Browse > Article
http://dx.doi.org/10.4134/BKMS.2010.47.1.113

A CHARACTERIZATION OF M-HARMONICITY  

Lee, Jae-Sung (Department of Mathematics, Sogang University)
Publication Information
Bulletin of the Korean Mathematical Society / v.47, no.1, 2010 , pp. 113-119 More about this Journal
Abstract
If f is M-harmonic and integrable with respect to a weighted radial measure $\upsilon_{\alpha}$ over the unit ball $B_n$ of $\mathbb{C}^n$, then $\int_{B_n}(f\circ\psi)d\upsilon_{\alpha}=f(\psi(0))$ for every $\psi{\in}Aut(B_n)$. Equivalently f is fixed by the weighted Berezin transform; $T_{\alpha}f = f$. In this paper, we show that if a function f defined on $B_n$ satisfies $R(f\circ\phi){\in}L^{\infty}(B_n)$ for every $\phi{\in}Aut(B_n)$ and Sf = rf for some |r|=1, where S is any convex combination of the iterations of $T_{\alpha}$'s, then f is M-harmonic.
Keywords
M-harmonic function; weighted Berezin transform; Gelfand transform;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 P. Ahern, M. Flores, and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), no. 2, 380–397.   DOI   ScienceOn
2 S. Axler and Z. Cuckovic, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), no. 1, 1–12.   DOI
3 Y. Benyamini and Y. Weit, Harmonic analysis of spherical functions on SU(1, 1), Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 671–694.   DOI
4 M. Englis, Functions invariant under the Berezin transform, J. Funct. Anal. 121 (1994), no. 1, 233–254.   DOI   ScienceOn
5 Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313–328.   DOI
6 J. Lee, Properties of the Berezin transform of bounded functions, Bull. Austral. Math. Soc. 59 (1999), no. 1, 21–31.   DOI
7 W. Rudin, Function Theory in the Unit Ball of $C^n$, Springer-Verlag, New York Inc., 1980.
8 A. Erdeli et. al., Boundaries of Riemannian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), pp. 359–377. Pure and Appl. Math., Vol. 8, Dekker, New York, 1972.
9 A. Erdeli et. al., Higher Transcendental Functions Vol. I, McGraw-Hill, New York, 1953.
10 H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386.   DOI
11 S. Helgason, Topics in Harmonic Analysis on Homogeneous Spaces, Progress in Mathematics, 13. Birkhauser, Boston, Mass., 1981.
12 S. Helgason, Groups and Geometric Analysis, Academic Press, 1984.