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BOUNDEDNESS OF BEREZIN TRANSFORM
ON HERZ SPACES

CHU-HEE CHO AND KYUNGUK NA

ABSTRACT. In this paper, we give the condition for the boundedness of
the Berezin transforms on Herz spaces with a normal weight on the unit
ball of C™. And we provide the integral estimates concerning plurihar-
monic kernel functions. Using this, we finally obtain the growth estimates
of the Berezin transforms on such Herz spaces.

1. Introduction

For n > 2, let B = B,, be the open unit ball in C". Given @ > —1 and
1<p<oo,let L2 = LP(V,) be the weighted Lebesgue space which consists of
all complex-valued functions f on B such that

1/p
f||L;P,={/B|fpdVa} <0,

where V' denotes the Lebesgue volume measure on B and dV,(z) = (1 —
|2]2)* dV () is a measure with a normal weight. The weighted pluriharmonic
Bergman space b2 = b2(B) is the set of all pluriharmonic functions f on B
with f € L2. We also write R%(w) = R%(z,w) be the reproducing kernel for
b2. It is known that
ba = A%+ A2,

where A2 = A2(B) is the holomorphic Bergman space with respect to the
normal weight (1 — |2]2)%; see [4] for details. Thus, we see that the explicit
formula of RS (w) is as follows:

(o7 — 1 1
(1’1) Rz (w) - (1 —7Z. w)n+a+l + (1 — 2 .@)n+a+1 1
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for z,w € B. Here and subsequently, z - w = z;w; + - -+ + z, W, denotes the
Hermitian inner product on C™.

It is easy to obtain the following estimates from (1.1):

1.2 R} (z) = ! d RZ < !

(1.2) A@“JW an | z(w)|wm
for all z,w € B, so RS is bounded for fixed z € B.

Given a positive (finite) Borel measure p on B (we will write p > 0 for
simplicity), the Berezin transform is defined by

() = ﬁ) /B RS ()2 dps(w)

for z € B. For ¢ € L., we define ¢ = ji where du = ¢ dV,.

The notion of Berezin transform can be extended to non-integrable functions
which belong to some weighted Lebesgue spaces as follows which is proved in
Lemma 3.7 ([4]):

Forao> —1,1 <p < o0 and v real, the Berezin transform is bounded on L%
if and only if —(n+a+1) < (y+1)/p<a+1.

Previously, in the holomorphic case on the unit disk, Loaiza, Lépez-Garcia
and Pérez-Esteva ([3]) introduced Herz spaces which have mixed norm spaces
associated with Schatten classes and they decomposed a given positive Toeplitz
operator into a family of local operators and then characterized membership
in those spaces. In the harmonic case of unit ball of R™, Choe, Koo and Na
([2]) showed the boundedness of the Berezin transform on Herz spaces Kb
with restricted parameters p and ¢. In the sequel, Choe ([1]), for the full range
parameter ¢, proved that the parameter range is a necessary condition for the
boundedness of the Berezin transform. Furthermore, he gave the pointwise
growth estimate of the Berezin transform on K2-7.

Also, there is similar result to [2] in the pluriharmonic case of unit ball of
C™ that Na ([4]) showed as follows:

Fora> -1, 1 <p, g <ooand ~yreal, if
(1.3) —(n+a+l)—(a+1)/p<y<(a+1)(1-1/p),

then the Berezin transform is bounded on KP7.

Motivated by these ideas of [1], we give a more complete result of (1.3) and
the growth estimates of the Berezin transforms in the weighted pluriharmonic
Bergman space case on the unit ball of C™.

Now, we are about to state our main results as follows.

Theorem 1.1. Let a > —1,1 < p < o0 and 7 be real. For 0 < q < o0, the
Berezin transform is bounded on KB if and only if —(n+a+1) < v+ (a+
1)/p<a+l.
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Theorem 1.2. Let a > —1, 1 < p < oo and v be real. Assume v + (o +
1)/p < a+ 1. Then we have the followings: There exist positive constants
C =C(a,p,v) such that

(@) if v+ (a+1)/p < a+1, then f(2) < C|fxnex

(1= [e)~natD/e=s if v>—-(n+a+1)(1+1/p)

(L= fehmett (T4log ) if v =—(n+a+1)(1+1/p)

(1= [zrrott if v<-(n+a+1)(1+1/p);
(b) if v+ (a+1)/p=a+1, then f(2) < O||f |y (1 = [2)~(cHD=n/r.

