eu and
eu = ue.

According to Nicholson and Zhou [21], idempotents lift strongly modulo J if,
whenever a2 − a ∈ J , there exists e2 = e ∈ aR (Ra, aRa) such that e− a ∈ J .
They prove that if idempotents lift modulo J , then they lift strongly modulo
J [21, Lemma 5]. Now we have the following result.

Theorem 2.14. The following are equivalent for a ring R:
(1) R/J is strongly regular and idempotents lift modulo J .
(2) For any a ∈ R, there exist a unit u and an idempotent e in R (resp. in

aR) such that a− eu ∈ J and eu− ue ∈ J .
(3) For any a ∈ R, there exist a unit u and an idempotent e ∈ aR such that

(1− e)a ∈ J and ua = au is an idempotent of R/J .
(4) For any a ∈ R, there exist a unit u and an idempotent e ∈ Ra such that

a(1− e) ∈ J and au = ua is an idempotent of R/J .

Proof. (1) ⇒ (2) By Theorem 2.1, for any a ∈ R, there exists a unit–regular
element d in R (aR or aRa) such that a− d ∈ J . Then d = eu, where e is an
idempotent and u is a unit. Since R/J is abelian, eu− ue ∈ J .

(2) ⇒ (1) If u is a unit and e is an idempotent, then eu is unit–regular.
Hence, by Theorem 2.1, idempotents lift modulo J . By the characterization of
a strongly regular ring written above, R/J is strongly regular.

(1) ⇒ (3) Let a ∈ R/J . Since R/J is strongly regular, there exist an
idempotent e and a unit u in R/J such that a = eu and eu = ue. It follows
that a = ea and au = ua is an idempotent of R/J . Since e = au−1 and
idempotents lift strongly modulo J , e can be assumed to be an idempotent in
aR.
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(3) ⇒ (1) By Theorem 2.1, idempotents lift modulo J . Let a ∈ R/J . Choose
e and u as in (3). Then there exists r ∈ R such that e = aru. We obtain that
a = ea = arua and so aua = arua = a = a2u. Hence, R/J is strongly regular.

(1) ⇔ (4) Follows from the symmetry of the condition (1). □
We call a ring R semi strongly regular if R satisfies one of the equivalent

conditions of Theorem 2.14. One can easily obtain that if, for any a ∈ R, there
exists a strongly regular element d (i.e., d = d2x for some x ∈ R and dx = xd)
such that a − d ∈ J , then R is semi strongly regular. Example 2.2 provides a
semi strongly regular ring but not regular.

Corollary 2.15. If R is a semi strongly regular ring, then so is every homo-
morphic image of R and so is every subring of the form eRe, where e2 = e.

Proof. Let I be an ideal of R. Since R is semiregular, R = R/I is semiregular.
Therefore idempotents lift modulo J(R). Note that any homomorphic image
of a strongly regular ring is strongly regular. Since R/J is strongly regular and
R/J(R) is a homomorphic image of R/J , we obtain that R is semi strongly
regular.

Let e be an idempotent of R. Since R is semiregular, idempotents lift modulo
J(eRe). By the definition of strongly regular rings, we observe that if a ring
R is strongly regular, then eRe is strongly regular for any idempotent e ∈ R.
Hence, R/J being strongly regular implies that e(R/J)e ∼= eRe/J(eRe) is
strongly regular. □

A ring R is said to have unit stable range 1 if, for any a, b ∈ R satisfying
aR+ bR = R, there exists a unit u ∈ R such that a+ bu is a unit. In contrast
to Theorems 2.1 and 2.8, there exists a semi strongly regular ring which does
not have unit stable range one. The ring Z2 is semi strongly regular with stable
range 1, but does not have unit stable range 1. On the other hand, M2(Z2),
the ring of 2 × 2 matrices over Z2, is semiregular and by [7, Corollary 4], has
unit stable range 1. But it is not semi strongly regular since it has non-central
idempotents.

A ring R is called right weakly regular if B2 = B for every principal right
ideal B of R (see [23, 4.4]). It is obvious that semi strongly regular ⇒ semi
unit–regular⇒ semi one–sided unit–regular⇒ semiregular⇒ semi right weakly
regular (i.e., R/J is right weakly regular and idempotents lift modulo J). But
none of the implications are reversible because, for example, it is known that
there exists a unit–regular ring which is not strongly regular. For the last
implication, there exists a right weakly regular ring with Jacobson radical zero
which is not regular (see [22]).

