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A QUESTION ON ∗-REGULAR RINGS

Jian Cui and Xiaobin Yin

Abstract. A ∗-ring R is called ∗-regular if every principal one-sided ideal

of R is generated by a projection. In this note, several characterizations of

∗-regular rings are provided. In particular, it is shown that a matrix ring
Mn(R) is ∗-regular if and only if R is regular and 1+x∗

1x1+· · ·+x∗
n−1xn−1

is a unit for all xi of R; which answers a question raised in the literature
recently.

1. Introduction

Regular rings were invented by von Neumann in order to coordinatize certain
lattices of projections. Recall that a ring R is regular if for every a ∈ R the
principal right ideal aR is generated by an idempotent, or equivalently there
exists b ∈ R such that a = aba; and in addition, if b can be chosen as a unit,
then R is said to be unit regular. It is well known that a regular ring R is unit
regular if and only if R possesses the stable range one (see [4]). Regularity of
rings plays an important role in ring theory and module theory, one may refer
to [4, 8] for more general theory.

A ring R is a ∗-ring (or ring with involution) if there exists a map ∗ : R→ R
such that for all x, y ∈ R

(x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, and (x∗)∗ = x.
An involution ∗ of R is proper if x∗x = 0 implies x = 0 for all x ∈ R. Recall that
an element p of a ∗-ring R is a projection if p2 = p = p∗. Due to [1, Proposition
3], a ∗-ring R is called ∗-regular if for every a in R there exists a projection
p ∈ R such that aR = pR, or equivalently R is a regular ring and the involution
is proper. Clearly the property of being ∗-regularity is left-right symmetric.
Recently, the authors studied properties of ∗-regular rings in [3], and proved
that if R is unit regular, then a matrix ring Mn(R) is ∗-regular if and only if
R is regular and 1 + x∗1x1 + · · ·+ x∗n−1xn−1 is a unit for all xi of R; but it is a
question that whether the words ‘R is unit regular’ can be removed.
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In this note, we answer the above question, and prove that a matrix ring
Mn(R) is ∗-regular if and only if R is regular and 1+x∗1x1 + · · ·+x∗n−1xn−1 is a
unit for all xi of R. Some basic properties of ∗-regular rings are also considered.

Rings considered are associative with unity. The set of all idempotents, all
projections and all units of a ring R are denoted by Id(R), P (R) and U(R),
respectively. The symbol Mn(R) stands for the n× n matrix ring over R. For
a ∗-ring R, Mn(R) has a natural involution inherited from R: if A = (aij) ∈
Mn(R), A∗ equals (a∗ji). Henceforth we consider Mn(R) as a ∗-ring with respect
to this natural involution.

2. Main results

We begin with the following result.

Proposition 1. Let R be a ∗-ring. The following are equivalent:
(1) R is ∗-regular.
(2) For every a ∈ R, Ra = Ra∗a.
(3) R is regular and Re∗e = Re for every idempotent e of R.

Proof. (1)⇒ (2) follows from [3, Lemma 2.1].
(2) ⇒ (3). It suffices to show that R is regular. Let a ∈ R. By hypothesis,

there exists r ∈ R such that a = r∗a∗a. Then we have ar = r∗a∗ar = (ar)∗ar.
It follows that ar = (ar)∗ and ara = (ar)∗a = r∗a∗a = a, as required.

(3) ⇒ (1). Let x ∈ R with x∗x = 0. Since R is regular, x = xyx for some
y ∈ R. Write e = xy. It is clear that e ∈ Id(R) and e∗e = y∗x∗xy = 0. So
Re = Re∗e = 0. Thus e = 0 and x = ex = 0, which implies that the involution
of R is proper. Therefore, R is a ∗-regular ring. �

Recall that an element a of a ∗-ring R is called Moore-Penrose invertible [7]
if there exists b ∈ R such that a = aba, b = bab, (ab)∗ = ab and (ba)∗ = ba,
where b is called the Moore-Penrose inverse of a and denoted by b = a†. The
following result is known in literature, we give the proof for a convenience.

Proposition 2. Let R be a ∗-ring. Then R is ∗-regular if and only if every
element of R is Moore-Penrose invertible.