In the next section, for 1 < p < oo, we define the Herz spaces and find

all parameters of that spaces that are contained in L.; see (2.3). So, the
Berezin transforms are well defined on those spaces. In Section 3, we prove
some integral estimates concerning kernel functions and give the estimate of
kernel functions in Herz spaces. In Section 4, we establish the condition for the
boundedness for the Berezin transforms on Herz spaces. In the last section, we
obtain the growth estimates of the Berezin transforms. Theorem 5.2 expresses
the growth estimates of the Berezin transforms on such Herz spaces. Similar
results on the unit ball of R™ can also be found in [1].
Constants. Throughout the paper, we write C' for a various positive constant,
which is depend on the given situation. We often abbreviate inessential con-
stants involved in inequalities by writing X <Y for positive quantities X and
Y if the ratio X/Y has a positive upper bound. Also, we write X * Y if X <Y
and Y < X.

2. Herz spaces
In order to introduce Herz spaces, we let
m=42€B : 1y <|z| <Tmi1},

where r,,, = 1—27"™ for each integer m > 0. We write x.,, for the characteristic
function of A,, for each m. Also, given p > 0, we let px,, denote the restriction
of i to A,, for each m.

Let o > —1. Given v real and 0 < p,q < oo, the Herz space KF7 is the set
of all LP-integrable functions f such that

IAlleg = 27 Wexmllzz Y|, < oo

where ¢ stands for the g-summable sequence space. Equipped with the norm
above, the space KF"7 is a Banach space. Also, we let K87 be the subspace of
KP:¥ consisting of all functions f € KB such that

o B
Tim 27 | fxml g = 0.

Note that K27 C K™ for all ¢ < oo.
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In the first place, we recall elementary properties of Herz spaces. For 1 <
p,q < oo and arbitrary real 7y, application of Holder’s inequality yields Holder’s
inequality of Herz spaces as follows:

(2.1) /B £34V < | fllcz lgllerr -

for positive measurable functions f and g on B; see [2] for details. From now
on, p’ denotes the conjugate exponent of p.
We also note that if 1 < p < co and if

(2.2) either y < (a+1)(1 =1/p); or y=(a+1)(1—-1/p) and 0 < ¢ <1,

then the Herz space K7 C Lj; see [4] for details.
In fact we can deduce that

(2.3) (2.2) if and only if KB C L]

for 1 < p < oco. In order to prove this we consider the function fzs on B

defined by
Foa(2) = — (14 10g — -
N TR ) A G T D A

where 8 and 0 are given real numbers.
To prove (2.3), we need the following lemma that provides the precise range
of parameters for KF*® in which the function fz s is contained.

Lemma 2.1. fgs € KV if and only if one of the following conditions holds:

(a) v+ (@+1)/p>5;
( ) v+ (a+1)/p=pBandd>0=g;

() v+ (a+1)/p=B and0<1/6 < ¢ < o0;
(d) v+ (a+1)/p=B and 6 >0 and g = oo

Proof. For z € A, note that fzs(2) =~ 2™%(1 +m)~° since 1 — |z| ~ 27™.
From this, we have

27| fa.6Xmll e ~ Q*m(v+(a+1)/pfﬁ)(1 + m)*5
for all m > 0. Hence we immediately obtain the proof. O
Now, we turn to prove the necessary condition of (2.3). Note that for ¢ < oo,
fs0 €KY <= B<y+(a+1)/p

and
fao0 €KLY <= B <~v+(a+1)/p.

Since || fs.0llpy ~ f, 5t dt,
feo €Ll <= B<a+l.

Then we obtain
fa+1,0 € ]CS”Y but fa+1,0 g L(ll
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for all g and v+ (a+1)/p > o+ 1. Thus we see that if v+ (a+1)/p > a+1,
then K7 ¢ L}, for all q.
In case v+ (o + 1)/p = a+ 1, we note that

fot1s € LL =35> 1.
From Lemma 2.1 we obtain for 0 < g < oo or ¢ = 0,
fat11 €KPY but  foyi1 & L,

Thus (2.3) is proved.

3. Integral estimates

To prove our main result Theorem 4.1, we begin with recalling some integral
estimates relevant to the kernel functions; see Proposition 1.4.10 of [5]. Here
dS is the surface area measure on 0B, the boundary of B.

