A QUESTION ON *-REGULAR RINGS

Jian Cui and Xiaobin Yin

Abstract

A *-ring R is called $*$-regular if every principal one-sided ideal of R is generated by a projection. In this note, several characterizations of *-regular rings are provided. In particular, it is shown that a matrix ring $M_{n}(R)$ is *-regular if and only if R is regular and $1+x_{1}^{*} x_{1}+\cdots+x_{n-1}^{*} x_{n-1}$ is a unit for all x_{i} of R; which answers a question raised in the literature recently.

1. Introduction

Regular rings were invented by von Neumann in order to coordinatize certain lattices of projections. Recall that a ring R is regular if for every $a \in R$ the principal right ideal $a R$ is generated by an idempotent, or equivalently there exists $b \in R$ such that $a=a b a$; and in addition, if b can be chosen as a unit, then R is said to be unit regular. It is well known that a regular ring R is unit regular if and only if R possesses the stable range one (see [4]). Regularity of rings plays an important role in ring theory and module theory, one may refer to $[4,8]$ for more general theory.

A ring R is a $*$-ring (or ring with involution) if there exists a map $*: R \rightarrow R$ such that for all $x, y \in R$

$$
(x+y)^{*}=x^{*}+y^{*}, \quad(x y)^{*}=y^{*} x^{*}, \quad \text { and }\left(x^{*}\right)^{*}=x .
$$

An involution $*$ of R is proper if $x^{*} x=0$ implies $x=0$ for all $x \in R$. Recall that an element p of a $*$-ring R is a projection if $p^{2}=p=p^{*}$. Due to [1, Proposition 3], a $*$-ring R is called $*$-regular if for every a in R there exists a projection $p \in R$ such that $a R=p R$, or equivalently R is a regular ring and the involution is proper. Clearly the property of being $*$-regularity is left-right symmetric. Recently, the authors studied properties of $*$-regular rings in [3], and proved that if R is unit regular, then a matrix ring $M_{n}(R)$ is $*$-regular if and only if R is regular and $1+x_{1}^{*} x_{1}+\cdots+x_{n-1}^{*} x_{n-1}$ is a unit for all x_{i} of R; but it is a question that whether the words ' R is unit regular' can be removed.

Received August 2, 2017; Revised June 12, 2018; Accepted July 6, 2018.
2010 Mathematics Subject Classification. 16E50, 16W10.
Key words and phrases. *-regular ring, regular ring, matrix ring, GN property.

In this note, we answer the above question, and prove that a matrix ring $M_{n}(R)$ is $*$-regular if and only if R is regular and $1+x_{1}^{*} x_{1}+\cdots+x_{n-1}^{*} x_{n-1}$ is a unit for all x_{i} of R. Some basic properties of $*$-regular rings are also considered.

Rings considered are associative with unity. The set of all idempotents, all projections and all units of a ring R are denoted by $I d(R), P(R)$ and $U(R)$, respectively. The symbol $M_{n}(R)$ stands for the $n \times n$ matrix ring over R. For a *-ring $R, M_{n}(R)$ has a natural involution inherited from R : if $A=\left(a_{i j}\right) \in$ $M_{n}(R), A^{*}$ equals $\left(a_{j i}^{*}\right)$. Henceforth we consider $M_{n}(R)$ as a $*$-ring with respect to this natural involution.

2. Main results

We begin with the following result.
Proposition 1. Let R be $a *$-ring. The following are equivalent:
(1) R is *-regular.
(2) For every $a \in R, R a=R a^{*} a$.
(3) R is regular and $R e^{*} e=R e$ for every idempotent e of R.

Proof. (1) \Rightarrow (2) follows from [3, Lemma 2.1].
$(2) \Rightarrow(3)$. It suffices to show that R is regular. Let $a \in R$. By hypothesis, there exists $r \in R$ such that $a=r^{*} a^{*} a$. Then we have $a r=r^{*} a^{*} a r=(a r)^{*} a r$. It follows that $a r=(a r)^{*}$ and $\operatorname{ara}=(a r)^{*} a=r^{*} a^{*} a=a$, as required.
$(3) \Rightarrow(1)$. Let $x \in R$ with $x^{*} x=0$. Since R is regular, $x=x y x$ for some $y \in R$. Write $e=x y$. It is clear that $e \in I d(R)$ and $e^{*} e=y^{*} x^{*} x y=0$. So $R e=R e^{*} e=0$. Thus $e=0$ and $x=e x=0$, which implies that the involution of R is proper. Therefore, R is a $*$-regular ring.