Proof. Suppose that R is ∗-regular. Given a ∈ R. Then Ra = Rp for some
p ∈ P (R). So there is an element r ∈ R such that p = ra and a = ap = ara.
Similarly, aR = qR for some q ∈ P (R), which implies that there exists s ∈ R
satisfying q = as and a = qa = asa. Let b = ras. Then aba = (ara)sa =
asa = a and bab = r(asa)ras = r(ara)s = ras = b. Further, (ab)∗ = (aras)∗ =
(as)∗ = as = (ara)s = ab and (ba)∗ = (rasa)∗ = (ra)∗ = ra = r(asa) = ba.
This proves that a is Moore-Penrose invertible and b = a†.

Conversely, let a ∈ R. Then there exists b ∈ R such that a = aba and
(ab)∗ = ab. So a = (ab)∗a = b∗a∗a. It follows that Ra ⊆ Ra∗a. Clearly,
Ra∗a ⊆ Ra. In view of Proposition 1, the result follows. �



A QUESTION ON ∗-REGULAR RINGS 1335

Due to [3], a ∗-ring R is said to have the k-GN property if 1 + x∗1x1 + · · ·+
x∗kxk ∈ U(R) for all x1, . . . , xk in R; if k = 1, then R is known as a ∗-ring which
possesses the Gelfand–Naimark property [6] (written GN property).

Lemma 3. (1) [3, Proposition 3.7] If R has the k-GN property, then R has
the l-GN property for any integer 1 ≤ l ≤ k.

(2) [3, Lemma 2.5] If R is a regular ∗-ring with the GN property, then the
involution of R is proper.

In [3, Theorem 3.8], it was shown that for a ∗-ring R and an integer n ≥ 2,
Mn(R) is ∗-regular and unit regular if and only ifR is unit regular and 1+x∗1x1+
· · ·+ x∗n−1xn−1 ∈ U(R) for all xi ∈ R. The property of being unit regularity is
Morita invariant ([4, Corollary 4.7]), so it is a question that whether the words
‘unit regular’ be weakened as ‘regular’. We give an affirmative answer.

Theorem 4. Let R be a ∗-ring and an integer n ≥ 2. The following are
equivalent:

(1) Mn(R) is ∗-regular.
(2) R is regular with the (n− 1)-GN property.
(3) R is regular and x∗1x1 + x∗2x2 + · · · + x∗nxn = 0 implies xi = 0 for all

xi ∈ R.

Proof. (1)⇒ (2). Write S = Mn(R). Since S is ∗-regular, it is regular. By [4,
Theorem 1.7], R is regular. Take any x1, x2, . . . , xn−1 ∈ R. Let E =

(
1 0
α On−1

)
be a 2×2 block matrix with α = (x1, x2, . . . , xn−1)T and On−1 the (n−1)×(n−
1) zero matrix. Clearly, E2 = E ∈ S. In view of Proposition 1, SE∗E = SE.

Note that E∗E =

(
1+

n−1∑
i=1

x∗
i xi 0

0 On−1

)
and

(
1 0
0 On−1

)
∈ SE. So there exists a

2×2 block matrix Y =
(
y1 Y2

Y3 Y4

)
∈ S such that Y E∗E =

(
1 0
0 On−1

)
, which yields

y1(1 +
n−1∑
i=1

x∗i xi) = 1. It follows that (1 +
n−1∑
i=1

x∗i xi)y
∗
1 = [y1(1 +

n−1∑
i=1

x∗i xi)]
∗ = 1.

So 1 +
n−1∑
i=1

x∗i xi ∈ U(R), and therefore, R has the (n− 1)-GN property.

(2)⇒ (3). Assume (2) holds. In view of Lemma 3, R has the GN property.
Then R is a ∗-regular ring since it is regular. By Proposition 2, every element
of R is Moore-Penrose invertible. Let x1, x2, . . . , xn ∈ R with x∗1x1 + x∗2x2 +
· · ·+x∗nxn = 0. Multiplying the above equation by x†n on the right and by (x†n)∗

on the left, we obtain

0 = (x†n)∗x∗1x1x
†
n + (x†n)∗x∗2x2x

†
n + · · ·+ (x†n)∗x∗nxnx

†
n

= (x1x
†
n)∗x1x

†
n + (x2x

†
n)∗x2x

†
n + · · ·+ (xnx

†
n)∗xnx

†
n.