3. Semi (unit, strongly, weakly) π–regular rings

This section is concerned with π–regularity. We characterize semi π–regular,
semi unit π–regular, semi strongly π–regular rings, respectively. Rings R such
that R/J is eulerian and idempotents lift modulo J are also considered.
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An element a of a ring R is called π–regular if a power of a is regular. A
ring R is called π–regular if every element of R is π–regular. Due to [28], an
element a of a ring R is called semi π–regular if there exists a positive integer
n such that an is semiregular, i.e., an satisfies the condition (4) in Theorem 1.1
(see [20, Lemma B.40]). A ring R is called semi π–regular if every element of
R is semi π–regular. Also, by [28, Proposition 4.1] and [28, Theorem 4.4], R is
semi π–regular if and only if, for any a ∈ R, there exist a positive integer n and
a regular element b ∈ R such that an − b ∈ J , if and only if R/J is π–regular
and idempotents can be lifted modulo J . We will use these equivalences freely.
It is clear that π–regular rings are semi π–regular, but the converse need not
hold by Example 2.2. We have the following characterization.

Theorem 3.1. The following are equivalent for a ring R:
(1) R is semi π–regular.
(2) For any a ∈ R, there exist a positive integer n and a π–regular element

d of R such that an − d ∈ J .
(3) For any a ∈ R, there exist a positive integer n and a π–regular element

d ∈ anR (resp. d ∈ anRan) such that an − d ∈ J .

Proof. Write x̄ = x + J . (1) ⇒ (3) Let a ∈ R. By [28, Proposition 4.1], there
exist a positive integer n and b ∈ R such that b = banb and an − anban ∈ J .
Let d = anban. Then d = dbd and an − d ∈ J .

(3) ⇒ (2) It is obvious.
(2) ⇒ (1) Let a ∈ R, n be a positive integer and d be a π–regular element of

R such that an − d ∈ J . Then there exists a positive integer m such that dm is
regular. Since anm = d

m
, anm − dm ∈ J . By [28, Theorem 4.4], (1) holds. □

The n by n upper triangular matrix ring over a ring R is denoted by Un(R).
Define Dn(R) = {a ∈ Un(R) | all diagonal entries of a are equal} and Vn(R) =
{b = (bij) ∈ Dn(R) | bst = b(s+1)(t+1) for s = 1, . . . , n−2 and t = 2, . . . , n−1}.

Corollary 3.2. (1) A ring R is semi π–regular if and only if Dn(R) is semi
π–regular if and only if Vn(R) is semi π–regular.

(2) A ring R is semi π–regular if and only if so is R[x]/⟨xn⟩, where R[x] is
the polynomial ring with an indeterminate x over R and ⟨xn⟩ is the ideal of
R[x] generated by xn.

Proof. (1) The proof is obtained from Theorem 3.1 and the fact that J(Dn(R))
= {c = (cij) ∈ Dn(R) | cij ∈ J(R)} and J(Vn(R)) = {d = (dij) ∈ Dn(R) | dij ∈
J(R)}. (2) The proof is obtained from (1) and Vn(R) ∼= R[x]/⟨xn⟩. □

We know from [28] that if R is a semi π–regular ring, then so is every
homomorphic image of R and so is every subring of the form eRe, where e2 = e.
It is obvious that semiregular rings are semi π-regular, but the converse need
not hold by the following. The n by n full matrix ring over a ring R is denoted
by Matn(R).
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Example 3.3. Let K be a field and consider a ring

R = {(ai)∞i=1 | ai ∈ Matn(K) for all i and ai is eventually in Un(K)},
where (ai)

∞
i=1 is a sequence. Then R is π-regular but not regular, through

well-known facts. Note J = 0. These imply that R is semi π-regular but not
semi-regular.

An element a ∈ R is called unit π–regular if there exists a positive integer
m such that am is unit–regular. A ring R is said to be unit π–regular if every
element of R is unit π–regular [6].

Theorem 3.4. The following are equivalent for a ring R:
(1) R/J is unit π–regular and idempotents lift modulo J .
(2) For any a ∈ R, there exist a positive integer n and a unit–regular element

d ∈ R (resp. d ∈ anR) such that an − d ∈ J .
(3) For any a ∈ R, there exist a positive integer n and a unit π–regular

element d ∈ R (resp. d ∈ anR) such that an − d ∈ J .
(4) For any a ∈ R, there exist a positive integer n, an idempotent e ∈ R and

a unit b ∈ R such that e ∈ anR, (1− e)an ∈ J and ban − (ban)2 ∈ J .
(5) For any a ∈ R, there exist a positive integer n, an idempotent e ∈ R and

a unit b ∈ R such that e ∈ Ran, an(1− e) ∈ J and anb− (anb)2 ∈ J .

