• Title/Summary/Keyword: trench MOSFET

Search Result 85, Processing Time 0.018 seconds

A Lateral Trench Electrode Power MOSFET with Superior Electrical Characteristics for Smart Power IC Systems (스마트 파워 IC를 위한 트렌치 파워 MOSFET의 전기적 특성에 관한 연구)

  • 성만영;김대종;강이구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.27-30
    • /
    • 2004
  • In this paper, a new small size Lateral Trench Electrode Power MOSFET is proposed. This new structure, called "LTEMOSFET"(Lateral Trench Electrode Power MOSFET), is based on the conventional MOSFET. The entire electrode of LTEMOSFET is placed in trench oxide. The forward blocking voltage of the proposed LTEMOSFET is improved by 1.6 times with that of the conventional MOSFET. The forward blocking voltage of LTEMOSFET is 250V. At the same size, a increase of the forward blocking voltage of about 1.6 times relative to the conventional MOSFET is observed by using TMA-MEDICI which is used for analyzing device characteristics. Because the electrodes of the proposed device are formed in trench oxide, the electric field in the device are crowded to trench oxide. We observed that the characteristics of the proposed device was improved by using TMA-MEDICI and that the fabrication of the proposed device is possible by using TMA-TSUPREM4.

Study on Latch Up Characteristics of Super Junction MOSFET According to Trench Etch Angle (Trench 식각각도에 따른 Super Juction MOSFET의 래치 업 특성에 관한 연구)

  • Chung, Hun Suk;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.551-554
    • /
    • 2014
  • This paper was showed latch up characteristics of super junction power MOSFET by parasitic thyristor according to trench etch angle. As a result of research, if trench etch angle of super junction MOSFET is larger, we obtained large latch up voltage. When trench etch angle was $90^{\circ}$, latch up voltage was more 50 V. and we got 700 V breakdown voltage. But we analyzed on resistance. if trench etch angle of super junction MOSFET is larger, we obtained high on resistance. Therefore, we need optimal point by simulation and experiment for solution of trade off.

Design of 100-V Super-Junction Trench Power MOSFET with Low On-Resistance

  • Lho, Young-Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.134-137
    • /
    • 2012
  • Power metal-oxide semiconductor field-effect transistor (MOSFET) devices are widely used in power electronics applications, such as brushless direct current motors and power modules. For a conventional power MOSFET device such as trench double-diffused MOSFET (TDMOS), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. To overcome the tradeoff relationship, a super-junction (SJ) trench MOSFET (TMOSFET) structure is studied and designed in this letter. The processing conditions are proposed, and studies on the unit cell are performed for optimal design. The structure modeling and the characteristic analyses for doping density, potential distribution, electric field, width, and depth of trench in an SJ TMOSFET are performed and simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the specific on-state resistance of 1.2 $m{\Omega}-cm^2$ at the class of 100 V and 100 A is successfully optimized in the SJ TMOSFET, which has the better performance than TDMOS in design parameters.

Analysis of Breakdown voltage for Trench D-MOSFET using MicroTec (MicroTec을 이용한 Trench D-MOSFET의 항복전압 분석)

  • Jung, Hak-Kee;Han, Ji-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1460-1464
    • /
    • 2010
  • In the paper, the breakdown voltage of Trench D-MOSFET have been analyzed by using MircoTec. The technology for characteristic analysis of device for high integration is changing rapidly. Therefore to understand characteristics of high-integrated device by computer simulation and fabricate the device having such characteristics became one of very important subjects. A Trench MOSFET is the most preferred power device for high voltage power applications. The oxide thickness and doping concentration in Trench MOSFET determines breakdown voltage and extensively influences on high voltage. We have investigated the breakdown voltage characteristics according to variation of doping concentration from $10^{15}cm^{-3}$ to $10^{17}cm^{-3}$ in this study. We have also investigated the breakdown voltage characteristics according to variation of oxide thickness and junction depth.

The Optimal Design and Electrical Characteritics of 1,700 V Class Double Trench Gate Power MOSFET Based on SiC (1,700 V급 SiC 기반의 단일 및 이중 트렌치 게이트 전력 MOSFET의 최적 설계 및 전기적 특성 분석)

  • Ji Yeon Ryou;Dong Hyeon Kim;Dong Hyeon Lee;Ey Goo Kang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.385-390
    • /
    • 2023
  • In this paper, the 1,700 V level SiC-based power MOSFET device widely used in electric vehicles and new energy industries was designed, that is, a single trench gate power MOSFET structure and a double trench gate power MOSFET structure were proposed to analyze electrical characteristics while changing the design and process parameters. As a result of comparing and analyzing the two structures, it can be seen that the double trench gate structure shows quite excellent characteristics according to the concentration of the drift layer, and the breakdown voltage characteristics according to the depth of the drift layer also show excellent characteristics of 200 V or more. Among them, the trench gate power MOSFET device can be applied not only to the 1,700 V class but also to a voltage range above it, and it is believed that it can replace all Si devices currently applied to electric vehicles and new energy industries.

