• 제목/요약/키워드: trench MOSFET

검색결과 85건 처리시간 0.025초

수평형 파워 MOSFET에 있어서 트렌치 Isolation 적용에 의한 순방향 항복특성 개선을 위한 새로운 소자의 설계에 관한 연구 (The Study of Improving Forward Blocking Characteristics for Small Sized Lateral Trench Electrode Power MOSFET using Trench Isolation)

  • 김진호;김제윤;유장우;성만영;김기남
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.9-12
    • /
    • 2004
  • In this paper, a new small sized Lateral Trench Electrode Power MOS was proposed. This new structure, called LTEMOS(Lateral Trench Electrode Power MOS), was based on the conventional lateral power MOS. But the entire electrodes of LTEMOS were placed in trench oxide. The forward blocking voltage of the proposed LTEMOS was improved by 1.5 times with that of the conventional lateral power MOS. The forward blocking voltage of LTEMOS was about 240 V. At the same size, an improvement of the forward blocking voltage of about 1.5 times relative to the conventional MOS was observed by using ISE-TCAD which was used for analyzing device's electrical characteristics. Because all of the electrodes of the proposed device were formed in each trench oxide, the electric field was crowded to trench oxide and punch-through breakdown was occurred, lately.

  • PDF

TRENCH GATE POWER MOSFET의 신뢰성 분석 연구 (A Study on the Reliability of TRENCH GATE POWER MOSFET)

  • 황준선;구용서;김상기;안철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.683-686
    • /
    • 2003
  • In this paper, we have investigated electrical characteristics of TRENCH GATE POWER MOSFET in the temperature range of 300K to 500K. The results of this study indicate that on-resistance and breakdown voltage increase with the temperature ,but drain current, threshold voltage and transconductance decrease with the temperature. Especially, it is observed that electrical characteristics are improved as numerical unit cells are increased.

  • PDF

전력용 MOSFET의 특성 및 기술동향 (The Characteristics and Technical Trends of Power MOSFET)

  • 배진용;김용
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1363-1374
    • /
    • 2009
  • This paper reviews the characteristics and technical trends in Power MOSFET technology that are leading to improvements in power loss for power electronic system. The silicon bipolar power transistor has been displaced by silicon power MOSFET's in low and high voltage system. The power electronic technology requires the marriage of power device technology with MOS-gated device and bipolar analog circuits. The technology challenges involved in combining power handling capability with finger gate, trench array, super junction structure, and SiC transistor are described, together with examples of solutions for telecommunications, motor control, and switch mode power supplies.

Extended Trench Gate Superjunction Lateral Power MOSFET for Ultra-Low Specific on-Resistance and High Breakdown Voltage

  • Cho, Doohyung;Kim, Kwangsoo
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.829-834
    • /
    • 2014
  • In this paper, a lateral power metal-oxide-semiconductor field-effect transistor with ultra-low specific on-resistance is proposed to be applied to a high-voltage (up to 200 V) integrated chip. The proposed structure has two characteristics. Firstly, a high level of drift doping concentration can be kept because a tilt-implanted p-drift layer assists in the full depletion of the n-drift region. Secondly, charge imbalance is avoided by an extended trench gate, which suppresses the trench corner effect occurring in the n-drift region and helps achieve a high breakdown voltage (BV). Compared to a conventional trench gate, the simulation result shows a 37.5% decrease in $R_{on.sp}$ and a 16% improvement in BV.

트랜치 기법을 이용한 SOI MOSFET의 전기적인 특성에 관한 연구 (A New Structure of SOI MOSFETs Using Trench Mrthod)

  • 박윤식
    • 한국컴퓨터산업교육학회:학술대회논문집
    • /
    • 한국컴퓨터산업교육학회 2003년도 제4회 종합학술대회 논문집
    • /
    • pp.67-70
    • /
    • 2003
  • In this paper, propose a new structure of MOFET(Metal-Oxide-Semiconductor Field Effect Transistor) which is widely application for semiconductor technologies. Eleminate the latch-up effect caused by closed devices when conpose a electronic circuit using proposed devices. In this device have a completely isolation structure, and advantage of leakage current elimination. Each independent devices are isolated by trench-well and oxide layer of SOI substrate. Using trench gate and self aligned techniques reduces parasitic capacitance between gate and source, drain. In this paper, we proposed the new structure of SOI MOSFET which has completely isolation and contains trench gate electrodes and SOI wafers. It is simulated by MEDICI that is device simulator.

