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ON DUALITY OF WEIGHTED BLOCH SPACES IN C"

GYE TAK YaNc* anD K1 SEoncg CHOr**

ABSTRACT. In this paper, we consider the weighted Bloch spaces
By(g > 0) on the open unit ball in C". We prove a certain inte-
gral representation theorem that is used to determine the degree of
growth of the functions in the space B, for ¢ > 0. This means that
for each ¢ > 0, the Banach dual of L} is B, and the Banach dual of
Byo is L for each ¢ > 1.

1. Introduction

Throughout this paper, let C™ be the Cartesian product of n copies of
C. For two elements z = (21, 22, ..., 2,) and w = (w1, wa, ..., w,) of C",
we define the inner product < z,w >= >7"_, 2;w; and the norm || z || =
V< %,z >. Let N denote the set of natural numbers. A multi-index «
is an ordered n-tuple a = (aq, a9, -+ , ) with o € N,j =1,2,--- | n.
For a multi-index « and z € C™, set

a ar az

lal=a1+ -+ an, al=al---anl, 2%=2z20"257- 2"

n -

Let B be the open unit ball in C™ and S the boundary of B. For
z € B,£eC" set

bBQ(Zaé.) - ntl

(1= =2
If v: [0,1] — B is a C'—curve, the Bergman length of + is defined by
lvlB = fol bp(y(t),7'(t))dt. For z,w € B, we define 3(z,w) = inf{|v|p :

7(0) = z,7(1) = w} where the infimum is taken over all C'! —curves from
z to w. B is called the Bergman metric on B.

(A==€ + 1 <=z6> ]
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If f € H(B), where H(B) is the set of holomorphic functions on B,
then the quantity Qf is defined by

Qf(z) = sup Vi) - z€B, feC"

lgl=1 bB(z:€)
where Vf(z) = (%, e ,%) is the holomorphic gradient of f. The
quantity @Qf is invariant under the group Aut(B) of holomorphic auto-
morphisms of B. Namely, Q(foy) = (Qf)oyp for all ¢ € Aut(B). A holo-
morphic function f : B — Cis called a Bloch function if sup,c.5 Qf(2) <
00 .

Bloch functions on bounded homogeneous domains were first studied
in [10]. In [16], Timoney showed that the linear space of all holomorphic
functions f : B — C which satisfy sup,c5(1 — || 2 ||*) || Vf(2) | < oo
is equivalent to the space B of Bloch functions on B. The little Bloch
space By is the subspace of B consisting of those functions f : B — C
which satisfy lim, (1= || z [|?) || Vf(z) || = 0.

For each ¢ > 0, the weighted Bloch space of B, denoted by B, consists
of holomorphic functions f : B — C which satisfy sup,c5(1— || 2 [|?)4 ||
Vf(z) | < oo . The corresponding little Bloch space B, is defined by
the functions f in By such that lim, (1= || z [*)2 || Vf(z) || = 0. In
particular, By = B and B o = Bo.

Let us define a norm on B, as follows;

1S Nl = 1) +sup{(1 = | w [|)? || Vf(w) |l: w € B}.

In [ 9], it was shown that the space By is a Banach space with respect to
the above norm for each ¢ > 0. It is also shown in [9] that the weighted
little Bloch space By is the closure of the set of polynomials in the
norm topology of B, for each ¢ > 1. The properties of the space B,
were investigated in [5], [6], [7] and [8]. In §2, we will show that the
functions in the weighted Bloch space B, can be extended cotinuously
to the closed ball B.

Let v be the Lebesgue measure in C" normalized by v(B) = 1. For
g > —1, the measure p, is the weighted Lebesgue measure such that

dug = cq(1 — || 2 ||*)dv(z) where ¢, is a normalization constant such
that p4(B) = 1. For any ¢ > 0, let I, denote the operator defined by
f(w)

I,f(z) = cql/B i<z >)n+qdu(w), ze€B

where c4_1 is a normalization constant.
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For each ¢ > 0, we let J, denote the operator defined by

C — z 2)2 w

Cq—1 Jp (1— < z,w >)"+3 Ha-1
where ¢ is a normalization constant. In §3, we will prove that I, maps
L*>(B) boundedly onto B, and J, maps B, (in particular, B, o) bound-
edly into L*>°(B).

The space Ly = {f € H(B) | || f 1 = [5|f(2)|dv(2) < oo} is a
Banach space with the above norm || - ||1. Using these operators I,
and Jy, in §4, we will show that for each ¢ > 0, the Banach dual of L}
can be identified with By, while the Banach dual of B, g can be identified
with L. for ¢ > 1.

