BOUNDED LINEAR FUNCTIONAL ON $L_a^1(B)$ RELATED WITH \mathcal{B}_q

KI SEONG CHOI

ABSTRACT. In this paper, weighted Bloch spaces \mathcal{B}_q are considered on the open unit ball in \mathbb{C}^n . In this paper, we will show that every Bloch function in \mathcal{B}_q induces a bounded linear functional on $L^1_a(B)$.

1. Introduction

Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane \mathbb{C} . Let dA(z) be the area measure on D normalized so that the area of D is 1. $L^2(D, dA)$ will denote the Banach space of Lebesgue measurable functions for D with

$$|| f ||_2 = \left[\int_D |f(z)|^2 dA(z) \right]^{\frac{1}{2}} < +\infty.$$

The Bergman space $L^2_a(D)$ is defined to be the subspace of $L^2(D, dA)$ consisting of analytic functions.

Since point evaluation at $z \in D$ is a bounded linear functional on the Hilbert space $L_a^2(D)$, the Riesz representation theorem implies that there exists a unique function K_z in $L_a^2(D)$ such that

$$f(z) = \int_D f(w) \overline{K_z(w)} dA(w)$$

Received by the editors on December 5, 2001.

²⁰⁰⁰ Mathematics Subject Classifications: 32H25, 32E25, 30C40.

Key words and phrases: Bergman metric, weighted Bloch spaces, Besov space, Banach duality.

KI SEONG CHOI

for all f in $L^2_a(D)$. Let K(z, w) be the function on $D \times D$ defined by

$$K(z,w) = \overline{K_z(w)}.$$

K(z,w) is called the Bergman kernel of D or the reproducing kernel of L_a^2 in D. It is easily proved the $K(z,w) = 1/(1-z\overline{w})^2$ (See [8]). Let $k_a(z) = K(z,a)/\sqrt{K(a,a)} = (1-|a|^2)(1-z\overline{a})^{-2}$. k_a is called the normalized reproducing kernel of $L_a^2(D)$.

Since $L_a^2(D)$ is a closed subspace of the Hilbert space $L^2(D, dA)$, there exists an orthogonal projection P from $L^2(D, dA)$ onto $L_a^2(D)$. P is called the Bergman projection. It is well known that

$$Pf(z) = \int_D K(z, w) f(w) dA(w)$$

for any $f \in L^2(D, dA)$ and $z \in A$. Let $C(\overline{D})$ be the algebra of complex continuous functions on \overline{D} , the Euclidean closure of D, and $C_0(D)$ the subalgebra of $C(\overline{D})$ consisting of functions f with $f(z) \to 0$ as $|z| \to 1^-$.

The Bloch space of D, denoted $\mathcal{B}(D)$, consists of analytic functions f on D such that $\sup\{(1-|z|^2)|f'(z)|: z \in D\} < +\infty$. The little Bloch space of D, denoted $\mathcal{B}_0(D)$, consists of analytic functions f on D such that $(1-|z|^2)|f'(z)| \to 0$ as $|z| \to 1^-$. It was proved in [10] that, for $f \in \mathcal{B}(D)$, the followings are equivalent :

$$(1)f \in \mathcal{B}_0(D)$$

 $(2)f = P\varphi$ for some $\varphi \in C(\overline{D})$.

 $(3)f = P\varphi$ for some $\varphi \in C_0(D)$.

In this paper, we will extend the above result to weighted Bloch space in \mathbb{C}^n . We will also show that every function in \mathcal{B}_q induces a bounded linear functional F_g on L_a^1 with $|| F_g || \leq C || g ||_q$.