Recall that an element a of a $*$-ring R is called Moore-Penrose invertible [7] if there exists $b \in R$ such that $a=a b a, b=b a b,(a b)^{*}=a b$ and $(b a)^{*}=b a$, where b is called the Moore-Penrose inverse of a and denoted by $b=a^{\dagger}$. The following result is known in literature, we give the proof for a convenience.

Proposition 2. Let R be $a *$-ring. Then R is *-regular if and only if every element of R is Moore-Penrose invertible.

Proof. Suppose that R is $*$-regular. Given $a \in R$. Then $R a=R p$ for some $p \in P(R)$. So there is an element $r \in R$ such that $p=r a$ and $a=a p=a r a$. Similarly, $a R=q R$ for some $q \in P(R)$, which implies that there exists $s \in R$ satisfying $q=a s$ and $a=q a=a s a$. Let $b=$ ras. Then $a b a=(a r a) s a=$ $a s a=a$ and $b a b=r(a s a) r a s=r(a r a) s=r a s=b$. Further, $(a b)^{*}=(a r a s)^{*}=$ $(a s)^{*}=a s=(a r a) s=a b$ and $(b a)^{*}=(r a s a)^{*}=(r a)^{*}=r a=r(a s a)=b a$. This proves that a is Moore-Penrose invertible and $b=a^{\dagger}$.

Conversely, let $a \in R$. Then there exists $b \in R$ such that $a=a b a$ and $(a b)^{*}=a b$. So $a=(a b)^{*} a=b^{*} a^{*} a$. It follows that $R a \subseteq R a^{*} a$. Clearly, $R a^{*} a \subseteq R a$. In view of Proposition 1, the result follows.

Due to [3], a $*$-ring R is said to have the k - $G N$ property if $1+x_{1}^{*} x_{1}+\cdots+$ $x_{k}^{*} x_{k} \in U(R)$ for all x_{1}, \ldots, x_{k} in R; if $k=1$, then R is known as a $*$-ring which possesses the Gelfand-Naimark property [6] (written GN property).
Lemma 3. (1) [3, Proposition 3.7] If R has the $k-G N$ property, then R has the $l-G N$ property for any integer $1 \leq l \leq k$.
(2) [3, Lemma 2.5] If R is a regular *-ring with the GN property, then the involution of R is proper.

In [3, Theorem 3.8], it was shown that for a $*$-ring R and an integer $n \geq 2$, $M_{n}(R)$ is *-regular and unit regular if and only if R is unit regular and $1+x_{1}^{*} x_{1}+$ $\cdots+x_{n-1}^{*} x_{n-1} \in U(R)$ for all $x_{i} \in R$. The property of being unit regularity is Morita invariant ([4, Corollary 4.7]), so it is a question that whether the words 'unit regular' be weakened as 'regular'. We give an affirmative answer.

Theorem 4. Let R be $a *$-ring and an integer $n \geq 2$. The following are equivalent:
(1) $M_{n}(R)$ is *-regular.
(2) R is regular with the $(n-1)-G N$ property.
(3) R is regular and $x_{1}^{*} x_{1}+x_{2}^{*} x_{2}+\cdots+x_{n}^{*} x_{n}=0$ implies $x_{i}=0$ for all $x_{i} \in R$.

Proof. (1) $\Rightarrow(2)$. Write $S=M_{n}(R)$. Since S is *-regular, it is regular. By [4, Theorem 1.7], R is regular. Take any $x_{1}, x_{2}, \ldots, x_{n-1} \in R$. Let $E=\left(\begin{array}{cc}1 & 0 \\ \alpha & O_{n-1}\end{array}\right)$ be a 2×2 block matrix with $\alpha=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)^{T}$ and O_{n-1} the $(n-1) \times(n-$ 1) zero matrix. Clearly, $E^{2}=E \in S$. In view of Proposition $1, S E^{*} E=S E$. Note that $E^{*} E=\left(\begin{array}{cc}1+\sum_{i=1}^{n-1} x_{i}^{*} x_{i} & 0 \\ 0 & O_{n-1}\end{array}\right)$ and $\left(\begin{array}{cc}1 & 0 \\ 0 & O_{n-1}\end{array}\right) \in S E$. So there exists a 2×2 block matrix $Y=\left(\begin{array}{cc}y_{1} & Y_{2} \\ Y_{3} & Y_{4}\end{array}\right) \in S$ such that $Y E^{*} E=\left(\begin{array}{cc}1 & 0 \\ 0 & O_{n-1}\end{array}\right)$, which yields $y_{1}\left(1+\sum_{i=1}^{n-1} x_{i}^{*} x_{i}\right)=1$. It follows that $\left(1+\sum_{i=1}^{n-1} x_{i}^{*} x_{i}\right) y_{1}^{*}=\left[y_{1}\left(1+\sum_{i=1}^{n-1} x_{i}^{*} x_{i}\right)\right]^{*}=1$. So $1+\sum_{i=1}^{n-1} x_{i}^{*} x_{i} \in U(R)$, and therefore, R has the $(n-1)$-GN property.
$(2) \Rightarrow(3)$. Assume (2) holds. In view of Lemma $3, R$ has the GN property. Then R is a $*$-regular ring since it is regular. By Proposition 2, every element of R is Moore-Penrose invertible. Let $x_{1}, x_{2}, \ldots, x_{n} \in R$ with $x_{1}^{*} x_{1}+x_{2}^{*} x_{2}+$ $\cdots+x_{n}^{*} x_{n}=0$. Multiplying the above equation by x_{n}^{\dagger} on the right and by $\left(x_{n}^{\dagger}\right)^{*}$ on the left, we obtain

