ON DUALITY OF WEIGHTED BLOCH SPACES IN \mathbb{C}^{n}

Gye Tak Yang* and Ki Seong Choi**

Abstract

In this paper, we consider the weighted Bloch spaces $\mathcal{B}_{q}(q>0)$ on the open unit ball in \mathbb{C}^{n}. We prove a certain integral representation theorem that is used to determine the degree of growth of the functions in the space \mathcal{B}_{q} for $q>0$. This means that for each $q>0$, the Banach dual of L_{a}^{1} is \mathcal{B}_{q} and the Banach dual of $\mathcal{B}_{q, 0}$ is L_{a}^{1} for each $q \geq 1$.

1. Introduction

Throughout this paper, let \mathbb{C}^{n} be the Cartesian product of n copies of \mathbb{C}. For two elements $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ of \mathbb{C}^{n}, we define the inner product $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \overline{w_{j}}$ and the norm $\|z\|=$ $\sqrt{\langle z, z\rangle}$. Let N denote the set of natural numbers. A multi-index α is an ordered n-tuple $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$ with $\alpha_{j} \in N, j=1,2, \cdots, n$. For a multi-index α and $z \in \mathbb{C}^{n}$, set

$$
|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, \quad \alpha!=\alpha_{1}!\cdots \alpha_{n}!, \quad z^{\alpha}=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}} .
$$

Let B be the open unit ball in \mathbb{C}^{n} and S the boundary of B. For $z \in B, \xi \in \mathbb{C}^{n}$, set

$$
b_{B}^{2}(z, \xi)=\frac{n+1}{\left(1-\|z\|^{2}\right)^{2}}\left[\left(1-\|z\|^{2}\right)\|\xi\|^{2}+|<z, \xi>|^{2}\right] .
$$

If $\gamma:[0,1] \rightarrow B$ is a C^{1}-curve, the Bergman length of γ is defined by $|\gamma|_{B}=\int_{0}^{1} b_{B}\left(\gamma(t), \gamma^{\prime}(t)\right) d t$. For $z, w \in B$, we define $\beta(z, w)=\inf \left\{|\gamma|_{B}:\right.$ $\gamma(0)=z, \gamma(1)=w\}$ where the infimum is taken over all C^{1}-curves from z to w. β is called the Bergman metric on B.

Received May 20, 2010; Accepted August 12, 2010.
2010 Mathematics Subject Classification: Primary 30H05; Secondary 28B15.
Key words and phrases: Bergman metric, weighted Bloch spaces, Besov space, Banach duality.

Correspondence should be addressed to Ki Seong Choi, ksc@konyang.ac.kr.

If $f \in H(B)$, where $H(B)$ is the set of holomorphic functions on B, then the quantity $Q f$ is defined by

$$
Q f(z)=\sup _{\|\xi\|=1} \frac{|\nabla f(z) \cdot \xi|}{b_{B}(z, \xi)}, \quad z \in B, \quad \xi \in \mathbb{C}^{n}
$$

where $\nabla f(z)=\left(\frac{\partial f}{\partial z_{1}}, \cdots, \frac{\partial f}{\partial z_{n}}\right)$ is the holomorphic gradient of f. The quantity $Q f$ is invariant under the group $\operatorname{Aut}(B)$ of holomorphic automorphisms of B. Namely, $Q(f \circ \varphi)=(Q f) \circ \varphi$ for all $\varphi \in \operatorname{Aut}(B)$. A holomorphic function $f: B \rightarrow \mathbb{C}$ is called a Bloch function if $\sup _{z \in B} Q f(z)<$ ∞.

Bloch functions on bounded homogeneous domains were first studied in [10]. In [16], Timoney showed that the linear space of all holomorphic functions $f: B \rightarrow \mathbb{C}$ which satisfy $\sup _{z \in B}\left(1-\|z\|^{2}\right)\|\nabla f(z)\|<\infty$ is equivalent to the space \mathcal{B} of Bloch functions on B. The little Bloch space \mathcal{B}_{0} is the subspace of \mathcal{B} consisting of those functions $f: B \rightarrow \mathbb{C}$ which satisfy $\lim _{\|z\| \rightarrow 1}\left(1-\|z\|^{2}\right)\|\nabla f(z)\|=0$.