2. Some integral representation in weighted Bloch spaces
TueoreM 2.1. If f € L, (B) N H(B),q > —1, then

16 = [ e P o).
Proof. See [9, Theorem 2]. O

THEOREM 2.2. For z € B, c€ R and t > —1, we define

(L= w )
Iei(2) = /B T <rws> ’nHJrCthdu(w), z € B.

Then,
(i) I.+(2) is bounded in B if ¢ < 0;
(ii) To(2) ~ —log(1 = || 2 [|*) as || z | = 17;
(iii) Ieg(2) ~ (L= || 2 |)) ¢ as || z = 17 if ¢ > 0.
Proof. See [14, Proposition 1.4.10 |. O

THEOREM 2.3. Suppose ¢ > 1. Then f is in B, if and only if f is
holomorphic and (1 — || z |*)97 | f(2)| is bounded on B.

Proof. See [9, Theorem 6]. O

Let 0 < p < oo and s € R. The holomorphic Besov p-spaces B, (B)
with weight s is defined by the space of all holomorphic functions f on
the unit ball B such that

I llp.s = {/B(Qf)p(Z)(l— I = IQ)SdA(Z)}; < 00,
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Here d\(z) = (1— || z [|?) ™™ !dv(z) is an invariant volume measure with
respect to the Bergman metric on B(See [11]).

THEOREM 2.4. Let 0 <p < o0 and s € R. For ¢ < 1+;’;
| flps < Cll Tl
for some constant C'.

Proof. From the fact that Qf(z) and (1— || 2 ||?) || V£(2) || behave
the same within constants as || z ||— 1, we may replace Qf(z) by
(1= || 2 |I®) || V£(2) || in the definition of || f ||, s. Namely,

1, = /B (@)1 — | 2 [P)dA(2)
<c / (A= [ 2 12 1 V£ 1]7 (= | 2 [2)°dA(2)

2 B VST (1 s
<o [ | ase pravs

<C|f IIZ/ (1= | 2 [IP)7PoPrsn=ldu(2).
B
The above calculation implies the result if ¢ < 1+§ by Theorem 2.2. [

THEOREM 2.5. Let ¢ € (0,1) and f in B,, then the functions in B,
can be extended continuously to the closed ball B.

Proof. If ¢ € (0,1) and f in By, by Theorem 1.4 in [12] and Theorem
2.5, there exists a constant C' > 0 such that |f(z) — f(w)| < C || z —
w ||| f |4 for all z,w € B. This implies that the functions in B, can
be extended continuously to the closed ball B. ]

3. Some operators in weighted Bloch spaces.

Let Cy(B) be the subspace of complex-valued continuous functions
on B which vanish on the boundary, C'(B) the space of complex-valued
continuous functions on the closed unit ball B, and BC(B) the space of
bounded complex-valued continuous functions on B.

THEOREM 3.1. For each q > 0, the operator I, maps Cy(B) bound-
edly onto B,.
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Proof. Let f(z) = I,9(%) where g € Cy(B). Then

f(z) = cq_l/B ( 9(w) dv(w).

1— < z,w >)"tae

Differentiating under the integral sign, we obtain

of (2) = (n+q)cq—1/B g(w)(—w;) dv(w)

0z (1— < z,w >)ntatl

for j =1,2,--- ,n. This shows that

dv(w)

I95G) 1< et |9 o [ 7
B
By Theorem 2.3,

IV < (0t @)eq- [l g oo =112 )77,

A=1=171 Vi< Cllgllos -
It is also clear that |f(0)] < cq—1 | ¢ ||oo- Thus,
I fllg=1£O)] + sup{(1— [ 2 |>)? || Vf(2) |: 2 € B}
< (Cteg1) 19 lloo -

Hence, 1, maps Cy(B) boundedly into B,.
If f € By, then (1— || z [|?)?71|f(2)| is bounded in B by Theorem 2.4.
By Theorem 2.1,

—lw ||2) ! f(w
f(z)ch—l/B(l [ w )" ( )dy(w):Iqh(z)

(1— < z,w >)"ta

where h(w) = (1— || w ||#)? 1 f(w) is in Co(B). Therefore, I, maps
Co(B) onto B,. O

THEOREM 3.2. For each q > 0, the opertor I, maps each function of
the form w*w" to a monomial.