Proof. (1) ⇒ (2) Let a ∈ R. Then there exists a positive integer n such that
an is unit–regular in R/J . Let u be a unit in R/J such that an = anuan. Since
idempotents lift strongly modulo J , there exists an idempotent e of anR such
that anu = e. Hence, we have that an − eu−1 ∈ J , where eu−1 is unit–regular.

(2) ⇒ (3) It is obvious.
(3) ⇒ (1) By a proof similar to that of (2) ⇒ (1) in Theorem 3.1.
(1) ⇒ (4) By a proof similar to that of (1) ⇒ (4) in Theorem 2.1.
(4) ⇒ (1) By [28, Proposition 4.1 and Theorem 4.4], idempotents lift modulo

J . By a proof similar to that of (4) ⇒ (1) in Theorem 2.1, the proof follows.
(1) ⇔ (5) Follows from the symmetry of the condition (1). □
We call a ring R semi unit π–regular if R satisfies one of the equivalent

conditions of Theorem 3.4.

Corollary 3.5. If R is a semi unit π–regular ring, then so is every homomor-
phic image of R and so is every subring of the form eRe, where e2 = e.

Proof. By a proof similar to Corollary 2.4, every homomorphic image of R is
semi unit π–regular. For any idempotent e ∈ R, eRe is semi unit–π–regular by
[6, Theorem 1.2] and [21, Corollary 6]. □

An element a of a ring R is called strongly π–regular if there exist a positive
integer n and x ∈ R such that an = an+1x and an = xan+1. In [3, Corollary
of Theorem 3], it is proved that a strongly π–regular element is π–regular. A
ring R is called strongly π–regular if every element of R is strongly π–regular.
Clearly, any strongly regular ring is strongly π–regular. Any regular element of
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a strongly π–regular ring is unit–regular, because strongly π–regular rings have
stable range 1. Hence, any strongly π–regular ring is unit π–regular. According
to [19, Proposition 1], if R is strongly π–regular ring, then, for any a ∈ R, there
exists a positive integer n such that an = eu = ue for some idempotent e ∈ R
and some unit u ∈ R. Note that R is strongly π–regular if and only if, for any
a ∈ R, there exist a positive integer n and a strongly π–regular element d such
that an − d = 0. For the other characterizations we refer the reader to [23,
Theorems 5.1 and 5.9].

Theorem 3.6. The following are equivalent for a ring R:
(1) R/J is strongly π–regular and idempotents lift modulo J .
(2) For any a ∈ R, there exist a positive integer n, an idempotent e ∈ R

(resp. e ∈ anR) and a unit u ∈ R such that an − eu ∈ J and eu− ue ∈ J .
(3) For any a ∈ R, there exist a positive integer n, an idempotent e ∈ anR

and a unit u ∈ R such that (1− e)an ∈ J and an u = u an is an idempotent of
R/J .

(4) For any a ∈ R, there exist a positive integer n, an idempotent e ∈ Ran

and a unit u ∈ R such that an(1− e) ∈ J and an u = u an is an idempotent of
R/J .

Proof. (1) ⇒ (2) Let a be in R/J . By hypothesis, there exists a positive integer
n such that an = eu = ue, where e ∈ R/J is an idempotent and u ∈ R/J is

a unit. Note also that u is a unit in R. Since e = anu−1 and idempotents lift
strongly modulo J , we can assume that e is an idempotent of anR. Then we
obtain that an − eu ∈ J and eu− ue ∈ J .

(2) ⇒ (1) Let a ∈ R. Choose n, e and u as in (2). Then an = ane =
ananu−1 = an+1(an−1u−1) which means that an is a strongly π–regular ele-
ment. Finally, idempotents lift modulo J by Theorem 3.4.

(1) ⇒ (3) Let a ∈ R/J . Since R/J is strongly π–regular, there exist a
positive integer n and a unit u in R/J such that anu is an idempotent and
au = ua. By [21, Lemma 5 and Corollary 6], there exists an idempotent e in
anR such that e = an u. Then clearly, an u = u an is an idempotent of R/J
and (1− e)an ∈ J .