For each $q>0$, the weighted Bloch space of B, denoted by \mathcal{B}_{q}, consists of holomorphic functions $f: B \rightarrow \mathbb{C}$ which satisfy $\sup _{z \in B}\left(1-\|z\|^{2}\right)^{q} \|$ $\nabla f(z) \|<\infty$. The corresponding little Bloch space $\mathcal{B}_{q, 0}$ is defined by the functions f in \mathcal{B}_{q} such that $\lim _{\|z\| \rightarrow 1}\left(1-\|z\|^{2}\right)^{q}\|\nabla f(z)\|=0$. In particular, $\mathcal{B}_{1}=\mathcal{B}$ and $\mathcal{B}_{1,0}=\mathcal{B}_{0}$.

Let us define a norm on \mathcal{B}_{q} as follows;

$$
\|f\|_{q}=|f(0)|+\sup \left\{\left(1-\|w\|^{2}\right)^{q}\|\nabla f(w)\|: w \in B\right\} .
$$

In [9], it was shown that the space \mathcal{B}_{q} is a Banach space with respect to the above norm for each $q>0$. It is also shown in [9] that the weighted little Bloch space $\mathcal{B}_{q, 0}$ is the closure of the set of polynomials in the norm topology of \mathcal{B}_{q} for each $q \geq 1$. The properties of the space \mathcal{B}_{q} were investigated in [5], [6], [7] and [8]. In §2, we will show that the functions in the weighted Bloch space \mathcal{B}_{q} can be extended cotinuously to the closed ball \bar{B}.

Let ν be the Lebesgue measure in \mathbb{C}^{n} normalized by $\nu(B)=1$. For $q>-1$, the measure μ_{q} is the weighted Lebesgue measure such that $d \mu_{q}=c_{q}\left(1-\|z\|^{2}\right)^{q} d \nu(z)$ where c_{q} is a normalization constant such that $\mu_{q}(B)=1$. For any $q>0$, let I_{q} denote the operator defined by

$$
I_{q} f(z)=c_{q-1} \int_{B} \frac{f(w)}{(1-<z, w>)^{n+q}} d \nu(w), \quad z \in B
$$

where c_{q-1} is a normalization constant.

For each $q>0$, we let J_{q} denote the operator defined by

$$
J_{q} f(z)=\frac{c_{2}}{c_{q-1}} \int_{B} \frac{\left(1-\|z\|^{2}\right)^{2} f(w)}{(1-<z, w>)^{n+3}} d \mu_{q-1}(w)
$$

where c_{2} is a normalization constant. In $\S 3$, we will prove that I_{q} maps $L^{\infty}(B)$ boundedly onto \mathcal{B}_{q} and J_{q} maps \mathcal{B}_{q} (in particular, $\mathcal{B}_{q, 0}$) boundedly into $L^{\infty}(B)$.

The space $L_{a}^{1}=\left\{f \in H(B)\left|\|f\|_{L_{a}^{1}}=\int_{B}\right| f(z) \mid d \nu(z)<\infty\right\}$ is a Banach space with the above norm $\|\cdot\|_{L_{a}^{1}}$. Using these operators I_{q} and J_{q}, in $\S 4$, we will show that for each $q>0$, the Banach dual of L_{a}^{1} can be identified with \mathcal{B}_{q}, while the Banach dual of $\mathcal{B}_{q, 0}$ can be identified with L_{a}^{1} for $q \geq 1$.

2. Some integral representation in weighted Bloch spaces

Theorem 2.1. If $f \in L_{\mu_{q}}^{1}(B) \cap H(B), q>-1$, then

$$
f(z)=\int_{B} \frac{f(w)}{(1-<z, w>)^{n+q+1}} d \mu_{q}(w)
$$

Proof. See [9, Theorem 2].
Theorem 2.2. For $z \in B, c \in \mathbb{R}$ and $t>-1$, we define

$$
I_{c, t}(z)=\int_{B} \frac{\left(1-\|w\|^{2}\right)^{t}}{|1-<z, w>|^{n+1+c+t}} d \nu(w), \quad z \in B
$$

Then,
(i) $I_{c, t}(z)$ is bounded in B if $c<0$;
(ii) $I_{0, t}(z) \sim-\log \left(1-\|z\|^{2}\right)$ as $\|z\| \rightarrow 1^{-}$;
(iii) $I_{c, t}(z) \sim\left(1-\|z\|^{2}\right)^{-c}$ as $\|z\| \rightarrow 1^{-}$if $c>0$.