Proof. Let I = (i1,42,...,in) and u = (z1W1, 22W2, . . . , 2nWp). Since

7 7 _ m!
< zyw >M= (21W01 + 20Wa + -+ + 2,Wy) " = Z ?U )

[|=m
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1
(1— < z,w >)"ta

(n+q)(n+q+1)

=14+ (n+q) <zw>+ o <zyw>E4--
(n+q+m—1)!
=1 < m
+Z:: mi(n+q—1)! Z,w >
—1—|—Z Z n—f—q—l—m—l)'m'ul
l — | )
T, ™ (n+q—-1)" I

wow?
I,(2°%°) = qu/ ( )n+qdu(w)

B 1_<Z,w>

= qu/ wa@ﬁdy(w) +cq-1 i Z
B

(ntqg+m=iml I/w W dv(w)
ml(n+q—1)! 1! B

= CJZJ
for some J = (i1, ..., jn) and constant C; by [14, Prop.1.4.9]. O

THEOREM 3.3. For each q > 0, the operator I, maps C(B) boundedly
onto By . I, also maps Cy(B) onto By .

Proof. By the Stone-Weierstrass approximation theorem, each func-
tion in C(B) can be uniformly approximated by finite linear combina-
tions of functions of the form 2z, which are mapped by I, to polyno-
mials (finite linear combination of monomials) by Theorem 3.2. Since I,
maps L>°(B) boundedly into B, and B, is closed in B, I, maps C(B)
boundedly into B, . The proof of “onto ”part follows from the proof of
Theorem 3.1. O

Let E be a normed linear space and M a closed linear subspace of
E. If we define linear operations on E/M = {x + M : = € E} by
(x+ M)+ (y+ M) =(x+y)+ M and a(z + M) = ax + M, then
| x4+ M ||=inf{|| x +m ||: m € M} is a quotient norm on E/M. If E
is a Banach space, so is E/M under this quotient norm.

THEOREM 3.4. For each q > 1, there exists a positive real number C
such that

CH fllg < inf{ll g lloct f=1Iq9.9 € L®(B)} <C || fllq
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for all f in B, and

C7H| fllgS nf{]] g lloo: f = Lag,9 € Co(B)} < C || f lg
for all f in Byp.

Proof. Let us define an equivalence relation on L such that g; ~
g2 & Iyg1 = I;g2. Then L*°/ ~ is the family of equivalence class [g]
of g. Let us define a linear operator T' from L>/ ~ to B, such that
T([g]) = Rgg. Then T is a bounded linear operator on L>°/ ~ onto
B,. Also T is 1-1. By the open mapping theorem, 7! is continuous.
Hence there exists constant C such that || 77,9 [|co< C || Ig ||g- i-e.
I gl C Il £ s =

THEOREM 3.5. For each q > 1, the operator J, maps B, boundedly
into L*>°(B), and for ¢ > 1, the operator .J, maps B, boundedly into

Co(B). For all f € By, there is a positive real number C' (depending
only on q ) such that

CHfllg <M Jgf lloo < CHLF llg -

Proof. It f € By, then there exists g € L*(B) such that f = I,g.
Then, by Fubini’s theorem and Theorem 2.1

Jqf(z) =

e [ (=1l=]*)*f(w)
J

cq-1 Jp (1= < z,w >3 Ha-1 ()

_ (1= | 2 [I*)*dpg—1(w)
a CZ/BQ(U) {/B (I— < w,u >)"T(1— < z,w >)7+3 } dv(u)
cof U

(1— < z,u >)n+3

By Theorem 2.2,

[of ()] < e2llgllee =12 H?A= 11217 < 21l 9 [l

for all z € B. Therefore, || Jof [[< c2 || ¢ |l for all g € L>®(B)
with I,g = f. By Theorem 3.4, there exists a constant C' > 0 such that
| Jof lloo< c2C || f |lq for all f € B,. Therefore, J;, maps B, boundedly
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into L*°(B). For all f in By,
1,J,f(2)

=c Jof (w) v(w
- /B( du(w)

1= < 2,w >)nHa

N i Ly
- ], o
- / ) dpg—1(u)

(1— < z,u >)nta
= f(2).
Thus J,f € L*°(B) implies that f € B, by Theorem 3.1. By Theorem
34,0 fllg =N Igdof lg < C" | Jof lloo < c2CC" || f lq for all f € By.
Also, J,f € Co(B) implies f € By by Theorem 3.3.
The operator .J; maps each polynomial to a polynomial times the
factor (1— || 2 ||?)? which is a function in Co(B) by Theorem 3.2. Since

B, is the closure of the set of polynomials in B, for ¢ > 1 (See [9,
Theorem 7]) and Cy(B) is closed in L>(B), J, maps By into Cy(B). O

4. Duality in weighted Bloch spaces.
THEOREM 4.1. Suppose that f € L. is bounded and g € B,. Then

|/f YA || = 127 tdw(2)] < C I f il g g

for some constant C' > 0 which is independent of f and g.