Set p = xnx
†
n. Clearly, p∗ = p and p2 = p. Since R has the (n−1)-GN property,

1+(x1x
†
n)∗x1x

†
n+(x2x

†
n)∗x2x

†
n+ · · ·+(xn−1x

†
n)∗xn−1x

†
n = 1− (xnx

†
n)∗xnx

†
n =

1 − p ∈ Id(R) ∩ U(R) = {1}. Hence p = 0 and xn = xnx
†
nxn = pxn = 0.
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So x∗1x1 + x∗2x2 + · · · + x∗n−1xn−1 = 0. By Lemma 3, for each positive integer
l ≤ n− 1, R possesses the l-GN property. Repeating the above procedure, we
will get xn−1 = xn−2 = · · · = x2 = x1 = 0.

(3)⇒ (1) follows from [5, Theorem 1]. �

Corollary 5. Let R be a ∗-ring. Then M2(R) is ∗-regular if and only if R is
a regular ring with GN property.

Corollary 6. Let R be a ∗-ring. If Mn(R) is ∗-regular, then Mm(R) is ∗-
regular for any positive integer m ≤ n.

By Theorem 4 and Corollary 6, we have the following result.

Corollary 7 ([3, Proposition 2.9]). Let R be a ∗-ring. If Mn(R) is ∗-regular,
then m · 1 ∈ U(R) for any positive integer m ≤ n.

For a ring R, we use 1R to denote the identity endomorphism of R.

Remark 8. (1) The property of being ∗-regularity relies on the choice of the
involution. Let C be the field of complex numbers and ∗ = 1C. Then C is
regular. For any n ≥ 2, Mn(C) is not ∗-regular by Theorem 4 (indeed, M2(C)
is not ∗-regular as 1 + i∗i = 0 /∈ U(R)). Nevertheless, if the involution ∗ of C
is defined by x 7→ x̄ where x̄ is the conjugation of x, then Mn(C) is ∗-regular.

(2) Let R be the field of real numbers. Set ∗ = 1R. Then R is regular with
k-GN property for each k ≥ 1. So Mn(R) is ∗-regular for every integer n ≥ 2.

(3) Let R = Z3 be the ring of integers modulo 3 and ∗ = 1R. Clearly, R
is regular with the GN property. So M2(R) is ∗-regular. But M3(R) is not
∗-regular since R does not possess the 2-GN property.

It is well known that C∗-algebras possess the GN property (see also [6]). So
we have the following result immediately.

Example 9. If R is a regular C∗-algebra, then M2(R) is ∗-regular.

Let I be an ideal of a ring R. Recall that I is called regular provided that
for each x ∈ I, there exists y ∈ I such that x = xyx (see [4, Definition, p. 2]).

Lemma 10 ([4, Lemma 1.3]). Let I be an ideal of a ring R. Then R is regular
if and only if I and the factor ring R/I are both regular.

Let R be a ∗-ring. An ideal I of R is called ∗-invariant if I∗ ⊆ I. In this
way, I is a ∗-ring (possibly without the identity of R) and the involution of R
can be extended to the factor ring R/I which is still denoted by ∗. We call an
∗-invariant ideal I is ∗-regular if I is regular and the involution of I is proper.

Lemma 11. Let I be an ∗-invariant ideal of R. Then R is ∗-regular if and
only if I and R/I are both ∗-regular.

Proof. Assume that R is ∗-regular. In view of Lemma 10, I and R/I are
regular. Let x ∈ I with x∗x = 0. As I ⊆ R and the involution of R is proper,
x = 0. So I is ∗-regular. To show that the involution of R/I is proper. Take
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x̄ = x + I ∈ R/I. If x̄∗x̄ = 0, then x∗x ∈ I. By Proposition 2, we may write
p = xx†. Then p ∈ P (R) and x = xx†x = px = p∗x = (x†)∗x∗x ∈ I as I is an
ideal, whence x̄ = 0 ∈ R/I, which implies that R/I is ∗-regular.

