Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.2.83

Effect of P-Emitter Length and Structure on Asymmetric SiC MOSFET Performance  

Kim, Dong-Hyeon (Department of Electronic Materials Engineering, Kwang-woon University)
Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwang-woon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.2, 2020 , pp. 83-87 More about this Journal
Abstract
In this letter, we propose and analyze a new asymmetric structure that can be used for next-generation power semiconductor devices. We compare and analyze the electrical characteristics of the proposed device with respect to those of symmetric devices. The proposed device has a p-emitter on the right side of the cell. The peak electric field is reduced by the shielding effect caused by the p-emitter structure. Consequently, the breakdown voltage is increased. The proposed asymmetric structure has an approximately 100% higher Baliga's figure of merit (~94.22 MW/㎠) than the symmetric structure (~46.93 MW/㎠), and the breakdown voltage of the device increases by approximately 70%.
Keywords
SiC; Symmetric trench MOSFET; Asymmetric trench MOSFET; Gate oxide field; Breakdown voltage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Peters, T. Basler, B. Zippelius, T. Aichinger, W. Bergner, R. Esteve, D. Kueck, and R. Siemieniec, Proc. PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (VDE, Nuremberg, Germany, 2017) p. 1. [DOI: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7990686]
2 S. Ryu, C. Capell, E. Van Brunt, C. Jonas, M. O'Loughlin, J. Clayton, K. Lam, V. Pala, B. Hull, Y. Lemma, D. Lichtenwalner, Q. J. Zhang, J. Richmond, P. Butler, D. Grider, J. Casady, S. Allen, J. Palmour, M. Hinojosa, C. W. Tipton, and C. Scozzie, Semicond. Sci. Technol., 30, 084001 (2015). [DOI: https://doi.org/10.1088/0268-1242/30/8/084001]   DOI
3 T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications (John Wiley & Sons Singapore Pte. Ltd. 2014).
4 K. Matocha, S. Banerjee, and K. Chatty, Mater. Sci. Forum, 858, 803 (2016). [DOI: https://doi.org/10.4028/www.scientific.net/msf.858.803]   DOI
5 R. Siemieniec, D. Peters, R. Esteve, W. Bergner, D. Kuck, T. Aichinger, T. Basler, and B. Zippelius, Proc. 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe) (IEEE, Warsaw, Poland, 2017) p. 1. [DOI: https://doi.org/10.23919/EPE17ECCEEurope.2017.8098928]
6 W. Ni, X. Wang, M. Xu, Q. Wang, C. Feng, H. Xiao, L. Jiang, and W. Li, IEEE Electron Device Lett., 40, 698 (2019). [DOI: https://doi.org/10.1109/LED.2019.2908253]   DOI
7 A. Oraon, S. Shreya, R. Kumari, and A. Islam, Proc. 2017 7th International Symposium on Embedded Computing and System Design (ISED) (IEEE, Durgapur, India, 2017) p. 1. [DOI: https://doi.org/10.1109/ISED.2017.8303939]
8 H. Takaya, J. Morimoto, K. Hamada, T. Yamamoto, J. Sakakibara, Y. Watanabe, and N. Soejima, Proc. 2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD) (IEEE, Kanazawa, Japan, 2013) p. 43. [DOI: https://doi.org/10.1109/ISPSD.2013.6694394]
9 Y. Wang, Y. C. Ma, Y. Hao, Y. Hu, G. Wang, and F. Cao, IEEE Trans. Electron Devices, 64, 3719 (2017). [DOI: https://doi.org/10.1109/TED.2017.2723502]   DOI