Lemma 3.1. For —1 < a < oo, ¢ real and z € B,

S My J S5
17}

Bll—2 .Z|n+c B |1 — z - w[ntitate
1 if ¢<0
~ Q1 —log(l—|z|%) if ¢=0
(1—|z?)~¢ if ¢>0.

The constants suppressed above depend only on n and c.

Let o > —1. We need to estimate two types of integrals J. and I, . defined
for given —1 < a < oo and c real as follows:

Je(2) = /aB R Q)75+ dS(C)
and
o(e) = [ IR (1= ) av ()

for z € B.
We now estimate of J.(z).

Proposition 3.2. Let o > —1. For c real and z € B,

1 if a+c<0
Je(2) = ¢ 1 —1log(1 —|z[?) if a+c=0
(1 — |z]?)~(ete) if a+c>0.

The constants suppressed above depend only on n, a and c.
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Proof. From Lemma 3.1, we obtain the upper estimates easily. Thus, we only
prove the lower estimates. To do this, we consider two subsets of B as follows:
for z € B,

_ T _
Fz:{CeaB|arg(zC)|<m and |1—ZC|S1}
and
_ T _
Azz{CeﬁB|arg(1—zC)\>m+e and |1—Z<|>1}

for sufficiently small € > 0. Write 1 — z- ¢ = re®. If |z| < 3, then we have for
any ( € I',
2cos(n +a+1)§ —r"tott >

and

9z [ =z g as(o).
In case a + ¢ > 0, we obtain z
(3.1 [ =z geriaso 2

On the other case o + ¢ < 0, we have the estimate

[ B9 [ s z -y e 2

r. |]_ — . C|n+o¢+c |]_ — . C|n a+c ~

If |z| > 3, then we consider the set A.. For any ¢ € A, we have
rtetl _9cos(n+a+1)0 > 1

and

J(2) 2 /A 1= 2 et g5 ()

> / C i—2-Q et ds(¢)
{¢€dB: T <arg(z-¢)<5+6}

for some constant 6 > 0 which is independent of z. Let A = 2£2%¢. For [z| < 1,
we consider the binomial series
S T(k+2)

(3.2) (1—2)= mx

k=0

We assume z = |z|e;. By using (3.2) and orthogonality of {(z 7)7”} we obtain

_ i k+/\
_ 5. |~ (nta+to)
/G|1 z- (|7t ds(() = /‘ w2 (126"

F2k+/\
_Z k' 2F2 |2k/ ‘C |2k:dS

dS(¢)
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Here G = {C € 0B : § < arg(¢1) < § +}. To calculate above last integral
we claim that

(33) [1aPras©~ [ jaPtas)

G oB
for nonnegative k. To prove (3.3), we put ¢; = €!*¢; and ¢/ = (; for any
fixed angle ¢ and ¢ = 2,3,...,n. Since absolute value of the Jacobian of this

mapping is 1, we have

[ 1aPras = [ , G as(¢)
G {¢'€0B: 5 <arg(e'¢(])<5+6}

- / G2+ ds ().
{C€OB: T +p<arg(¢1)<5+5+¢}

We write

| jartaso =3 [ G2 dS (),
OB i {€€dB: ZT+d(i—1)<arg(¢1)< 5 +di}

which proves (3.3). Thus, using (3.3) with Proposition 1.4.9 of [5], we have the
following estimate

I'(n) & 2k +)) 2

By Stirling’s formula, we see that the coefficients in this last series are of order
kote=l as k — oco. This proves the assertions. ([l

Lemma 3.3. Let a > —1. For —1 < a < oo, ¢ real and z € B,

1 if a+¢c<0
Inc(z) =<1 —log(l—|2]?) if a+c=0
(1 — |z[?)~(ete) if a4c¢>0.

The constants suppressed above depend only on n, o and c.