Throughout this paper, \mathbb{C}^n will be the Cartesian product of n copies of \mathbb{C} . For $z = (z_1, z_2, \ldots, z_n)$ and $w = (w_1, w_2, \ldots, w_n)$ in

 \mathbb{C}^n , the inner product is defined by $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w_j}$ and the norm by $||z||^2 = \langle z, z \rangle$. Let N denote the set of natural numbers. A multi-index α is an ordered n-tuple $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n)$ with $\alpha_j \in N, j = 1, 2, \cdots, n$. For a multi-index α and $z \in \mathbb{C}^n$, set

$$|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n,$$
$$\alpha! = \alpha_1! \alpha_2! \cdots \alpha_n!,$$
$$z^{\alpha} = z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}.$$

Let B be the open unit ball in the complex space \mathbb{C}^n . The linear space of all holomorphic functions $f: B \to \mathbb{C}$ which satisfy

$$\sup_{z\in B}(1-\parallel z\parallel^2)\parallel \triangledown f(z)\parallel < \infty$$

is said to the space \mathcal{B} of Bloch functions on B. The little Bloch space \mathcal{B}_0 is the subspace of \mathcal{B} consisting of those functions $f: B \to \mathbb{C}$ which satisfy

$$\lim_{\|z\|\to 1} (1 - \| z \|^2) \| \nabla f(z) \| = 0.$$

For each q > 0, the weighted Bloch space of B, denoted by \mathcal{B}_q , consists of holomorphic functions $f : B \to \mathbb{C}$ which satisfy

$$\sup_{z\in B}(1-\parallel z\parallel^2)^q\parallel \triangledown f(z)\parallel < \infty.$$

The corresponding little Bloch space $\mathcal{B}_{q,0}$ is defined by the functions f in \mathcal{B}_q such that

$$\lim_{\|z\|\to 1} (1 - \|z\|^2)^q \| \nabla f(z) \| = 0.$$

Clearly, both \mathcal{B}_q and $\mathcal{B}_{q,0}$ are increasing function spaces of q > 0. In particular, $\mathcal{B}_1 = \mathcal{B}$ and $\mathcal{B}_{1,0} = \mathcal{B}_0$. Let us define a norm on \mathcal{B}_q as follows;

$$|| f ||_q = |f(0)| + \sup\{(1 - || w ||^2)^q || \forall f(w) || : w \in B\}.$$

Weighted Bloch functions were studied in [6].

It is well known that, for any $\alpha > -1$ and $z \in D$,

$$f(z) = (\alpha + 1) \int_D \frac{(1 - |w|^2)^{\alpha}}{(1 - z\bar{w})^{\alpha + 2}} f(w) dA(w)$$

if f is an analytic function on D with $\int_D (1-|z|^2)^{\alpha} |f(z)| dA(z) < +\infty$, where dA is the normalized area measure on D(See [8]). Let

$$K_{\alpha}(z,w) = (\alpha+1)\frac{(1-|w|^2)^{\alpha}}{(1-z\bar{w})^{2+\alpha}}$$

and define an operator P_{α} by

$$P_{\alpha}f(z) = \int_{D} K_{\alpha}(z, w)f(w)dA(w).$$

We see that $P_{\alpha}f = f$ for all analytic function f in $L^{1}(D, (1 - |z|^{2})^{\alpha}dA(z))$. So P_{α} is a projection onto analytic functions. Let V be the adjoint of P_{2} under the usual integral pairing, that is,

$$Vf(z) = 3(1 - |z|^2)^2 \int_D \frac{f(w)}{(1 - z\overline{w})^4} dA(w).$$

In [10], it was shown that V embeds $\mathcal{B}_0(D)$ into $C_0(D)$.

Let ν be the Lebesgue measure in \mathbb{C}^n normalized by $\nu(B) = 1$. The measure μ_q is the weighted Lebesgue measure:

$$d\mu_q = c_q (1 - \parallel z \parallel^2)^q d\nu(z),$$

where q > -1 is fixed, and c_q is a normalization constant such that $\mu_q(B) = 1$.

In [6], it was shown that if $f \in L^1_{\mu_q}(B) \cap H(B)$, q > -1, then

$$f(z) = c_q \int_B \frac{(1 - \|w\|^2)^q}{(1 - \langle z, w \rangle)^{n+q+1}} f(w) d\nu(w).$$

For any q > 0, let W_q denote the operator defined by

$$W_q f(z) = c_{q-1} \int_B \frac{f(w)}{(1 - \langle z, w \rangle)^{n+q}} d\nu(w), \quad z \in B.$$

Let $C_0(B)$ be the subspace of complex-valued continuous functions on B which vanish on the boundary, $C(\overline{B})$ the space of complex-valued continuous functions on the closed unit ball \overline{B} .