Proof. See [14, Proposition 1.4.10].
Theorem 2.3. Suppose $q>1$. Then f is in \mathcal{B}_{q} if and only if f is holomorphic and $\left(1-\|z\|^{2}\right)^{q-1}|f(z)|$ is bounded on B.

Proof. See [9, Theorem 6].
Let $0<p<\infty$ and $s \in \mathbb{R}$. The holomorphic Besov p-spaces $\mathcal{B}_{p}^{s}(B)$ with weight s is defined by the space of all holomorphic functions f on the unit ball B such that

$$
\|f\|_{p, s}=\left\{\int_{B}(Q f)^{p}(z)\left(1-\|z\|^{2}\right)^{s} d \lambda(z)\right\}^{\frac{1}{p}}<\infty
$$

Here $d \lambda(z)=\left(1-\|z\|^{2}\right)^{-n-1} d \nu(z)$ is an invariant volume measure with respect to the Bergman metric on B (See [11]).

Theorem 2.4. Let $0<p<\infty$ and $s \in \mathbb{R}$. For $q<1+\frac{s}{p}$,

$$
\|f\|_{p, s} \leq C\|f\|_{q}
$$

for some constant C.
Proof. From the fact that $Q f(z)$ and $\left(1-\|z\|^{2}\right)\|\nabla f(z)\|$ behave the same within constants as $\|z\| \rightarrow 1$, we may replace $Q f(z)$ by $\left(1-\|z\|^{2}\right)\|\nabla f(z)\|$ in the definition of $\|f\|_{p, s}$. Namely,

$$
\begin{aligned}
\|f\|_{p, s}^{p} & =\int_{B}(Q f)^{p}(z)\left(1-\|z\|^{2}\right)^{s} d \lambda(z) \\
& \leq C \int_{B}\left[\left(1-\|z\|^{2}\right)\|\nabla f(z)\|\right]^{p}\left(1-\|z\|^{2}\right)^{s} d \lambda(z) \\
& \leq C \int_{B}\left[\frac{\left(1-\|z\|^{2}\right)^{q}\|\nabla f(z)\|}{\left(1-\|z\|^{2}\right)^{q-1}}\right]^{p}\left(1-\|z\|^{2}\right)^{s} d \lambda(z) \\
& \leq C\|f\|_{q}^{p} \int_{B}\left(1-\|z\|^{2}\right)^{-p q+p+s-n-1} d \nu(z) .
\end{aligned}
$$

The above calculation implies the result if $q<1+\frac{s}{p}$ by Theorem 2.2.
Theorem 2.5. Let $q \in(0,1)$ and f in \mathcal{B}_{q}, then the functions in \mathcal{B}_{q} can be extended continuously to the closed ball \bar{B}.

Proof. If $q \in(0,1)$ and f in \mathcal{B}_{q}, by Theorem 1.4 in [12] and Theorem 2.5 , there exists a constant $C>0$ such that $|f(z)-f(w)| \leq C \| z-$ $w\left\|^{1-q}\right\| f \|_{q}$ for all $z, w \in B$. This implies that the functions in \mathcal{B}_{q} can be extended continuously to the closed ball \bar{B}.

3. Some operators in weighted Bloch spaces.

Let $C_{0}(B)$ be the subspace of complex-valued continuous functions on B which vanish on the boundary, $C(\bar{B})$ the space of complex-valued continuous functions on the closed unit ball \bar{B}, and $B C(B)$ the space of bounded complex-valued continuous functions on B.

Theorem 3.1. For each $q>0$, the operator I_{q} maps $C_{0}(B)$ boundedly onto \mathcal{B}_{q}.