Calculation of Optimum Cell Spacing for Minimum On-resistance of Trench Power MOSFET (Trench Power MOSFET의 최소 on 저항을 위한 cell spacing의 계산)

  • Hong, Ji-Hoon;Chung, Sang-Koo;Choi, Yearn-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.13-15
    • /
    • 2002
  • The trench MOSFET structure is characterized by reduced on-resistance due to elimination of $R_{JFET}$ and high packing density. An analytical calculation of Ron as the sum of $R_{ch}$ and $R_{epi}$ has been reported previously for the trench MOSFET structure. However, the accumulation layer resistance may not be neglected for Trench MOSFET especially for a relatively large value of the cell spacing, where a major contribution to Ron comes from Ra as the simulation results in this paper shows.

  • PDF

Highly Reliable Trench Gate MOSFET using Hydrogen Annealing (수소 열처리를 이용한 고신뢰성 트렌치 게이트 MOSFET)

  • 김상기;노태문;박일용;이대우;양일석;구진근;김종대
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.4
    • /
    • pp.212-217
    • /
    • 2002
  • A new technique for highly controllable trench corner rounding at the top and bottom of the trench using pull-back and hydrogen annealing has been developed and investigated. The pull-back process could control the trench corner rounding radius at the top comers of the trench. The silicon migration generated by hydrogen annealing at the trench coiners provided (111) and (311) crystal planes and gave a uniform gate-oxide thickness, resulting in high reliable trench DMOSFETs with highly breakdown voltages and low leakage currents. The breakdown voltage of a trench DMOSFET fabricated using hydrogen annealing was increased by 25% compared with a conventional DMOSFET. The reasonable drain current of 45.3 A was obtained when a gate voltage of 10 V was supplied. The on-resistance of the trench gate DMOSFET fabricated using the trench cell of 45,000 was about 55 m(at a gate voltage of 10 V under a drain current of 5 A.

A Study on Electrical Characteristics and Optimization of Trench Power MOSFET for Industrial Motor Drive

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.365-370
    • /
    • 2013
  • Power MOSFET is developed in power savings, high efficiency, small size, high reliability, fast switching, and low noise. Power MOSFET can be used in high-speed switching transistors devices. Recently attention given to the motor and the application of various technologies. Power MOSFET is a voltage-driven approach switching device and designed to handle on large power, power supplies, converters, motor controllers. In this paper, the 400 V Planar type, and the trench type for realization of low on-resistance are designed. Trench Gate Power MOSFET Vth : 3.25 V BV : 484 V Ron : 0.0395 Ohm has been optimized.

A New Manufacturing Technology and Characteristics of Trench Gate MOSFET (새로운 트렌치 게이트 MOSFET 제조 공정기술 및 특성)

  • Baek, Jong-Mu;Cho, Moon-Taek;Na, Seung-Kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.364-370
    • /
    • 2014
  • In this paper, high reliable trench formation technique and a novel fabrication techniques for trench gate MOSFET is proposed which is a key to expend application of power MOSFET in the future. Trench structure has been employed device to improve Ron characteristics by shrinkage cell pitch size in DMOSFET and to isolate power device part from another CMOS device part in some power integrated circuit. A new process method for fabricating very high density trench MOSFETs using mask layers with oxide spacers and self-align technique is realized. This technique reduces the process steps, trench width and source and p=body region with a resulting increase in cell density and current driving capability and decrease in on resistance.

The Improvement in the Forward Blocking Characteristics of Lateral Trench Electrode Power MOSFET by using Local Doping (로컬 도핑을 이용한 수평형 트렌치 전극 파워 MOSFET의 순방향 블로킹특성 개선)

  • Kim, Dae-Jong;Kim, Dae-Won;Sung, Man-Young;Rhie, Dong-Hee;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.19-22
    • /
    • 2003
  • In this paper, a new small size Lateral Trench Electrode Power MOSFET with local doping is proposed. This new structure is based on the conventional lateral power MOSFET. The entire electrodes of proposed device are placed in trench oxide. The forward blocking voltage of the proposed device is improved by 3.3 times with that of the conventional lateral power MOSFET. The forward blocking voltage of proposed device is about 500V. At the same size, a increase of the forward blocking voltage of about 3.3 times relative to the conventional lateral power MOSFET is observed by using TMA-MEDICI which is used for analyzing device characteristics. Because the electrodes of the proposed device are formed in trench oxide respectively, the electric field in the device are crowded to trench oxide. And because of the structure which has a narrow drain doping width, the punch through breakdown can be occurred in higher voltage than that of conventional lateral power MOSFET. We observed that the characteristics of the proposed device was improved by using TMA-MEDICI and that the fabrication of the proposed device is possible by using TMA-TSUPREM4.

  • PDF