(3) ⇒ (1) Let a ∈ R/J and choose e and u as in (3). We can write e = anru,
where r ∈ R, because anR = anRu. Then an = e an implies that an u an = an.
By hypothesis, a is a strongly π–regular element.

(1) ⇔ (4) Follows from the symmetry of the condition (1). □
We call R a semi strongly π–regular ring if it satisfies one of the equivalent

conditions of Theorem 3.6.

Theorem 3.7. If, for any a ∈ R, there exist a positive integer n and a strongly
π–regular element d such that an − d ∈ J , then R/J is strongly π–regular and
idempotents lift modulo J .

Proof. Let a ∈ R, n be a positive integer and d be a strongly π–regular element
of R such that an − d ∈ J . Then d is π–regular, so there exists a positive
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integer m such that dm is regular. This implies that anm − dm ∈ J . By [28,
Theorem 4.4], R/J is π–regular and idempotents lift modulo J . On the other
hand, an = d is strongly π–regular and so there exist a positive integer t and
x ∈ R/J such that ant = an(t+1)x = ant+1(ant+n−1x). Hence, a is strongly
π–regular. □

Corollary 3.8. If R is a semi strongly π–regular ring, then so is every homo-
morphic image of R and so is every subring of the form eRe, where e2 = e.

Proof. Any homomorphic image of a semi strongly π–regular ring is also semi
strongly π–regular by Theorem 3.6. For any idempotent e ∈ R, eRe inherits the
strong π–regularity from a ring R. Hence, this fact together with [21, Corollary
6] implies that eRe is semi strongly π–regular. □

An element a ∈ R is called right weakly π–regular if there exists a positive
integer n such that anR = (anR)2. A ring R is called right weakly π–regular if
every element of R is right weakly π–regular [13]. Note that R is right weakly
π–regular if and only if, for any a ∈ R, there exist a positive integer n and a
right weakly π–regular element d ∈ R such that an − d = 0. We consider the
following generalization of weak π–regularity:

(∗) For any a ∈ R there exist a positive integer n and a right weakly π–regular
element d ∈ R such that an − d ∈ J .

Any local ring satisfies (∗). For, let x ∈ R. If x ∈ J , then x − 0 ∈ J . If
x /∈ J , then x is a unit and so is weakly π–regular; hence x− x = 0 ∈ J gives
the result.

There exists a ring satisfying (∗) but which is not right weakly π–regular.
Let D be a division ring and R be the power series ring with an indeterminate
x over D. Since R is local, it satisfies (∗), but xn /∈ xnRxnR for all positive
integer n.

Theorem 3.9. If R satisfies (∗), then R/I is right weakly π–regular for any
ideal I of R.

Proof. If a ∈ R/I, then there exist a positive integer n and a right weakly π–
regular element d ∈ R such that an = d. Also, there exist a positive integer m
and b ∈ RdmR such that dm = dmb. Since anm = d

m
, we have that b ∈ RanmR

and that d
m

= anm = anmb. Thus, a is a right weakly π–regular element. □

The results, we have obtained up to now, give rise to the following question:

Question. If R satisfies (∗), then do idempotents lift modulo J?

If R is right weakly π–regular, then J is nil (see [23, 4.2]). But if R satisfies
(∗), then J need not be nil, for example the Jacobson radical of the local ring
Z(p) is not nil.

Since π–regular rings are exchange, semi π–regular rings are exchange (see
[30, p. 663]). But we are able to give an example showing that a semi right
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weakly π–regular ring R (i.e., if R/J is right weakly π–regular and idempotents
lift modulo J) need not be exchange (Example 3.17).

In addition, we now consider another generalization of weak π–regularity.

(∗∗) For any a ∈ R, there exist a positive integer n and x ∈ RanR such that
an − anx ∈ N∗(R), where N∗(R) denotes the upper nil radical of R.

Proposition 3.10. R satisfies (∗∗) if and only if R/J is right weakly π–regular
and J is nil.

Proof. Assume that R satisfies (∗∗). Let a ∈ J . Then there exist a positive
integer n and x ∈ RanR such that b = an − anx ∈ N∗(R). So b(1 − x)−1 =
an(1− x)(1− x)−1 = an ∈ N∗(R), entailing that a is nilpotent. Thus J is nil.
Clearly, R/J is right weakly π–regular. The converse is obvious. □

Recall that a ring R is called right weakly regular if B2 = B for every
principal right ideal B of R. A similar result holds for a right weakly regular
ring:

Proposition 3.11. For any a ∈ R, there exists x ∈ RaR such that a − ax ∈
N∗(R) if and only if R/J is right weakly regular and J is nil.