Proof. One can easily prove the upper estimates by Lemma 3.1. So we now
prove the lower estimates. By using integration in polar coordinates and (1.1),
we obtain

1
Ioo(z) = /0 1 - %) /a N |R(r¢) | ¥a¥T dS(C) dr

1
= [asey [ R as ar
0 0B

If |rz| <1/2, then we obtain the following

~

1
I,..(2) 2 / 21— dr > 1.
0
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In the other case |rz| > 1/2, we consider the subset I', of 9B as in Proposition
3.2. Thus, (3.3) and Proposition 3.2 imply that, for |rz| > 1/2,

Ioc(2)
! 2 1 2 1
> A r (1 -r ) /I: ‘1 —rs- E'n-&-a-&-l-&-a-‘rc dS(C) dr

1
1
= 21— r2)“/ — dS(¢)dr
/o (CeOB| T <arg(rzw)<Z 48} |1 — 12 - w|PHatitate
1
1
2n—1 2\a
~ 1-— d d
=ty [ ="

_ (1 —Jw|)®
= | T mprirarare dV(w).

The proof is complete by Lemma 3.1. O
The following result presents the estimate of kernel functions in Herz spaces.

Lemma 3.4. Let « > =1, 1 < p,q < oo and assume —(a+ 1)/p < v <
2(n4+a+1)— (n+a+1)/p. Then there exists a constant C = C(a,p,q,7)
such that o

(1 _ |Z‘)2(n+a+l)f(n+a+1)/p7'y

I(R2)?[lcp~ <
for z € B.
Proof. Fix z € B. Note that for ¢ > 0,
ds .
/ _ B9y
oB |1 —z-(|"te
We first estimate ||(R2)?Xym|/zz. Thus, for p < co, (1.2) yields
IRl [ 1= 2w 2oy ayw)

m

Tm+41 _
_ 2—ma/ r2n—1/ |1 —rz. <|—2(n+(x+1)p dS(C) dr
OB

Tm

T'm
S 27ma/ Jr1(1 - |TZ|2)72p(n+a+1)+n dr
T

m

(Fog1 — Tm)27 ™

~ (1 _ rm+1|z|)2p(n+a+1)fn

2—m(o¢+1)

< .
~ (1 o |Z| + 27m|z|)2p(n+a+1)fn

We therefore conclude
3.4 RO)2 < pmmlet/r
( . ) ||( Z) XWHLQ ~ (1 — |Z| + 2—m‘z|)2(n+a+1)—n/p
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and this estimate is uniform in m. Also, this estimate remains valid for p = oo,
because | R (w)| < (1 — |z||w]|)~ (et

Now, we estimate the Herz norm of (R%)?. Let 1 < ¢ < oo and |z] < 1/2.
Using (3.4), it is easy to see that

I(R2)?|lxz S H{Q*m(vﬂoﬁl)/p)}

~ 1.
va
Consider the case |z| > 1/2. First, if (1 — |z|) < 27™, then we have by (3.4)

o 9-m(y+(a+1)/p)
2 ’YH(Rz) Xm”Lﬂ 5 9-m(2(ntatl)—n/p)

< 1
~ (1 — |z|)2(ntet )= (ntat1)/p—y

(3.5)

Meanwhile, if (1 — |z]) > 27™, then we have by (3.4)
9—m(y+(a+1)/p)
(L= =7
1
(1= [o])20ratD—(nFatD/p— "

27 N(RS) xom 2z, S

(3.6)
<

Then the case ¢ = oo follows. Also, for ¢ < oo, it follows from (3.5) and (3.6)
that

IR (s = D27 (RS x|
m

2. )

(3.7) -
m<logy (1—[z))71  m>logy(1—|z|)~*
< 1
~ (1 — |z])9@ntat)=(ntatl)/p—7)’
as desired. The proof is complete. (I

Lemma 3.5. Let A={z¢€ B : 0<a<]|z| <b<1} be an annulus in B.
Given o+ ¢ > 0, there exists a positive constant C = C(n, «,c) such that

C_l 1 1 c—1 C
< a tatatid < -
(1 — CL2|Z|2)Q+C = b—a /A |Rz (’LU)| Fat V(U)) < (1 — b2|2|2)a+c

for z € B.

Proof. Let z € B. By integration in polar coordinates and Proposition 3.2, we
have

b
/ | RS (w)| " 7T dV (w) = / / |R2,(Q)| M es1dS(C) dr
A a 0B
b 2n—1 1

~ e d
[ T

which implies the lemma. O
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4. Boundedness
In this section, we formulate one of our main results.

Theorem 4.1. Let « > —1,1 < p < o0 and 7y be real. For 0 < q < oo, the
Berezin transform is bounded on KBV if and only if —(n+a +1) < v+ (a+
1)/p<a+l.