Proof. Let $f(z)=I_{q} g(z)$ where $g \in C_{0}(B)$. Then

$$
f(z)=c_{q-1} \int_{B} \frac{g(w)}{(1-<z, w>)^{n+q}} d \nu(w)
$$

Differentiating under the integral sign, we obtain

$$
\frac{\partial f}{\partial z_{j}}(z)=(n+q) c_{q-1} \int_{B} \frac{g(w)\left(-\bar{w}_{j}\right)}{(1-<z, w>)^{n+q+1}} d \nu(w)
$$

for $j=1,2, \cdots, n$. This shows that

$$
\|\nabla f(z)\| \leq(n+q) c_{q-1}\|g\|_{\infty} \int_{B} \frac{d \nu(w)}{|1-<z, w>|^{n+q+1}}
$$

By Theorem 2.3,

$$
\begin{gathered}
\|\nabla f(z)\| \leq(n+q) c_{q-1}\|g\|_{\infty}\left(1-\|z\|^{2}\right)^{-q} \\
\left(1-\|z\|^{2}\right)^{q}\|\nabla f(z)\| \leq C\|g\|_{\infty}
\end{gathered}
$$

It is also clear that $|f(0)| \leq c_{q-1}\|g\|_{\infty}$. Thus,

$$
\begin{aligned}
\|f\|_{q} & =|f(0)|+\sup \left\{\left(1-\|z\|^{2}\right)^{q}\|\nabla f(z)\|: z \in B\right\} \\
& \leq\left(C+c_{q-1}\right)\|g\|_{\infty}
\end{aligned}
$$

Hence, I_{q} maps $C_{0}(B)$ boundedly into \mathcal{B}_{q}.
If $f \in \mathcal{B}_{q}$, then $\left(1-\|z\|^{2}\right)^{q-1}|f(z)|$ is bounded in B by Theorem 2.4. By Theorem 2.1,

$$
f(z)=c_{q-1} \int_{B} \frac{\left(1-\|w\|^{2}\right)^{q-1} f(w)}{(1-<z, w>)^{n+q}} d \nu(w)=I_{q} h(z)
$$

where $h(w)=\left(1-\|w\|^{2}\right)^{q-1} f(w)$ is in $C_{0}(B)$. Therefore, I_{q} maps $C_{0}(B)$ onto \mathcal{B}_{q}.

Theorem 3.2. For each $q>0$, the opertor I_{q} maps each function of the form $w^{\alpha} \bar{w}^{\beta}$ to a monomial.

Proof. Let $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ and $u=\left(z_{1} \bar{w}_{1}, z_{2} \bar{w}_{2}, \ldots, z_{n} \bar{w}_{n}\right)$. Since

$$
<z, w>^{m}=\left(z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}+\cdots+z_{n} \bar{w}_{n}\right)^{m}=\sum_{|I|=m} \frac{m!}{I!} u^{I}
$$

$$
\begin{aligned}
& \frac{1}{(1-<z, w>)^{n+q}} \\
& =1+(n+q)<z, w>+\frac{(n+q)(n+q+1)}{2!}<z, w>^{2}+\cdots \\
& =1+\sum_{m=1}^{\infty} \frac{(n+q+m-1)!}{m!(n+q-1)!}<z, w>^{m} \\
& =1+\sum_{m=1}^{\infty} \sum_{|I|=m} \frac{(n+q+m-1)!}{m!(n+q-1)!} \frac{m!}{I!} u^{I} . \\
& \begin{aligned}
& I_{q}\left(z^{\alpha} \bar{z}^{\beta}\right)=c_{q-1} \int_{B} \frac{w^{\alpha} \bar{w}^{\beta}}{(1-<z, w>)^{n+q}} d \nu(w) \\
& \quad=c_{q-1} \int_{B} w^{\alpha} \bar{w}^{\beta} d \nu(w)+c_{q-1} \sum_{m=1}^{\infty} \sum_{|I|=m} \\
& \quad \frac{(n+q+m-1)!}{m!(n+q-1)!} \frac{m!}{I!} z^{I} \int_{B} w^{\alpha} \bar{w}^{\beta} \bar{w}^{I} d \nu(w)
\end{aligned}
\end{aligned}
$$

for some $J=\left(i_{1}, \ldots, j_{n}\right)$ and constant C_{J} by [14, Prop.1.4.9].
Theorem 3.3. For each $q>0$, the operator I_{q} maps $C(\bar{B})$ boundedly onto $\mathcal{B}_{q, 0} . I_{q}$ also maps $C_{0}(B)$ onto $\mathcal{B}_{q, 0}$.

Proof. By the Stone-Weierstrass approximation theorem, each function in $C(\bar{B})$ can be uniformly approximated by finite linear combinations of functions of the form $z^{\alpha} \bar{z}^{\beta}$, which are mapped by I_{q} to polynomials (finite linear combination of monomials) by Theorem 3.2. Since I_{q} maps $L^{\infty}(B)$ boundedly into \mathcal{B}_{q} and $\mathcal{B}_{q, 0}$ is closed in \mathcal{B}_{q}, I_{q} maps $C(\bar{B})$ boundedly into $\mathcal{B}_{q, 0}$. The proof of "onto "part follows from the proof of Theorem 3.1.