$$
\begin{aligned}
0 & =\left(x_{n}^{\dagger}\right)^{*} x_{1}^{*} x_{1} x_{n}^{\dagger}+\left(x_{n}^{\dagger}\right)^{*} x_{2}^{*} x_{2} x_{n}^{\dagger}+\cdots+\left(x_{n}^{\dagger}\right)^{*} x_{n}^{*} x_{n} x_{n}^{\dagger} \\
& =\left(x_{1} x_{n}^{\dagger}\right)^{*} x_{1} x_{n}^{\dagger}+\left(x_{2} x_{n}^{\dagger}\right)^{*} x_{2} x_{n}^{\dagger}+\cdots+\left(x_{n} x_{n}^{\dagger}\right)^{*} x_{n} x_{n}^{\dagger} .
\end{aligned}
$$

Set $p=x_{n} x_{n}^{\dagger}$. Clearly, $p^{*}=p$ and $p^{2}=p$. Since R has the $(n-1)$-GN property, $1+\left(x_{1} x_{n}^{\dagger}\right)^{*} x_{1} x_{n}^{\dagger}+\left(x_{2} x_{n}^{\dagger}\right)^{*} x_{2} x_{n}^{\dagger}+\cdots+\left(x_{n-1} x_{n}^{\dagger}\right)^{*} x_{n-1} x_{n}^{\dagger}=1-\left(x_{n} x_{n}^{\dagger}\right)^{*} x_{n} x_{n}^{\dagger}=$ $1-p \in I d(R) \cap U(R)=\{1\}$. Hence $p=0$ and $x_{n}=x_{n} x_{n}^{\dagger} x_{n}=p x_{n}=0$.

So $x_{1}^{*} x_{1}+x_{2}^{*} x_{2}+\cdots+x_{n-1}^{*} x_{n-1}=0$. By Lemma 3 , for each positive integer $l \leq n-1, R$ possesses the l-GN property. Repeating the above procedure, we will get $x_{n-1}=x_{n-2}=\cdots=x_{2}=x_{1}=0$.
$(3) \Rightarrow(1)$ follows from [5, Theorem 1].
Corollary 5. Let R be $a *$-ring. Then $M_{2}(R)$ is $*$-regular if and only if R is a regular ring with $G N$ property.
Corollary 6. Let R be a *-ring. If $M_{n}(R)$ is *-regular, then $M_{m}(R)$ is *regular for any positive integer $m \leq n$.

By Theorem 4 and Corollary 6, we have the following result.
Corollary 7 ([3, Proposition 2.9]). Let R be $a *$-ring. If $M_{n}(R)$ is *-regular, then $m \cdot 1 \in U(R)$ for any positive integer $m \leq n$.

For a ring R, we use 1_{R} to denote the identity endomorphism of R.
Remark 8. (1) The property of being *-regularity relies on the choice of the involution. Let \mathbb{C} be the field of complex numbers and $*=1_{\mathbb{C}}$. Then \mathbb{C} is regular. For any $n \geq 2, M_{n}(\mathbb{C})$ is not $*$-regular by Theorem 4 (indeed, $M_{2}(\mathbb{C})$ is not $*$-regular as $1+i^{*} i=0 \notin U(R)$). Nevertheless, if the involution $*$ of \mathbb{C} is defined by $x \mapsto \bar{x}$ where \bar{x} is the conjugation of x, then $M_{n}(\mathbb{C})$ is $*$-regular.
(2) Let \mathbb{R} be the field of real numbers. Set $*=1_{\mathbb{R}}$. Then \mathbb{R} is regular with k-GN property for each $k \geq 1$. So $M_{n}(\mathbb{R})$ is $*$-regular for every integer $n \geq 2$.
(3) Let $R=\mathbb{Z}_{3}$ be the ring of integers modulo 3 and $*=1_{R}$. Clearly, R is regular with the GN property. So $M_{2}(R)$ is *-regular. But $M_{3}(R)$ is not *-regular since R does not possess the 2-GN property.