The sufficiency of Theorem 4.1 follows from Lemma 4.5 of [4]. In order to
prove the necessity of Theorem 4.1, we need to prove: Given 0 < g < oo there
exists some f € KI'7 but f ¢ K.

Throughout this section we consider parameters a > —1, 0 < p < oo and 7y
real such that

(4.1) either v+ (a+1)/p<—-(n+a+1); or v+ (a+1)/p>a+1.

We will prove this for general p, which is not necessarily greater than or
equal to 1.
Given 8 and 9 real, let

1 -0
hps(r) = _T> , 0<r<1

N
(1—r)p %87

so that
fs.5(2) = hps(lz]), z¢€B.
We separately consider two cases in (4.1) for convenience.

4.1. The case v+ (o + 1)/p < —(n + a + 1): We further split this case
into the following four cases:

(1) v+ (a+1)/p < —(n+ a+ 1) withq arbitrary;
(2) v+ (a+1)/p=—(n+a+1) withg=0;
B) v+ (a+1)/p=—-(n+a+1) with0 < g < oo;
4) v+ (a+1)/p=—(n+a+1) withg =00
Example 1. If (1) or (2) holds, then x4 ¢ K7 for any compact annular

region A C B.

Proof. Assume that (1) or (2) holds and let A C B be an arbitrary compact
annular region. By Lemma 3.5 we have

)n+a+1

XaZ (1-1z| = f-(n+a+1),0(2)

for z € B. Using Lemma 2.1, we have f_(, q41),0 € K77 from the condition
(1) or (2) and thus x4 & KL-7. O

Example 2. If (3) holds, then f_,1q41)5 € K7, but f,(nJraH))g & Kp7 for
d >1with 6 > 1/q.

Proof. Assume that (3) holds. Let § > 1 and 6 > 1/q. Then we have
J-(n+at1),6 € K7 by Lemma 2.1.
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Now, we estimate f,(nJraH)’(;. Let z € B and assume |z| > 1/2. Note that
L=r?lzP =l —rlal = (1= |2 + /(=) = (1= [e)) + (1= 7)

for |z| > 1/2 and 0 < r < 1. By combining this with (1.2), integration in polar
coordinates and Proposition 3.2, we have

ff(n+oc+1),6 (2)
1
~ (1 Jafyrrett / P21 g2y /8 R (OPh—sass) 5(r) dS(O)dr
0 B

1,2n—-1 2
L e e
0 (1 — r2|z[2)nt2(atl)

1 2\«
> (1 fepyreest [ AT e,
y 02D + (1 - ppeeier

1 —d
nta 1—1log(l—1r
S A

~ (1 [zl
for |z| > 1/2. Thus we obtain for z € B,
f—(n+a+1),6(z) Z f—(n+a+l)70(z)
so that f_(n+a+1)75 ¢ Kb by (3) and Lemma 2.1. O
Example 3. If (4) holds, then f_(,ya41)0 € K27, but f-(niat1)o & K5

Proof. Assume that (4) holds. Then we have f_(,4q+41),0 € KB by Lemma
2.1. Also, we have by the same manner of the proof of Example 2

1,2n—1 2\
—~ (1 _ nta-+1 r (1—7%) hf(n+a+1),0(7")
J-mtatn0(z) = (1= z]) /O Ly

1 —
= (1ot [ LT,
(]_ _ 7f.2|z|2)n+2(a+1)

1
dr
> (1 — n+a+1 /
et [T
=00
for z € B. Thus we have the desired result. O

4.2. The case v+ (a+1)/p > o + 1: We further split this case into the
following three cases:
5) v+ (a+1)/p>a+1;
6) v+ (a+1)/p=a+1, withl <g<ooorg=0;
(1) v+ (a+1)/p=a+1, with0 < ¢ <1.
The next example covers the subcases (5) and (6).
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Example 4. If (5) or (6) holds, then fo411 € K87 but faﬂ,l = oo on B.