Next, we consider rings with the property that for any a ∈ R, there exist an
idempotent e ∈ R and a positive integer n such that an − e ∈ J .

It is easy to see that R/J is a Boolean ring and idempotents lift modulo J if
and only if for any a ∈ R, there exists an idempotent e ∈ R such that a−e ∈ J .

An element e ∈ R is said to be a near idempotent if en is an idempotent for
some positive integer n. Following [10], R is called Eulerian if every element of
R is a near idempotent.

Proposition 3.12. The following are equivalent for a ring R :
(1) R/J is Eulerian and idempotents lift modulo J .
(2) For any a ∈ R, there exist an idempotent e ∈ R (resp. e ∈ anR, e ∈

anRan) and a positive integer n such that an − e ∈ J .
(3) R is semi strongly π–regular and the set of units of R/J , U(R/J), is a

torsion group.

Proof. (1) ⇔ (3) follows from the fact that R is Eulerian if and only if R is
strongly π–regular and U(R) is a torsion group ([10, Proposition 2.3]). (1)
⇒ (2) follows from definitions and [21, Lemma 5]. For (2) ⇒ (1), R/J is
clearly Eulerian and since R is semi π–regular, idempotents lift modulo J by
[28, Theorem 4.4]. □

Clearly, semi strongly regular ⇒ semi strongly π-regular ⇒ semi unit π–
regular ⇒ semi π–regular ⇒ semi right weakly π–regular. The following ex-
amples show that the reverse of the implications are not true in general, but
we couldn’t provide an example of a semi unit π–regular ring that is not semi
strongly π-regular. Recall that a ring is called 2–primal if its prime radical
(i.e., lower nilradical) coincides with the set of all nilpotent elements.
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Examples 3.13. (1) Let S be a 2-primal strongly π–regular ring (e.g., U2(F )
with F a field) and R = Mn(S) where n is a positive integer. Then R is strongly
π-regular by [14, Theorem 1] and so R/J is strongly π-regular but R/J need
not be strongly regular because if a =

(
0 1
0 0

)
, then a ̸∈ J and (a + J)2 = 0.

Since J is nil (R is right weakly π–regular), R is semi strongly π–regular but
not semi strongly regular.

(2) [12] Let F be a field and T = F [[t]] be the ring of formal power series
over F in an indeterminate t, and let K denote the quotient field of T . Let
S = {x ∈ EndF (T ) | (x − a)(tnT ) = 0 for some a ∈ K andn > 0}. By [12,
Example 4.26], for each x ∈ S there is a unique element φx ∈ K such that
(x−φx)(tnT ) = 0 for some n > 0. SinceK is commutative, the map φ : S → K
also defines a ring map φ : Sop → K, where Sop denotes the opposite ring of S.
Consequently, the set R = {(x, y) ∈ S×Sop |φx = φy} is a subring of S×Sop.
Then R is regular, and by [16, Example 2.27] R is not unit π-regular. Hence
R is semi π–regular but not semi unit π–regular.

(3) The ring R in Example 3.17, to follow, is semi right weakly π-regular
but not semi π–regular because it is not an exchange ring.

In [10, Theorem 3.1], it is proved that if R is an abelian ring, then R is
strongly π–regular if and only if R/N(R) is regular and N(R) = J , where
N(R) stands for the set of all nilpotent elements of R. Then we have the
following result.

Theorem 3.14. If R is an abelian ring, then the following are equivalent:
(1) R is semi strongly π–regular.
(2) R is semiregular.
(3) R is semi strongly regular.
(4) R is semi unit–regular.
(5) R is semi one-sided unit–regular.
(6) R is semi unit π–regular.
(7) R is semi π–regular.

Proof. Firstly note that R/J is abelian since idempotents lift modulo J . By
[10, Theorem 3.1], R is semi strongly π–regular if and only if R/J is regular,
N(R/J) = 0 and idempotents lift modulo J , if and only if R is semi strongly
regular (since strongly regular rings coincide with regular reduced rings), if
and only if R is semiregular. Hence, (1)-(3) are equivalent. The implication
(7) ⇒ (1) is obtained from the fact that π–regular abelian rings are strongly
π–regular. The other statements are clearly equivalent. □

A ring R is called right quasi–duo if every maximal right ideal is a two–sided
ideal.