It is well known that C^{*}-algebras possess the GN property (see also [6]). So we have the following result immediately.
Example 9. If R is a regular C^{*}-algebra, then $M_{2}(R)$ is $*$-regular.
Let I be an ideal of a ring R. Recall that I is called regular provided that for each $x \in I$, there exists $y \in I$ such that $x=x y x$ (see [4, Definition, p. 2]).
Lemma 10 ([4, Lemma 1.3]). Let I be an ideal of a ring R. Then R is regular if and only if I and the factor ring R / I are both regular.

Let R be a $*$-ring. An ideal I of R is called $*$-invariant if $I^{*} \subseteq I$. In this way, I is a $*$-ring (possibly without the identity of R) and the involution of R can be extended to the factor ring R / I which is still denoted by $*$. We call an *-invariant ideal I is *-regular if I is regular and the involution of I is proper.
Lemma 11. Let I be an *-invariant ideal of R. Then R is *-regular if and only if I and R / I are both $*$-regular.
Proof. Assume that R is $*$-regular. In view of Lemma $10, I$ and R / I are regular. Let $x \in I$ with $x^{*} x=0$. As $I \subseteq R$ and the involution of R is proper, $x=0$. So I is $*$-regular. To show that the involution of R / I is proper. Take
$\bar{x}=x+I \in R / I$. If $\bar{x}^{*} \bar{x}=0$, then $x^{*} x \in I$. By Proposition 2, we may write $p=x x^{\dagger}$. Then $p \in P(R)$ and $x=x x^{\dagger} x=p x=p^{*} x=\left(x^{\dagger}\right)^{*} x^{*} x \in I$ as I is an ideal, whence $\bar{x}=0 \in R / I$, which implies that R / I is $*$-regular.

Conversely, R is regular by Lemma 10. It suffices to show that the involution of R is proper. Let $x^{*} x=0$ with $x \in R$. Then $\bar{x}^{*} \bar{x}=x^{*} x+I=0 \in R / I$. Since R / I is $*$-regular, $\bar{x}=0$. So $x \in I$. Notice that the involution of I is proper. It follows from $x^{*} x=0$ that $x=0$. As desired.

For an ideal I of a ring R, it is well known that $M_{n}(I)$ is an ideal of $M_{n}(R)$ and $M_{n}(R / I) \cong M_{n}(R) / M_{n}(I)$. So we may treat $M_{n}(R / I)$ and $M_{n}(R) / M_{n}(I)$ as the same.

Proposition 12. Let I be an *-invariant ideal of $a *$-ring R. Then $M_{n}(R)$ is *-regular if and only if both of the following hold:
(1) I is regular and $x_{1}^{*} x_{1}+x_{2}^{*} x_{2}+\cdots+x_{n}^{*} x_{n}=0$ implies $x_{i}=0$ for all $x_{i} \in I$.
(2) R / I is regular and $y_{1}^{*} y_{1}+y_{2}^{*} y_{2}+\cdots+y_{n}^{*} y_{n} \in I$ implies $y_{i} \in I$ for all $y_{i} \in R$.

Proof. We will use the following facts freely: (i) $M_{n}(R)$ is regular if and only if R is regular (by [4, Corollary 4.7]); (ii) $M_{n}(R)$ is regular if and only if I and R / I are regular if and only if $M_{n}(I)$ and $M_{n}(R / I)$ are regular (by Lemma 10).