Let E be a normed linear space and M a closed linear subspace of E. If we define linear operations on $E / M=\{x+M: x \in E\}$ by $(x+M)+(y+M)=(x+y)+M$ and $a(x+M)=a x+M$, then $\|x+M\|=\inf \{\|x+m\|: m \in M\}$ is a quotient norm on E / M. If E is a Banach space, so is E / M under this quotient norm.

Theorem 3.4. For each $q>1$, there exists a positive real number C such that

$$
C^{-1}\|f\|_{q} \leq \inf \left\{\|g\|_{\infty}: f=I_{q} g, g \in L^{\infty}(B)\right\} \leq C\|f\|_{q}
$$

for all f in \mathcal{B}_{q} and

$$
C^{-1}\|f\|_{q} \leq \inf \left\{\|g\|_{\infty}: f=I_{q} g, g \in C_{0}(B)\right\} \leq C\|f\|_{q}
$$

for all f in $\mathcal{B}_{q, 0}$.
Proof. Let us define an equivalence relation on L^{∞} such that $g_{1} \sim$ $g_{2} \Leftrightarrow I_{q} g_{1}=I_{q} g_{2}$. Then L^{∞} / \sim is the family of equivalence class $[g]$ of g. Let us define a linear operator T from L^{∞} / \sim to \mathcal{B}_{q} such that $T([g])=R_{q} g$. Then T is a bounded linear operator on L^{∞} / \sim onto \mathcal{B}_{q}. Also T is $1-1$. By the open mapping theorem, T^{-1} is continuous. Hence there exists constant C such that $\left\|T^{-1} I_{q} g\right\|_{\infty} \leq C\left\|I_{q} g\right\|_{q}$. i.e. $\|g\|_{\infty} \leq C\|f\|_{q}$.

Theorem 3.5. For each $q>1$, the operator J_{q} maps \mathcal{B}_{q} boundedly into $L^{\infty}(B)$, and for $q \geq 1$, the operator J_{q} maps $\mathcal{B}_{q, 0}$ boundedly into $C_{0}(B)$. For all $f \in \mathcal{B}_{q}$, there is a positive real number C (depending only on q) such that

$$
C^{-1}\|f\|_{q} \leq\left\|J_{q} f\right\|_{\infty} \leq C\|f\|_{q} .
$$

Proof. If $f \in \mathcal{B}_{q}$, then there exists $g \in L^{\infty}(B)$ such that $f=I_{q} g$. Then, by Fubini's theorem and Theorem 2.1

$$
\begin{aligned}
J_{q} f(z) & =\frac{c_{2}}{c_{q-1}} \int_{B} \frac{\left(1-\|z\|^{2}\right)^{2} f(w)}{(1-<z, w>)^{n+3}} d \mu_{q-1}(w) \\
& =c_{2} \int_{B} g(u)\left\{\int_{B} \frac{\left(1-\|z\|^{2}\right)^{2} d \mu_{q-1}(w)}{(1-<w, u>)^{n+q}(1-<z, w>)^{n+3}}\right\} d \nu(u) \\
& =c_{2} \int_{B} \frac{\left(1-\|z\|^{2}\right)^{2} g(u)}{(1-<z, u>)^{n+3}} d \nu(u) .
\end{aligned}
$$

By Theorem 2.2,

$$
\left|J_{q} f(z)\right| \leq c_{2}\|g\|_{\infty}\left(1-\|z\|^{2}\right)^{2}\left(1-\|z\|^{2}\right)^{-2} \leq c_{2}\|g\|_{\infty}
$$

for all $z \in B$. Therefore, $\left\|J_{q} f\right\|_{\infty} \leq c_{2}\|g\|_{\infty}$ for all $g \in L^{\infty}(B)$ with $I_{q} g=f$. By Theorem 3.4, there exists a constant $C>0$ such that $\left\|J_{q} f\right\|_{\infty} \leq c_{2} C\|f\|_{q}$ for all $f \in \mathcal{B}_{q}$. Therefore, J_{q} maps \mathcal{B}_{q} boundedly
into $L^{\infty}(B)$. For all f in \mathcal{B}_{q},