In this paper, We will prove that W_q maps $L^{\infty}(B)$ boundedly onto \mathcal{B}_q . For each q > 0, the operator W_q maps $C_0(B)$ onto \mathcal{B}_q . For each q > 0, W_q also maps $C_0(B)$ onto $\mathcal{B}_{q,0}$. For each q > 0, W_q also maps $C_0(B)$ onto $\mathcal{B}_{q,0}$. For each q > 0, W_q also maps $C_0(B)$ onto $\mathcal{B}_{q,0}$. We will prove that if $f \in L^1_a(B)$ is bounded and $g \in \mathcal{B}_q$, then

for some constant C > 0 which is independent of f and g. This shows that, for $g \in \mathcal{B}_q$,

$$F_{g}(f) = \int_{B} f(z)\overline{g(z)}(1 - ||z||^{2})^{q-1}d\nu(z), f \in H^{\infty}(B),$$

extends to a bounded linear functional on $L^1_a(B)$ with $|| F_q || \le C ||$ $g ||_q$.

2. Bounded Operator W_q .

THEOREM 1. For $z \in B$, c is real, t > -1, define

$$I_{c,t}(z) = \int_B \frac{(1 - \|w\|^2)^t}{|1 - \langle z, w \rangle|^{n+1+c+t}} d\nu(w), \quad z \in B.$$

Then,

(i)
$$I_{c,t}(z)$$
 is bounded in *B* if $c < 0$;
(ii) $I_{0,t}(z) \sim -\log(1 - ||z||^2)$ as $||z|| \to 1^-$;
(iii) $I_{c,t}(z) \sim (1 - ||z||^2)^{-c}$ as $||z|| \to 1^-$ if $c > 0$.

Proof. See [7, Proposition 1.4.10].

41

THEOREM 2. Suppose q > 0. Then f is in \mathcal{B}_q if and only if $(1 - ||z||^2)^{q-1} |f(z)|$ is bounded on B.

Proof. See [6].

THEOREM 3. For each q > 0, the operator W_q maps $C_0(B)$ onto \mathcal{B}_q .

Proof. Let $f \in \mathcal{B}_q$ (q > 0). Then $(1 - || z ||^2)^{q-1} |f(z)|$ is bounded in B, by Theorem 2. Since

$$f(z) = c_{q-1} \int_{B} \frac{(1 - \|w\|^2)^{q-1} f(w)}{(1 - \langle z, w \rangle)^{n+q}} d\nu(w),$$

 $f(z) = W_q h(z)$ where $h(w) = (1 - ||w||^2)^{q-1} f(w)$ is in $C_0(B)$. Therefore, W_q maps $C_0(B)$ onto \mathcal{B}_q .

THEOREM 4. For each q > 0, the operator W_q maps $L^{\infty}(B)$ boundedly onto \mathcal{B}_q .

Proof. Let $f(z) = W_q g(z)$, where $g \in L^{\infty}(B)$. Then

$$f(z) = c_{q-1} \int_B \frac{g(w)}{(1 - \langle z, w \rangle)^{n+q}} d\nu(w),$$

$$\frac{\partial}{\partial z_{i}} f(z) = (n+q)c_{q-1} \int_{B} \frac{g(w)(-\overline{w}_{i})}{(1-\langle z, w \rangle)^{n+q+1}} d\nu(w),$$
$$\| \nabla f(z) \| \leq (n+q)c_{q-1} \| g \|_{\infty} \int_{B} \frac{d\nu(w)}{|1-\langle z, w \rangle|^{n+q+1}}$$

By Theorem 1,

$$\| \nabla f(z) \| \leq (n+q)c_{q-1} \| g \|_{\infty} (1-\| z \|^2)^{-q}.$$

Thus,

$$(1- \parallel z \parallel^2)^q \parallel \nabla f(z) \parallel \leq C \parallel g \parallel_{\infty}.$$