Suppose that $M_{n}(R)$ is $*$-regular. Clearly, both I and R / I are regular. Let $x_{1}^{*} x_{1}+x_{2}^{*} x_{2}+\cdots+x_{n}^{*} x_{n}=0$ with $x_{i} \in I \subseteq R$. By Theorem 4, we have $x_{i}=0$ for all i. So (1) follows. Since $M_{n}(R)$ is $*$-regular, $M_{n}(R / I) \cong M_{n}(R) / M_{n}(I)$ is $*$-regular by Lemma 11. Now, given $y_{1}^{*} y_{1}+y_{2}^{*} y_{2}+\cdots+y_{n}^{*} y_{n} \in I$. Then $\overline{y_{1}}{ }^{*} \overline{y_{1}}+\overline{y_{2}}{ }^{*} \overline{y_{2}}+\cdots+\overline{y_{n}}{ }^{*} \overline{y_{n}}=0 \in R / I$. So one has $\overline{y_{i}}=0 \in R / I$ by applying Theorem 4 again. Thus $y_{i} \in I$ for $i=1,2, \ldots, n$, and (2) follows.

Conversely, it is enough to verify both $M_{n}(I)$ and $M_{n}(R / I)$ are *-regular. Clearly, $M_{n}(I)$ and $M_{n}(R / I)$ are regular. Let $X=\left(x_{i j}\right) \in M_{n}(I)$ and $X^{*} X=$ O. Then $x_{1 j}^{*} x_{1 j}+x_{2 j}^{*} x_{2 j}+\cdots+x_{n j}^{*} x_{n j}=0$ for $j=1, \ldots, n$. By (1), $x_{i j}=0$ for all i and j. So $X=O$, which implies that $M_{n}(I)$ is $*$-regular. Next we show that the involution of $M_{n}(R / I)$ is proper. Let $Y=\left(y_{i j}\right) \in M_{n}(R)$ be such that $(\bar{Y})^{*} \bar{Y}=O \in M_{n}(R / I)$. Then we obtain $Y^{*} Y \in M_{n}(I)$. It follows that $y_{1 j}^{*} y_{1 j}+y_{2 j}^{*} y_{2 j}+\cdots+y_{n j}^{*} y_{n j} \in I$ for all j. By (2), $y_{i j} \in I$ for $i, j=1, \ldots, n$. Hence $Y \in M_{n}(I)$, whence $\bar{Y}=O \in M_{n}(R / I)$. So the involution of $M_{n}(R / I)$ is proper, and therefore, $M_{n}(R / I)$ is *-regular. As desired.

Recall that an element $e \in I d(R)$ is left (resp., right) semicentral in R if $r e=e r e$ (resp., er $=$ ere) for all $r \in R$ (see [2]); e is central if and only if e is left and right semicentral. We now provide an application of $*$-regular rings.

Proposition 13. If R is *-regular ring, then every left (right) semicentral idempotent of R is central.
Proof. Without loss of generality, we suppose that $e \in I d(R)$ is left semicentral. Since R is $*$-regular, there exists $p \in P(R)$ such that $R e=R p$. It follows that
$e=e p$ and $p=p e$. As e is left semicentral, $p=p e=e p e=e^{2}=e \in P(R)$. For any $r \in R$, we have $e r=e^{*} r=\left(r^{*} e\right)^{*}=\left(e r^{*} e\right)^{*}=e^{*} r e^{*}=e r e$, which implies that e is right semicentral. So e is central in R.

Acknowledgments. This research was supported by the NNSF of China (No. 11401009), the Key Natural Science Foundation of Anhui Educational Committee (No. KJ2014A082) and Anhui Provincial Natural Science Foundation (No. 1408085QA01).

References

[1] S. K. Berberian, Baer *-Rings, Springer-Verlag, New York, 1972.
[2] G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim, and J. K. Park, Triangular matrix representations, J. Algebra 230 (2000), no. 2, 558-595.
[3] J. Cui and X. Yin, Some characterizations of *-regular rings, Comm. Algebra 45 (2017), no. 2, 841-848.
[4] K. R. Goodearl, von Neumann Regular Rings, Monographs and Studies in Mathematics, 4, Pitman (Advanced Publishing Program), Boston, MA, 1979.
[5] R. Z. Han and J. L. Chen, Generalized inverses of matrices over rings, Chinese Quart. J. Math. 7 (1992), no. 4, 40-47.
[6] J. J. Koliha, D. Djordjević, and D. Cvetković, Moore-Penrose inverse in rings with involution, Linear Algebra Appl. 426 (2007), no. 2-3, 371-381.
[7] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
[8] A. Tuganbaev, Rings Close to Regular, Mathematics and its Applications, 545, Kluwer Academic Publishers, Dordrecht, 2002.

Jian Cui
Department of Mathematics
Anhui Normal University
Wuhu 241000, P. R. China
Email address: cui368@ahnu.edu.cn
Xiaobin Yin
Department of Mathematics
Anhui Normal University
Wuhu 241000, P. R. China
Email address: xbyinzh@ahnu.edu.cn