Proof. Under the condition (5) or (6), we have f,111 € KBV by Lemma 2.1.
Note that hs1,1 is not integrable near r = 1. Thus, following the proof of
Example 2, we have by Proposition 3.2

1, ,2n—1 2\«
r ~ _ n4+a+1 r (1 - ) ha-l—l,l(”‘)
farr1(z) = (1= z)) /0 (1 — 72| 22)n+2a+1) dr

! dr
> _ n+a+1
2 (1—1z|) /l (1 — r)n+20+3(1 —log(1 — 1))

2

2 dt
— 1_ n+a+1/
(1 —1z)) o, nT20T3(1 —logt)

=0

=

for all z € B, as desired. O

In case of (7), we have KP7 C L}, by (2.3) so that Berezin transform is well
defined on that space.

Example 5. If (7) holds, then foi15 € K27 but foi1,s € K27 for all § > 1
with § > 1/q.

Proof. Assume that (7) holds. Let § > 1 and § > 1/¢. Since § > 1/q, we have
Ja+1,6 € KBV by Lemma 2.1.
Now, we estimate fva+175. Let z € B and assume |z| > 1/2. Following the

proof of Example 2, we have

1,2n—1 2\«
7 (1 (ortatt [T (=) %hays(r)
Jat+1,6(2) = (1 —z2|) /0 (1— T2|Z|2)n+2(o¢+1) dr

! dr
2= et [
E , (=2t log(1 = (1= 1))’
=00
for |z| > 1/2 and thus for all z € B. O

5. Growth estimates

Finally, we deal with the pointwise growth estimates of the Berezin trans-
forms on Herz spaces. Before doing this, we first described that parameters
p, ¢, a and  satisfy (2.3) so that the Berezin transform is well defined on
Herz spaces with such parameters. In this section we show pointwise growth
estimates of Berezin transforms in the following two cases:

(i) v+ (a+1)/p<a+1landqg=1;
(i) v+ (a+1)/p=a+1and ¢ = co.
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Given a nonnegative measurable function f on B, we note that (2.1) implies
(5.1) F(2) S @ =)™ lliep 1B M o
q

for z € B and 1 < ¢ < 0o. So, we first examine the growth estimate of Herz
norms of R2.

Lemma 5.1. Let a > —1, 1 <p < oo and 7y be real. Assume v+ (a+1)/p >
0. Then there exist positive constants C = C(a,p,7y) such that the following
inequalities holds: For z € B,

(a) if v+ (+1)/p >0, then ||(R)?||crv < Cx

1 if y>m+a+1)(2-1/p)

1+ log 1= if v=Mn+a+1)(2-1/p)

(1 — [z) 2ot dat Doty f 5 < (n+a+1)(2 - 1/p);
(b) if v+ (a+1)/p =0, then [[(R2)?[xn < C(1 —[2])72nterin/p,

Proof. Fix z € B. Let 1 <p < oo. If v+ (v + 1)/p = 0, then (b) immediately
holds from the proof of Lemma 3.4. We now turn to the case y+ (a+1)/p > 0.
Using (3.5), (3.6) and (3.7), we have

IR xzr S Y 2m@tatD=(ntath/p=)
m<logy (1-|2[)~"
1
—m(y+(a+1)/p)
* (1 — |z|)2(ntatl)—n/p Z 2

m>logy (1—[2])~*
=141

One can verify the following estimate by some calculation:
1 it y>n+a+1)(2-1/p)
I~ 1—|—log1%‘z‘ it y=n+a+1)(2-1/p)
(1 — |z])~2(tatD)+(ntatl)/pty if y<(n+a+1)(2-1/p).
Also, since v + (o + 1)/p > 0, we have
Z 27mOHatD)/P) oy (1 — || et D/p
m>log, (1—[z[)~*

so that IT ~ (1 — |z|)~2(r+et)+(ntat)/p+y - Combining these two estimates,
we can prove (a). O

The following is our second main result.

Theorem 5.2. Let o > —1, 1 < p < oo and v be real. Assume v + (o +
1)/p < a+ 1. Then we have the followings: There exist positive constants
C =C(a,p,v) such that
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() if y+ (a+1)/p < a+1, then f(z ) < C fllxcree

(1= [o) =ttt /o= if v>—-(n+a+1)(1+1/p)
(L= fehmtett (T4log ) if v =—(n+a+1)(1+1/p)
(1= [ttt if v<-(n+a+1)(1+1/p);
(b) if v+ (@ +1)/p=a+1, then f(2) < C||f [z (1 — |z])FD=n/r,
Proof. This follows from (5.1) and Lemma 5.1. O
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