References
- P. Ahern, M. Flores, and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), no. 2, 380–397. https://doi.org/10.1006/jfan.1993.1018
- S. Axler and Z. Cuckovic, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), no. 1, 1–12. https://doi.org/10.1007/BF01194925
- Y. Benyamini and Y. Weit, Harmonic analysis of spherical functions on SU(1, 1), Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 671–694. https://doi.org/10.5802/aif.1305
- M. Englis, Functions invariant under the Berezin transform, J. Funct. Anal. 121 (1994), no. 1, 233–254. https://doi.org/10.1006/jfan.1994.1048
- A. Erdeli et. al., Higher Transcendental Functions Vol. I, McGraw-Hill, New York, 1953.
- H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386. https://doi.org/10.2307/1970220
- A. Erdeli et. al., Boundaries of Riemannian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), pp. 359–377. Pure and Appl. Math., Vol. 8, Dekker, New York, 1972.
- S. Helgason, Topics in Harmonic Analysis on Homogeneous Spaces, Progress in Mathematics, 13. Birkhauser, Boston, Mass., 1981.
- S. Helgason, Groups and Geometric Analysis, Academic Press, 1984.
- Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313–328. https://doi.org/10.1016/0022-1236(86)90101-1
- J. Lee, Properties of the Berezin transform of bounded functions, Bull. Austral. Math. Soc. 59 (1999), no. 1, 21–31. https://doi.org/10.1017/S0004972700032561
-
W. Rudin, Function Theory in the Unit Ball of
$C^n$ , Springer-Verlag, New York Inc., 1980.