• 제목/요약/키워드: unit ball of $\mathbb{C}^n$

검색결과 28건 처리시간 0.034초

ON SOME MEASURE RELATED WITH POISSON INTEGRAL ON THE UNIT BALL

  • Yang, Gye Tak;Choi, Ki Seong
    • 충청수학회지
    • /
    • 제22권1호
    • /
    • pp.89-99
    • /
    • 2009
  • Let $\mu$ be a finite positive Borel measure on the unit ball $B{\subset}\mathbb{C}^n$ and $\nu$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, $\sigma$ is the rotation-invariant measure on S such that ${\sigma}(S)=1$. Let $\mathcal{P}[f]$ be the invariant Poisson integral of f. We will show that there is a constant M > 0 such that $\int_B{\mid}{\mathcal{P}}[f](z){\mid}^{p}d{\mu}(z){\leq}M\;{\int}_B{\mid}{\mathcal{P}}[f](z)^pd{\nu}(z)$ for all $f{\in}L^p({\sigma})$ if and only if ${\parallel}{\mu}{\parallel_r}\;=\;sup_{z{\in}B}\;\frac{\mu(E(z,r))}{\nu(E(z,r))}\;<\;\infty$.

  • PDF

BOUNDEDNESS OF BEREZIN TRANSFORM ON HERZ SPACES

  • Cho, Chu-Hee;Na, Kyun-Guk
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.829-842
    • /
    • 2012
  • In this paper, we give the condition for the boundedness of the Berezin transforms on Herz spaces with a normal weight on the unit ball of $\mathbb{C}^n$. And we provide the integral estimates concerning pluriharmonic kernel functions. Using this, we finally obtain the growth estimates of the Berezin transforms on such Herz spaces.

BOUNDED LINEAR FUNCTIONAL ON L1a(B) RELATED WITH $\mathcal{B}_q$q

  • Choi, Ki Seong
    • 충청수학회지
    • /
    • 제14권2호
    • /
    • pp.37-46
    • /
    • 2001
  • In this paper, weighted Bloch spaces $\mathcal{B}_q$ are considered on the open unit ball in $\mathbb{C}^n$. In this paper, we will show that every Bloch function in $B_q$ induces a bounded linear functional on $L^1_a(\mathcal{B})$.

  • PDF

A CHARACTERIZATION OF M-HARMONICITY

  • Lee, Jae-Sung
    • 대한수학회보
    • /
    • 제47권1호
    • /
    • pp.113-119
    • /
    • 2010
  • If f is M-harmonic and integrable with respect to a weighted radial measure $\upsilon_{\alpha}$ over the unit ball $B_n$ of $\mathbb{C}^n$, then $\int_{B_n}(f\circ\psi)d\upsilon_{\alpha}=f(\psi(0))$ for every $\psi{\in}Aut(B_n)$. Equivalently f is fixed by the weighted Berezin transform; $T_{\alpha}f = f$. In this paper, we show that if a function f defined on $B_n$ satisfies $R(f\circ\phi){\in}L^{\infty}(B_n)$ for every $\phi{\in}Aut(B_n)$ and Sf = rf for some |r|=1, where S is any convex combination of the iterations of $T_{\alpha}$'s, then f is M-harmonic.

ON DUALITY OF WEIGHTED BLOCH SPACES IN ℂn

  • Yang, Gye Tak;Choi, Ki Seong
    • 충청수학회지
    • /
    • 제23권3호
    • /
    • pp.523-534
    • /
    • 2010
  • In this paper, we consider the weighted Bloch spaces ${\mathcal{B}}_q$(q > 0) on the open unit ball in ${\mathbb{C}}^n$. We prove a certain integral representation theorem that is used to determine the degree of growth of the functions in the space ${\mathcal{B}}_q$ for q > 0. This means that for each q > 0, the Banach dual of $L_a^1$ is ${\mathcal{B}}_q$ and the Banach dual of ${\mathcal{B}}_{q,0}$ is $L_a^1$ for each $q{\geq}1$.

RIGIDITY OF PROPER HOLOMORPHIC MAPS FROM Bn+1 TO B3n-1

  • Wang, Sung-Ho
    • 대한수학회지
    • /
    • 제46권5호
    • /
    • pp.895-905
    • /
    • 2009
  • Let $B^{n+1}$ be the unit ball in the complex vector space $\mathbb{C}^{n+1}$ with the standard Hermitian metric. Let ${\Sigma}^n={\partial}B^{n+1}=S^{2n+1}$ be the boundary sphere with the induced CR structure. Let f : ${\Sigma}^n{\hookrightarrow}{\Sigma}^N$ be a local CR immersion. If N < 3n - 1, the asymptotic vectors of the CR second fundamental form of f at each point form a subspace of the CR(horizontal) tangent space of ${\Sigma}^n$ of codimension at most 1. We study the higher order derivatives of this relation, and we show that a linearly full local CR immersion f : ${\Sigma}^n{\hookrightarrow}{\Sigma}^N$, N $\leq$ 3n-2, can only occur when N = n, 2n, or 2n + 1. As a consequence, it gives an extension of the classification of the rational proper holomorphic maps from $B^{n+1}$ to $B^{2n+2}$ by Hamada to the classification of the rational proper holomorphic maps from $B^{n+1}$ to $B^{3n+1}$.

SOME RESULTS RELATED WITH POISSON-SZEGÖKERNEL AND BEREZIN TRANSFORM

  • Yang, Gye Tak;Choi, Ki Seong
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.417-426
    • /
    • 2011
  • Let ${\mu}$ be a finite positive Borel measure on the unit ball $B{\subset}{\mathbb{C}}^n$ and ${\nu}$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, ${\sigma}$ is the rotation-invariant measure on S such that ${\sigma}(S) =1$. Let ${\mathcal{P}}[f]$ be the Poisson-$Szeg{\ddot{o}}$ integral of f and $\tilde{\mu}$ be the Berezin transform of ${\mu}$. In this paper, we show that if there is a constant M > 0 such that ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}M{\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\nu}(z)$ for all $f{\in}L^p(\sigma)$, then ${\parallel}{\tilde{\mu}}{\parallel}_{\infty}{\equiv}{\sup}_{z{\in}B}{\mid}{\tilde{\mu}}(z){\mid}<{\infty}$, and we show that if ${\parallel}{\tilde{\mu}{\parallel}_{\infty}<{\infty}$, then ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}C{\mid}{\mid}{\tilde{\mu}}{\mid}{\mid}_{\infty}{\int_S}{\mid}f(\zeta){\mid}^pd{\sigma}(\zeta)$ for some constant C.