DOI QR코드

DOI QR Code

Morphic Elements in Regular Near-rings

  • Received : 2019.12.24
  • Accepted : 2020.06.29
  • Published : 2020.12.31

Abstract

We define morphic near-ring elements and study their behavior in regular near-rings. We show that the class of left morphic regular near-rings is properly contained between the classes of left strongly regular and unit-regular near-rings.

Keywords

Acknowledgement

The authors are grateful to the referee for the helpful comments and suggestions that greatly improved the exposition.

References

  1. N. Argac and N. Groenewald, Weakly and strongly regular near-rings, Algebra Colloq., 12(2005), 121-130. https://doi.org/10.1142/s1005386705000118
  2. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Aust. Math. Soc., 2(1970), 363-368. https://doi.org/10.1017/S0004972700042052
  3. A. Benini and S. Pellegrini, Weakly divisible nearrings, Discrete Math., 208/209(1999), 49-59. https://doi.org/10.1016/S0012-365X(99)00061-8
  4. A. Benini and S. Pellegrini, Finite weakly divisible nearrings, Riv. Mat. Univ. Parma (8), 2(2009), 101-116.
  5. J. Chen, Y. Li and Y. Zhou, Morphic group rings, J. Pure Appl. Algebra, 205(2006), 621-639. https://doi.org/10.1016/j.jpaa.2005.07.021
  6. G. Ehrlich, Unit-regular rings, Portugal. Math., 27(1968), 209-212.
  7. G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc., 216(1976), 81-90. https://doi.org/10.2307/1997686
  8. G. Ferrero, Nearrings : some developments linked to semigroups and groups, Springer Publishing Co. Inc., 2012.
  9. K. R. Goodearl, Von Neumann regular rings, Monographs and studies in Mathematics 4, Advanced Publishing Program, Boston, Mass London, 1979.
  10. H. E. Heatherly and J. R. Courville, Near-rings with a special condition on idempotents, Math. Pannon., 10(1999), 197-209.
  11. T.-K. Lee and Y. Zhou, Morphic rings and unit regular rings, J. Pure Appl. Algebra, 210(2007), 501-510. https://doi.org/10.1016/j.jpaa.2006.10.005
  12. T.-K. Lee and Y. Zhou, A theorem on unit-regular rings, Canad. Math. Bull., 53(2010), 321-326. https://doi.org/10.4153/CMB-2010-023-0
  13. Y. Li and W. K. Nicholson, Ehrlich's theorem for groups, Bull. Aust. Math. Soc., 81(2010), 304-309. https://doi.org/10.1017/S000497270900094X
  14. Y. Li, W. K. Nicholson and L. Zan, Morphic groups, J. Pure Appl. Algebra, 214(2010), 1827-1834. https://doi.org/10.1016/j.jpaa.2009.12.026
  15. G. Mason, Strongly regular near-rings, Proc. Edinburgh Math. Soc., 23(1980), 27-35. https://doi.org/10.1017/S0013091500003564
  16. J. D. P. Meldrum, Near-rings and their links with groups, Research Notes in Mathematics 134, Pitman, London, 1985.
  17. P. Nandakumar, On weakly n-subcommutative near-rings, Bull. Malays. Math. Sci. Soc., 32(2009), 131-136.
  18. W. K. Nicholson and C. E. Sanchez, Rings with the dual of the isomorphism theorem, J. Algebra, 271(2004), 391-406. https://doi.org/10.1016/j.jalgebra.2002.10.001
  19. W. K. Nicholson and C. E. Sanchez, Principal rings with the dual of the isomorphism theorem, Glasgow Math. J., 46(2004), 181-191. https://doi.org/10.1017/S0017089503001654
  20. W. K. Nicholson and C. E. Sanchez, Morphic modules, Comm. Algebra, 33(2005), 2629-2647. https://doi.org/10.1081/AGB-200064348
  21. G. Pilz, Near-rings, the theory and its applications, Revised ed. North Holland, 1983.
  22. Y. V. Reddy and C. V. L. N. Murty, On strongly regular near-rings, Proc. Edinburgh Math. Soc., 27(1984), 61-64. https://doi.org/10.1017/S0013091500022136