  • PDF

Fabrication of Superjunction Trench Gate Power MOSFETs Using BSG-Doped Deep Trench of p-Pillar

  • Kim, Sang Gi;Park, Hoon Soo;Na, Kyoung Il;Yoo, Seong Wook;Won, Jongil;Koo, Jin Gun;Chai, Sang Hoon;Park, Hyung-Moo;Yang, Yil Suk;Lee, Jin Ho
    • ETRI Journal
    • /
    • 제35권4호
    • /
    • pp.632-637
    • /
    • 2013
  • In this paper, we propose a superjunction trench gate MOSFET (SJ TGMOSFET) fabricated through a simple p-pillar forming process using deep trench and boron silicate glass doping process technology to reduce the process complexity. Throughout the various boron doping experiments, as well as the process simulations, we optimize the process conditions related with the p-pillar depth, lateral boron doping concentration, and diffusion temperature. Compared with a conventional TGMOSFET, the potential of the SJ TGMOSFET is more uniformly distributed and widely spread in the bulk region of the n-drift layer due to the trenched p-pillar. The measured breakdown voltage of the SJ TGMOSFET is at least 28% more than that of a conventional device.

P-Emitter의 길이, 구조가 Asymmetric SiC MOSFET 소자 성능에 미치는 영향 (Effect of P-Emitter Length and Structure on Asymmetric SiC MOSFET Performance)

  • 김동현;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제33권2호
    • /
    • pp.83-87
    • /
    • 2020
  • In this letter, we propose and analyze a new asymmetric structure that can be used for next-generation power semiconductor devices. We compare and analyze the electrical characteristics of the proposed device with respect to those of symmetric devices. The proposed device has a p-emitter on the right side of the cell. The peak electric field is reduced by the shielding effect caused by the p-emitter structure. Consequently, the breakdown voltage is increased. The proposed asymmetric structure has an approximately 100% higher Baliga's figure of merit (~94.22 MW/㎠) than the symmetric structure (~46.93 MW/㎠), and the breakdown voltage of the device increases by approximately 70%.

Electrothermal Analysis for Super-Junction TMOSFET with Temperature Sensor

  • Lho, Young Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • 제37권5호
    • /
    • pp.951-960
    • /
    • 2015
  • For a conventional power metal-oxide-semiconductor field-effect transistor (MOSFET), there is a trade-off between specific on-state resistance and breakdown voltage. To overcome this trade-off, a super-junction trench MOSFET (TMOSFET) structure is suggested; within this structure, the ability to sense the temperature distribution of the TMOSFET is very important since heat is generated in the junction area, thus affecting its reliability. Generally, there are two types of temperature-sensing structures-diode and resistive. In this paper, a diode-type temperature-sensing structure for a TMOSFET is designed for a brushless direct current motor with on-resistance of $96m{\Omega}{\cdot}mm^2$. The temperature distribution for an ultra-low on-resistance power MOSFET has been analyzed for various bonding schemes. The multi-bonding and stripe bonding cases show a maximum temperature that is lower than that for the single-bonding case. It is shown that the metal resistance at the source area is non-negligible and should therefore be considered depending on the application for current driving capability.

Deep-Trench 기술을 적용한 Super Junction MOSFET의 Charge Balance 특성에 관한 연구 (A Study on the Charge Balance Characteristics of Super Junction MOSFET with Deep-Trench Technology)

  • 최종문;허윤영;정헌석;강이구
    • 전기전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.356-361
    • /
    • 2021
  • 파워 소자의 트레이드오프 현상을 최소화하기 위해 제시된 구조가 Super Junction 구조이다. Super Junction은 기존의 많이 사용하던 기본 구조 대비 1/5 정도의 낮은 온 저항(Ron) 특성을 가질 수 있다. Super Junction 구조의 공정 방법으로 Multi-Epi 공정과 Deep-Trench 공정 방법이 있다. Deep-Trench 공정은 실리콘 기판 상면에 깊은 트렌치 공정을 통하여 그안에 불순물이 도핑 되어 있는 폴리실리콘을 매립하여 P-Pillar를 형성 시키는 공정 방법이라 매립하는 과정에서 결함이 형성되기 쉬워서 비교적 어려운 제조 방법으로 알려져 있다. 하지만 비교적 Deep-Trench 공정으로 만들어진 구조가 낮은 온저항과 높은 항복 전압을 형성하여 좋은 효율을 보인다. 본 논문에서는 공정상의 새로운 방법을 제시하고, Charge Balance 이론을 접목시킨 구조를 설계하였다.

산업용 모터 구동을 위한 고내압 저전력 Power MOSFET 최적화 설계에 관한 연구 (A Study on High-voltage Low-power Power MOSFET of Optimization for Industrial Motor Drive)

  • 김범준;정헌석;김성종;정은식;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제25권3호
    • /
    • pp.170-175
    • /
    • 2012
  • Power MOSFET is develop in power savings, high efficiency, small size, high reliability, fast switching, low noise. Power MOSFET can be used high-speed switching transistors devices. Recently attention to the motor and the application of various technologies. Power MOSFET is devices the voltage-driven approach switching devices are design to handle on large power, power supplies, converters, motor controllers. In this paper, design the 600 V Planar type, and design the trench type for realization of low on-resistance. For both structures, by comparing and analyzing the results of the simulation and characterization.