Conversely, R is regular by Lemma 10. It suffices to show that the involution
of R is proper. Let x∗x = 0 with x ∈ R. Then x̄∗x̄ = x∗x+ I = 0 ∈ R/I. Since
R/I is ∗-regular, x̄ = 0. So x ∈ I. Notice that the involution of I is proper. It
follows from x∗x = 0 that x = 0. As desired. �

For an ideal I of a ring R, it is well known that Mn(I) is an ideal of Mn(R)
and Mn(R/I) ∼= Mn(R)/Mn(I). So we may treat Mn(R/I) and Mn(R)/Mn(I)
as the same.

Proposition 12. Let I be an ∗-invariant ideal of a ∗-ring R. Then Mn(R) is
∗-regular if and only if both of the following hold:

(1) I is regular and x∗1x1 + x∗2x2 + · · · + x∗nxn = 0 implies xi = 0 for all
xi ∈ I.

(2) R/I is regular and y∗1y1 + y∗2y2 + · · · + y∗nyn ∈ I implies yi ∈ I for all
yi ∈ R.

Proof. We will use the following facts freely: (i) Mn(R) is regular if and only
if R is regular (by [4, Corollary 4.7]); (ii) Mn(R) is regular if and only if I and
R/I are regular if and only if Mn(I) and Mn(R/I) are regular (by Lemma 10).

Suppose that Mn(R) is ∗-regular. Clearly, both I and R/I are regular. Let
x∗1x1 + x∗2x2 + · · ·+ x∗nxn = 0 with xi ∈ I ⊆ R. By Theorem 4, we have xi = 0
for all i. So (1) follows. Since Mn(R) is ∗-regular, Mn(R/I) ∼= Mn(R)/Mn(I)
is ∗-regular by Lemma 11. Now, given y∗1y1 + y∗2y2 + · · · + y∗nyn ∈ I. Then
ȳ1
∗ȳ1 + ȳ2

∗ȳ2 + · · ·+ ȳn
∗ȳn = 0 ∈ R/I. So one has ȳi = 0 ∈ R/I by applying

Theorem 4 again. Thus yi ∈ I for i = 1, 2, . . . , n, and (2) follows.
Conversely, it is enough to verify both Mn(I) and Mn(R/I) are ∗-regular.

Clearly, Mn(I) and Mn(R/I) are regular. Let X = (xij) ∈Mn(I) and X∗X =
O. Then x∗1jx1j +x∗2jx2j + · · ·+x∗njxnj = 0 for j = 1, . . . , n. By (1), xij = 0 for
all i and j. So X = O, which implies that Mn(I) is ∗-regular. Next we show
that the involution of Mn(R/I) is proper. Let Y = (yij) ∈ Mn(R) be such
that (Ȳ )∗Ȳ = O ∈ Mn(R/I). Then we obtain Y ∗Y ∈ Mn(I). It follows that
y∗1jy1j + y∗2jy2j + · · · + y∗njynj ∈ I for all j. By (2), yij ∈ I for i, j = 1, . . . , n.

Hence Y ∈ Mn(I), whence Ȳ = O ∈ Mn(R/I). So the involution of Mn(R/I)
is proper, and therefore, Mn(R/I) is ∗-regular. As desired. �

Recall that an element e ∈ Id(R) is left (resp., right) semicentral in R if
re = ere (resp., er = ere) for all r ∈ R (see [2]); e is central if and only if e is
left and right semicentral. We now provide an application of ∗-regular rings.

Proposition 13. If R is ∗-regular ring, then every left (right) semicentral
idempotent of R is central.

Proof. Without loss of generality, we suppose that e ∈ Id(R) is left semicentral.
Since R is ∗-regular, there exists p ∈ P (R) such that Re = Rp. It follows that
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e = ep and p = pe. As e is left semicentral, p = pe = epe = e2 = e ∈ P (R). For
any r ∈ R, we have er = e∗r = (r∗e)∗ = (er∗e)∗ = e∗re∗ = ere, which implies
that e is right semicentral. So e is central in R. �
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