$$
\begin{aligned}
& I_{q} J_{q} f(z) \\
& =c_{q-1} \int_{B} \frac{J_{q} f(w)}{(1-<z, w>)^{n+q}} d \nu(w) \\
& =c_{2} \int_{B} \frac{\left(1-\|w\|^{2}\right)^{2}}{(1-<z, w>)^{n+q}}\left\{\int_{B} \frac{f(u) d \mu_{q-1}(u)}{(1-<w, u>)^{n+3}}\right\} d \nu(w) \\
& =\int_{B} f(u) c_{2}\left\{\int_{B} \frac{\left(1-\|w\|^{2}\right)^{2} d \nu(w)}{(1-<w, u>)^{n+3}(1-<z, w>)^{n+q}}\right\} d \mu_{q-1}(u) \\
& =\int_{B} \frac{f(u)}{(1-<z, u>)^{n+q}} d \mu_{q-1}(u) \\
& =f(z) .
\end{aligned}
$$

Thus $J_{q} f \in L^{\infty}(B)$ implies that $f \in \mathcal{B}_{q}$ by Theorem 3.1. By Theorem 3.4, $\|f\|_{q}=\left\|I_{q} J_{q} f\right\|_{q} \leq C^{\prime}\left\|J_{q} f\right\|_{\infty} \leq c_{2} C C^{\prime}\|f\|_{q}$ for all $f \in \mathcal{B}_{q}$. Also, $J_{q} f \in C_{0}(B)$ implies $f \in \mathcal{B}_{q, 0}$ by Theorem 3.3.

The operator J_{q} maps each polynomial to a polynomial times the factor $\left(1-\|z\|^{2}\right)^{2}$ which is a function in $C_{0}(B)$ by Theorem 3.2. Since $\mathcal{B}_{q, 0}$ is the closure of the set of polynomials in \mathcal{B}_{q} for $q \geq 1$ (See [9, Theorem 7]) and $C_{0}(B)$ is closed in $L^{\infty}(B), J_{q}$ maps $\mathcal{B}_{q, 0}$ into $C_{0}(B)$.

4. Duality in weighted Bloch spaces.

Theorem 4.1. Suppose that $f \in L_{a}^{1}$ is bounded and $g \in \mathcal{B}_{q}$. Then

$$
\left|\int_{B} f(z) \overline{g(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z)\right| \leq C\|f\|_{L_{a}^{1}}\|g\|_{q}
$$

for some constant $C>0$ which is independent of f and g.
Proof. Writing $g=I_{q} \varphi$ for some $\varphi \in L^{\infty}(B)$ and applying Fubini's theorem, we have

$$
\begin{aligned}
& \int_{B} f(z) \overline{g(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z) \\
& =\int_{B} f(z)\left\{\int_{B} \frac{\overline{\varphi(w)}}{(1-<w, z>)^{n+q}} d \nu(w)\right\} d \mu_{q-1}(z) \\
& =\int_{B} \overline{\varphi(w)}\left\{\int_{B} \frac{f(z)}{(1-<w, z>)^{n+q}} d \mu_{q-1}(z)\right\} d \nu(w) \\
& =\int_{B} f(w) \overline{\varphi(w)} d \nu(w) .
\end{aligned}
$$

Hence, $\left|\int_{B} f(z) \overline{g(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z)\right| \leq\|f\|_{L_{a}^{1}}\|\varphi\|_{\infty}$. Taking the infimum over φ and applying Theorem 3.4,

$$
\left|\int_{B} f(z) \overline{g(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z)\right| \leq C\|f\|_{L_{a}^{1}}\|g\|_{q}
$$

for some constant $C>0$.
Theorem 4.2. Suppose that $f \in L_{a}^{1}$ and $g \in \mathcal{B}_{q}$. Then

$$
\lim _{r \rightarrow 1^{-}} \int_{B} f(r z) \overline{g(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z)
$$

exists and the absolute value of the above limit is less than or equal to $C\|f\|_{L_{a}^{2}}\|g\|_{q}$ where C is a constant independent of f and g.