Proposition 3.15. If R is a right quasi–duo ring, then the following are
equivalent:

(1) R is semi strongly π–regular.
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(2) R is semi π–regular.
(3) R is semi right weakly π–regular.
(4) R is semi strongly regular.
(5) R is semi unit–regular.
(6) R is semi one-sided unit–regular.
(7) R is semiregular.
(8) R is semi unit π–regular.

Proof. (4) ⇒ (5) ⇒ (6) ⇒ (7) ⇒ (2) and (1) ⇒ (8) are obvious.
(1) ⇔ (2) ⇔ (3) By [29], R/J is a right quasi–duo ring. Then R/J is right

weakly π–regular if and only if R/J is strongly π–regular ([15, Theorem 7]), if
and only if R/J is π–regular.

(2) ⇒ (4) Since semi π–regular rings are exchange, we have that R/J is
strongly π–regular if and only if R/J is strongly regular by [30, Theorem 3.8].

(8) ⇒ (2) Follows from Theorems 3.1 and 3.4. □

Example 3.16. There exists a semi right weakly π–regular ring that is not
semi π–regular and not right quasi–duo.

Proof. [15, Example 4] Let D be a simple domain that is not a division ring.
Consider the ring

R = {
(
a b
0 a

)
| a, b ∈ D}.

R is right weakly π–regular and so R/J is right weakly π–regular. Since
J =

(
0 D
0 0

)
is nil, idempotents lift modulo J . Hence, R is semi right weakly

π–regular. But R/J is not π–regular. For, let
(
a 0
0 a

)
+ J , where a is a non-zero

non-unit in D. If it was a π–regular element of R/J , then a would be a unit of
D, which is a contradiction.

Moreover, R is not a right quasi–duo ring because of [15, Theorem 7]. □

Example 3.17. There exists a semi right weakly π–regular ring that is not
exchange.

Proof. The ring R in Example 3.16 is semi right weakly π–regular. We claim
that R is not exchange. It is known that a ring R is exchange if and only if
R = R/J is exchange and idempotents lift modulo J . Therefore it is enough
to show that R is not exchange. Let a be a non-zero element in D such that a
and 1−a are both not right unit (for the existence of such an element consider
the element x in the first Weyl algebra over a field of zero characteristic).
Suppose that R is exchange. Then there exists an idempotent e ∈ kR such
that (1 − e) ∈ (1 − k)R, where k =

(
a 0
0 a

)
+ J . Note that since R ∼= D, the

only idempotents in R is 0 and 1. If e = 0, then 1 ∈ (1− k)R so (1− k)R = R.
It follows that there exists an element y ∈ R such that (1 − k)y = 1. This
gives that there exists an element b ∈ D such that (1 − a)b = 1, which is a
contradiction. If e = 1, then we obtain that a is a right unit in a similar way.
Thus, R is not an exchange ring. □
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A ring R is called a pm–ring if every prime ideal of R is maximal. The
relationship between pm–rings and various generalizations of regular rings has
been given by many authors (see, for example, [15, 29]). We wonder if any semi
(∗)–regular rings is a pm–ring or not. The answer is negative:

Example 3.18. A semi strongly regular ring need not be a pm–ring.

Proof. Denote by Un the 2n by 2n upper triangular matrix over a ring S, where
n is a positive integer. We construct a prime π-regular ring with the help of
[17, Example 1.2 and Proposition 1.3].

Let S be a division ring. Define a map σ : Un → Un+1 by A →
(
A 0
0 A

)
, then

Un can be considered as a subring of Un+1 via σ (i.e., A = σ(A) for A ∈ Un).
Set R be the direct limit of the direct system (Un, σij) with σij = σj−i. Then
R is a prime ring by [17, Proposition 1.3]. Since every Un is π–regular, R is
also π-regular by the definition of R.

Consider the subset I = {A ∈ R | the diagonal entries of A are all zero} of
R. Then I is a nil ideal of R such that R/I is isomorphic to a direct product
of division rings. This implies that R/I is strongly regular and the Jacobson
radical of R is I. Consequently R is semi strongly regular with J is nil.

But the zero ideal of R is prime and not maximal since I is a proper ideal
of R. □

Remark. Let R be a semi right weakly π–regular ring with J nil. If R is 2–
primal, then R is a pm–ring by [15, Proposition 5]. Note that R in Example 3.18
is not 2–primal by [17, Example 1.2].
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