It is also clear that $|f(0)| \leq c_{q-1} \parallel g \parallel_{\infty}$. Thus,

$$|| f ||_q = |f(0)| + \sup\{(1 - || w ||^2)^q || \nabla f(w) || |w \in B\}$$

$$\leq (C + c_{q-1}) || g ||_{\infty}.$$

Hence, W_q maps $L^{\infty}(B)$ boundedly into \mathcal{B}_q . That Q_q maps $L^{\infty}(B)$ onto \mathcal{B}_q follows from the proof of Theorem 3.

THEOREM 5. For $q \geq 1$, $\mathcal{B}_{q,0}$ is the closure of the set of polynomials in the norm topology of $\mathcal{B}_{q,0}$. In particular, $\mathcal{B}_{q,0}$ is a separable Banach space by itself.

Proof. See [6].

THEOREM 6. For each q > 0, the operator W_q maps $C(\overline{B})$ boundedly onto $\mathcal{B}_{q,0}$.

Proof. By the Stone-Weierstrass approximation theorem, each function in $C(\overline{B})$ can be uniformly approximated by finite linear combinations of functions of the form $z^{\alpha}\overline{z}^{\beta}$. But

$$\begin{split} W_q(z^{\alpha}\overline{z}^{\beta}) &= c_{q-1} \int_B \frac{w^{\alpha}\overline{w}^{\beta}}{(1 - \langle z, w \rangle)^{n+q}} d\nu(w) \\ &= c_{q-1} \int_B w^{\alpha}\overline{w}^{\beta} d\nu(w) + c_{q-1} \sum_{m=1}^{\infty} \sum_{i_1+i_2+\dots+i_n=m} \\ &\frac{(n+q+m-1)!}{m!(n+q-1)!} \frac{m!}{i_1!i_2!\dots i_n!} z^I \int_B w^{\alpha}\overline{w}^{\beta}\overline{w}^I d\nu(w), \\ &I = (i_1, i_2, \dots, i_n) \end{split}$$

 $= c_J z^J$ for some J

by [7, Prop. 1.4.8, Prop. 1.4.9].

Hence W_q maps finte linear combination of functions of the form $z^{\alpha}\overline{z}^{\beta}$ to polynomials. Since W_q maps $L^{\infty}(B)$ boundedly into \mathcal{B}_q and

 $\mathcal{B}_{q,0}$ is closed in \mathcal{B}_q , W_q maps $C(\overline{B})$ boundedly into $\mathcal{B}_{q,0}$. The "onto " parts follow from the proof of Theorem 3.

3. Bounded linear functional on L_a^1 related with weighted Bloch function.

Let *E* be a normed linear space and *M* a closed linear subspace of *E*. If we define linear operations on $E/M = \{x + M : x \in E\}$ by (x + M) + (y + M) = (x + y) + M and a(x + M) = ax + M, then $||x + M|| = \inf\{||x + m||: m \in M\}$ is a quotient norm on E/M. If *E* is a Banach space, so is E/M under this quotient norm.

THEOREM 7. For each q > 0, there exists a constant C > 0 such that

$$C^{-1} \parallel f \parallel_{q} \leq \inf \{ \parallel g \parallel_{\infty} : f = W_{q}g, g \in L^{\infty}(B) \} \leq C \parallel f \parallel_{q}$$

for all f in \mathcal{B}_q and

$$C^{-1} \parallel f \parallel_q \le \inf\{\parallel g \parallel_{\infty} : f = W_q g, g \in C_0(B)\} \le C \parallel f \parallel_q$$

for all f in $\mathcal{B}_{q,0}$.

Proof. Let us define an equivalence relation on L^{∞} such that $g_1 \sim g_2 \Leftrightarrow W_q g_1 = W_q g_2$. Then L^{∞}/\sim is the family of equivalence class [g] of g. Let us define a linear operator $T: L^{\infty}/\sim \longrightarrow B_q$ such that $T([g]) = W_q g$. Then T is a bounded linear operator on L^{∞}/\sim onto B_q . Also T is 1-1. By the open mapping theorem, T^{-1} is continuous. Hence there exists constant C such that $||T^{-1}W_qg||_{\infty} \leq C ||W_qg||_q$.