Proof. Given g in \mathcal{B}_{q}, Theorem 4.1 shows that

$$
F_{g}(f)=\int_{B} f(z) \overline{g(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z), \quad f \in H^{\infty}(B)
$$

extends to a bounded linear functional on L_{a}^{1} with $\left\|F_{g}\right\| \leq C\|g\|_{q}$. Fix f in L_{a}^{1} and g in \mathcal{B}_{q}. Let $f(r z)=f_{r}(z), 0<r<1$. Each f_{r} is in $H^{\infty}(B)$ and $\left\|f_{r}-f\right\|_{L_{a}^{1}} \rightarrow 0$ as $r \rightarrow 1^{-}$. It follows that

$$
\lim _{r \rightarrow 1^{-}} \int_{B} f(r z) \overline{g(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z)=\lim _{r \rightarrow 1^{-}} F_{g}\left(f_{r}\right)=F_{g}(f)
$$

and that $\left|F_{g}(f)\right| \leq\left\|F_{g}\right\|\|f\|_{L_{a}^{1}} \leq C\|g\|_{q}\|f\|_{L_{a}^{1}}$.
Theorem 4.3. If F is a bounded linear functional on L_{a}^{1}, then there exists a function g in \mathcal{B}_{q} such that

$$
F(f)=\lim _{r \rightarrow 1^{-}} \int_{B} f(r z) \overline{g(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z), \quad f \in L_{a}^{1}
$$

Proof. By the Hahn-Banach extension theorem, F extends to a bounded linear functional on $L^{1}(B, d \nu)$ without increasing the norm. Since $\left(L^{1}\right)^{*}=$ L^{∞}, there is a function $\varphi \in L^{\infty}(D)$ such that $F(f)=\int_{B} f(z) \overline{\varphi(z)} d \nu(z), f \in$ L_{a}^{1}. If we use the inequality in Theorem 4.1,
$F(f)=\lim _{r \rightarrow 1^{-}} \int_{B} f_{r}(z) \overline{\varphi(z)} d \nu(z)=\lim _{r \rightarrow 1^{-}} \int_{B} f_{r}(z) \overline{I_{q} \varphi(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z)$
for each f in L_{a}^{1}. Let $g=I_{q} \varphi$. Then g is in \mathcal{B}_{q} and

$$
F(f)=\lim _{r \rightarrow 1^{-}} \int_{B} f(r z) \overline{g(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z)
$$

for all f in L_{a}^{1}.

Theorem 4.4. For each $q>0$, the Banach dual of L_{a}^{1} can be identified with \mathcal{B}_{q} (with equivalent norms) under the pairing

$$
<f, g>=\lim _{r \rightarrow 1^{-}} \int_{B} f(r z) \overline{g(r z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z), f \in L_{a}^{1}, g \in \mathcal{B}_{q} .
$$

Proof. If F is a bounded linear functional on L_{a}^{1}, by Theorem 4.3, there exists a function g in \mathcal{B}_{q} such that

$$
F(f)=\lim _{r \rightarrow 1^{-}} \int_{B} f(r z) \overline{g(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z), f \in L_{a}^{1}
$$

By the rotation invariance of the measure $\left(1-\|z\|^{2}\right)^{q-1} d \nu(z)$, we have

$$
\int_{B} f(r z) \overline{g(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z)=\int_{B} f(s z) \overline{g(s z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z)
$$

where $s=\sqrt{r}$. This clearly implies that

$$
\begin{aligned}
& \lim _{r \rightarrow 1^{-}} \int_{B} f(r z) \overline{g(z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z) \\
= & \lim _{r \rightarrow 1^{-}} \int_{B} f(r z) \overline{g(r z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z) .
\end{aligned}
$$

Theorem 4.5. For each $q \geq 1$, the Banach dual of $\mathcal{B}_{q, 0}$ can be identified with L_{a}^{1} (with equivalent norms) under the pairing

$$
<f, g>=\lim _{r \rightarrow 1^{-}} \int_{B} f(r z) \overline{g(r z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z), \quad g \in L_{a}^{1}, f \in \mathcal{B}_{q, 0} .
$$