Proof. Writing g = I, for some ¢ € L>(B) and applying Fubini’s
theorem, we have

/ F@g@ - | 2 |27 Ldu(z)

{ 1— < w Z)>)n+qd (’U))} dﬂq_l(z)

da-a(2) o)

{ (I- <w,z >)"+q
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Hence, | [ f(2)g9(2)(1= || 2 [[)) "dv(2)] < || f llsll ¢ lloo- Taking the
infimum over ¢ and applying Theorem 3.4,

I/Bf(Z)g(Z)(l— 12 1) dv(z)] < C | f el gllg
for some constant C' > 0. O

THEOREM 4.2. Suppose that f € L. and g € B;. Then

lim | f(rz)g(z)(1= | 2 [*)7 dv(2)
B

r—1-

exists and the absolute value of the above limit is less than or equal to
C |l fllzell g llg where C is a constant independent of f and g.

Proof. Given g in By, Theorem 4.1 shows that
= [ fEaE0= 1P ave), e =(E)

extends to a bounded linear functional on L. with || F, [|[< C || g |4
Fix f in L! and g in B,. Let f(rz) = f-(2),0 < r < 1. Each f, is in
H>*(B) and || fy — f [|[p1— 0 as 7 — 17. It follows that

lim f(m) 9(2) (1= || = 1)1 dv(z z) = lim Fy(fr) = Fy(f)

r—1-

and that IFg( )< TEG I Flley < C g llall £z - O

THEOREM 4.3. If F is a bounded linear functional on L., then there
exists a function g in B, such that

F(f) = lim Bf(TZ) 9(2) (1= | 2 1) dv(2), [ € Ly

r—1-

Proof. By the Hahn-Banach extension theorem, F' extends to a bounded
linear functional on L!(B, dv) without increasing the norm. Since (L!)* =
L™, there is a function ¢ € L>(D) such that F\(f) = [ f(2)¢(z)dv(z), f €
L}. If we use the inequality in Theorem 4.1,

F(f) = lim Bfr( 2)p(2)dv(z) = lim fr( Mgo(2) (1= || 2 ) dv(2)

7"—)1

for each fin L. Let g = I;p. Then g is in B, and

F(f)= lim [ f(rz)g(z)(1— || 2 )7 du(z)

r—1= /B
for all f in L}. O
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THEOREM 4.4. For each q > 0, the Banach dual of L} can be identi-
fied with B, (with equivalent norms) under the pairing

< f,g>= lim f(?“Z) (rz2)(1— || 2 |[))*" dv(2), f € Lg,g € By

r—1-

Proof. If F is a bounded linear functional on L., by Theorem 4.3,
there exists a function g in B, such that

F(f) = lim Bf(?“Z)WZ)(l— 2 |?) du(2), f € L.

r—1-

By the rotation invariance of the measure (1— || z ||2)9~'dv(z), we have

rz)g(z z qu sz)g(sz)(1— || z Ly
/Bf( )g(2)(1— || z [|*)*"1d /f g(s2)(1— || = [|1)* dv(2)

where s = /r. This clearly implies that

lim | f(rz)g(z)(1= || = %7 dv(2)
B

r—1-

= lim | f(rz)g(rz)(1— || 2 |[|)*" dv(2).
B

r—1-

O]

THEOREM 4.5. For each ¢ > 1, the Banach dual of B, can be iden-
tified with L} (with equivalent norms) under the pairing

<fig>=lm [ f(r2)g(rz)(1= || 2 [*)" dv(2), g € Lo, | € Byo.
r—1= JB

Proof. Let F' be a bounded linear functional on B,o. By Theorem
3.5, the operator J; maps By boundedly into Co(B). Let X be the
image of By o under the mapping J,. Then X is a closed subspace of
Co(B) and F o J_ : X — C'is a bounded linear functional Let p e X.
For some a ﬁmte Borel measure p on B, F o J = [5(2)da(z) by
the Riesz representation theorem. For each fi 1n Bq 0,

PP = [ JufG)dicz)
- [ LD b
N K R e ) E)
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Let g be the holomorphic function defined by

il w |12)2
s = [ ; Ul I g,

1— < z,w >)nt3

By Theorem 2.2 and Fubini’s Theorem,

J

o) < er [ =P { [ P b w)

sCz/Bdm\(m:ca lul.

This implies that g belongs to L} and

(1]
2l
3]
(4]
5]
(6]
(7]
(8]
(9]
(10]

(1]

[12]

(13]

F(f) = lim Fr2)g(rz)(1— || = )" dv(2).
r—1- /B
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