Let $L_a^1(B)$ be the set of holomorphic functions f on B such that $\| f \|_{L_a^1} = \int_B |f(z)| d\nu(z) < \infty$. Then the space L_a^1 is a Banach space with the above norm $\| f \|_{L_a^1}$.

BOUNDED LINEAR FUNCTIONAL ON $L^1_a(B)$ RELATED WITH ${\mathcal B}_q$

THEOREM 8. Suppose that $f \in L^1_a$ is bounded and $g \in \mathcal{B}_q$. Then

$$|\int_{B} f(z)\overline{g(z)}(1- || z ||^{2})^{q-1} d\nu(z)| \le C || f ||_{L^{1}_{a}} || g ||_{q}$$

for some constant C > 0 which is independent of f and g.

Proof. Writing $g = W_q \varphi$ for some $\varphi \in L^{\infty}(B)$ and applying Fubini's theorem, we have

$$\begin{split} &\int_{B} f(z)\overline{g(z)}(1- \parallel z \parallel^{2})^{q-1}d\nu(z) \\ &= c_{q-1} \int_{B} f(z)(1- \parallel z \parallel^{2})^{q-1}d\nu(z) \int_{B} \frac{\overline{\varphi(w)}}{(1-< w, z >)^{n+q}}d\nu(w) \\ &= c_{q-1} \int_{B} \overline{\varphi(w)}d\nu(w) \int_{B} \frac{f(z)(1- \parallel z \parallel^{2})^{q-1}}{(1-< w, z >)^{n+q}}d\nu(z) \\ &= \int_{B} f(w)\overline{\varphi(w)}d\nu(w). \end{split}$$

Hence, $|\int_B f(z)\overline{g(z)}(1-||z||^2)^{q-1}d\nu(z)| \leq ||f||_{L^1_a}||\varphi||_{\infty}$. Taking the infimum over φ and applying Theorem 7, We get a constant C > 0 such that

$$|\int_B f(z)\overline{g(z)}(1- || z ||^2)^{q-1} d\nu(z)| \leq C || f ||_{L^1_a} || g ||_q.$$

The space of bounded analytic functions on B will be denoted by $H^{\infty}(B)$.

COROLLARY 9. For $g \in \mathcal{B}_q$,

$$F_{g}(f) = \int_{B} f(z)\overline{g(z)}(1 - ||z||^{2})^{q-1} d\nu(z), f \in H^{\infty}(B),$$

extends to a bounded linear functional on $L^1_a(B)$ with $|| F_g || \le c || g ||_q$

Proof. This follows from Theorem 8.

 \Box

KI SEONG CHOI

References

- 1. J. Anderson, Bloch functions: The Basic theory, operators and function theory, S. Power. editor, D.Reidel(1985).
- J. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
- J. Arazy, S.D. Fisher, J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110(1988), 989-1054.
- 4. S. Axler, The Bergman spaces, the Bloch space and commutators of multiplication operators, Duke Math. J. 53(1986), 315-332.
- 5. K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canadian J. Math. 27(1975), 446-458.
- 6. K. T. Hahn, K. S. Choi, Weighted Bloch spaces in \mathbb{C}^n , J. Korean Math. Soc. **35**(1998), 177-189.
- 7. W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer Verlag, New York (1980).
- 8. M. Stoll, Invariant Potential theory in the unit ball of \mathbb{C}^n , London Mathematical society Lecture note series. **199**(1990).
- R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc 12(1980), 241-267.
- 10. K. H. Zhu, Operator theory in function space, Marcel Dekker. New York(1990).
- K. H. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math 23(1993), 1143-1177.

KI SEONG CHOI DEPARTMENT OF MATHEMATICS KONYANG UNIVERSITY NONSAN 320-711, KOREA