Proof. Let F be a bounded linear functional on $\mathcal{B}_{q, 0}$. By Theorem 3.5 , the operator J_{q} maps $\mathcal{B}_{q, 0}$ boundedly into $C_{0}(B)$. Let X be the image of $\mathcal{B}_{q, 0}$ under the mapping J_{q}. Then X is a closed subspace of $C_{0}(B)$ and $F \circ J_{q}^{-1}: X \rightarrow C$ is a bounded linear functional. Let $\varphi \in X$. For some a finite Borel measure μ on $B, F \circ J_{q}^{-1}(\varphi)=\int_{B} \varphi(z) d \bar{\mu}(z)$ by the Riesz representation theorem. For each f in $\mathcal{B}_{q, 0}$,

$$
\begin{aligned}
F(f) & =\int_{B} J_{q} f(z) d \bar{\mu}(z) \\
& =\frac{c_{2}}{c_{q-1}} \int_{B}\left\{\int_{B} \frac{\left(1-\|z\|^{2}\right)^{2} f(w)}{(1-<z, w>)^{n+3}} d \mu_{q-1}(w)\right\} d \bar{\mu}(z) \\
& =c_{2} \lim _{r \rightarrow 1^{-}} \int_{B}\left(1-\|z\|^{2}\right)^{2}\left\{\int_{B} \frac{\left(1-\|w\|^{2}\right)^{q-1} f(w)}{(1-<r z, w>)^{n+3}} d \nu(w)\right\} d \bar{\mu}(z) .
\end{aligned}
$$

Let g be the holomorphic function defined by

$$
g(z)=c_{2} \int_{B} \frac{\left(1-\|w\|^{2}\right)^{2}}{(1-<z, w>)^{n+3}} d \mu(w)
$$

By Theorem 2.2 and Fubini's Theorem,

$$
\begin{aligned}
\int_{B}|g(z)| d \nu(z) & \leq c_{2} \int_{B}\left(1-\|w\|^{2}\right)^{2}\left\{\int_{B} \frac{d \nu(z)}{|1-<z, w>|^{n+3}}\right\} d|\mu|(w) \\
& \leq c_{2} \int_{B} d|\mu|(w)=c_{2}\|\mu\|
\end{aligned}
$$

This implies that g belongs to L_{a}^{1} and

$$
F(f)=\lim _{r \rightarrow 1^{-}} \int_{B} f(r z) \overline{g(r z)}\left(1-\|z\|^{2}\right)^{q-1} d \nu(z)
$$

References

[1] J. Anderson, Bloch functions: The Basic theory, operators and function theory, S. Power. editor, D. Reidel, 1985.
[2] J. Anderson, J, Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
[3] J. Arazy, S. D. Fisher, J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1054.
[4] S. Axler, The Bergman spaces, the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332.
[5] K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces \mathfrak{B}_{q}, J. Korean Math. Soc. 39 (2002), no.2, 277-287.
[6] K. S. Choi, little Hankel operators on Weighted Bloch spaces, Commun. Korean Math. Soc. 18 (2003), no. 3, 469-479.
[7] K. S. Choi, Notes On the Bergman Projection type operators in C^{n}, Commun. Korean Math. Soc. 21 (2006), no. 1, 65-74.
[8] K. S. Choi, Notes on Carleson Measures on bounded symmetric domain, Commun. Korean Math. Soc. 22(2007), no.1, 65-74.
[9] K. T. Hahn and K. S. Choi, Weighted Bloch spaces in \mathbb{C}^{n}, J. Korean Math. Soc. 35(1998), no.2, 171-189.
[10] K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canadian J. Math. 27 (1975), 446-458.
[11] K. T. Hahn, E. H. Youssfi, M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the unit ball in \mathbb{C}^{n}, Manuscripta Math 71 (1991), 67-81
[12] K. T. Hahn, E. H. Youssfi, Tangential boundary behavior of M-harmonic Besov functions in the unit ball, J. Math. Analysis and Appl. 175 (1993), 206-221.
[13] S. Krantz, Function theory of several complex variables, 2nd ed., Wadsworth \& Brooks/Cole Math. Series, Pacific Grove, CA, 1992.
[14] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Springer Verlag, New York, 1980.
[15] M. Stoll, Invariant potential theory in the unit ball of \mathbb{C}^{n}, London mathematical Society Lecture note series 199, 1994.
[16] R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc. 12 (1980), 241-267.
[17] K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Analysis 81 (1988), 262-278.
[18] K. H. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), 1143-1177
*
Department of Information Security Konyang University
Nonsan 320-711, Republic of Korea
E-mail: gtyang@konyang.ac.kr
**
Department of Information Security
Konyang University
Nonsan 320-711, Republic of Korea
E-mail: ksc@konyang.ac.kr

