• Title/Summary/Keyword: time comparator

Search Result 95, Processing Time 0.034 seconds

A Study on The Design of The Self-Checking Comparator Using Time Diversity (시간 상이점을 이용한 자체 검진 비교기의 설계에 관한 연구)

  • 신석균;양성현;이기서
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.270-279
    • /
    • 1998
  • This paper presents the design of self-checking comparator using the time diversity and the application to 8 bit CPU for the implementation of fault tolerant computer system. this self-checking comparator was designed with the different time Points in which temporary faults were raised by electrical noise between duplicated functional blocks. also this self-checking comparator was simulated in the method of the fault injection using 4 bit shift register counter. we designed the duplicated Emotional block and the self-checking comparator in the single chip using the Altera EPLD and could verify the reliability and the fault detection coverage through the modeling of temporary faults ,especially intermittent faults. at the results of this research, the reliability and the fault detection coverage were implemented through the self-checking comparator using the time diversity.

  • PDF

Design of ZQ Calibration Circuit using Time domain Comparator (시간영역 비교기를 이용한 ZQ 보정회로 설계)

  • Lee, Sang-Hun;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.417-422
    • /
    • 2021
  • In this paper, a ZQ calibration using a time domain comparator is proposed. The proposed comparator is designed based on VCO, and an additional clock generator is used to reduce power consumption. By using the proposed comparator, the reference voltage and the PAD voltage were compared with a low 1 LSB voltage, so that the additional offset cancelation process could be omitted. The proposed time domain comparator-based ZQ calibration circuit was designed with a 65nm CMOS process with 1.05V and 0.5V supply voltages. The proposed clock generator reduces power consumption by 37% compared to a single time domain comparator, and the proposed ZQ calibration increases the mask margin by up to 67.4%.

A 1-V 1.6-GS/s 5.58-ENOB CMOS Flash ADC using Time-Domain Comparator

  • Lee, Han-Yeol;Jeong, Dong-Gil;Hwang, Yu-Jeong;Lee, Hyun-Bae;Jang, Young-Chan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.695-702
    • /
    • 2015
  • A 1-V 1.6-GS/s 5.58-ENOB flash ADC with a high-speed time-domain comparator is proposed. The proposed time-domain comparator, which consumes low power, improves the comparison capability in high-speed operations and results in the removal of preamplifiers from the first-stage of the flash ADC. The time interpolation with two factors, implemented using the proposed time-domain comparator array and SR latch array, reduces the area and power consumption. The proposed flash ADC has been implemented using a 65-nm 1-poly 8-metal CMOS process with a 1-V supply voltage. The measured DNL and INL are 0.28 and 0.41 LSB, respectively. The SNDR is measured to be 35.37 dB at the Nyquist frequency. The FoM and chip area of the flash ADC are 0.38 pJ/c-s and $620{\times}340{\mu}m^2$, respectively.

CMOS High Speed Input Offset Canceling Comparator Design with Minimization of Charges Transfer (유동 전하량 최소화를 통한 입력 오프셋 제거 CMOS 고속 비교기의 설계)

  • 이수형;신경민;이재형;정강민
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.963-966
    • /
    • 1999
  • This Paper describes the design of high speed and low power comparator based on the feed forward bias control. Major building blocks of this comparator are composed of input offset canceling circuit and feed forward bias control circuit. The usual offset canceling circuit cancels the offset voltages by storing them in capacitors using MOS switches, The comparator of this paper employs the bias control circuit which generates bias signal from the input signal. The bias signal is applied to the capacitors and keeps the transfer of chares in the capacitors in the minimal amount, therefore making the comparator operate in stable condition and reduce decision time. The comparator in this form has very samll area and power dissipation. Maximum sampling rate is 200 Ms/sec. The comparator is designed in 0.65${\mu}{\textrm}{m}$ technology and the offset is less than 0.5㎷.

  • PDF

A 1V 200-kS/s 10-bit Successive Approximation ADC

  • Uh, Ji-Hun;Kim, Sang-Hun;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.483-485
    • /
    • 2010
  • A 200kS/s 10-bit successive approximation(SA) ADC with a rail-to-rail input range is proposed. The proposed SA ADC consists of DAC, comparator, and successive approximation register(SAR) logic. The folded-type capacitor DAC with the boosted NMOS switches is used to reduce the power consumption and chip area. Also, the time-domain comparator which uses a fully differential voltage-to-time converter improves the PSRR and CMRR. The SAR logic uses the flip-flop with a half valid window, it results in the reduction of the power consumption and chip area. The proposed SA ADC is designed by using a $0.18{\mu}m$ CMOS process with 1V supply.

  • PDF

A Time-Domain Comparator for Micro-Powered Successive Approximation ADC (마이크로 전력의 축차근사형 아날로그-디지털 변환기를 위한 시간 도메인 비교기)

  • Eo, Ji-Hun;Kim, Sang-Hun;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1250-1259
    • /
    • 2012
  • In this paper, a time-domain comparator is proposed for a successive approximation (SA) analog-to-digital converter (ADC) with a low power and high resolution. The proposed time-domain comparator consists of a voltage-controlled delay converter with a clock feed-through compensation circuit, a time amplifier, and binary phase detector. It has a small input capacitance and compensates the clock feed-through noise. To analyze the performance of the proposed time-domain comparator, two 1V 10-bit 200-kS/s SA ADCs with a different time-domain comparator are implemented by using 0.18-${\mu}m$ 1-poly 6-metal CMOS process. The measured SNDR of the implemented SA ADC is 56.27 dB for the analog input signal of 11.1 kHz, and the clock feed-through compensation circuit and time amplifier of the proposed time-domain comparator enhance the SNDR of about 6 dB. The power consumption and area of the implemented SA ADC are 10.39 ${\mu}W$ and 0.126 mm2, respectively.

Small-size PLL with time constant comparator (시정수 비교기를 이용한 작은 크기의 위상고정루프)

  • Ko, Gi-Yeong;Choi, Young-Shig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2009-2014
    • /
    • 2017
  • A novel structure of phase locked loop (PLL) with a time constant comparator and a current compensator has been proposed. The proposed PLL uses small capacitors which are impossible for stable operation in a conventional PLL. It is small enough to be integrated into a single chip. The time constant comparator detects the loop filter output voltage variations using signals which are passed through small and large RC time constants. The signal from the large RC time constant node is the average of the loop filter output voltage. The output voltage of another node is approximately equal to the present loop filter voltage. The output of the time constant comparator controls a current compensator and charge/discharge small size loop filter capacitors. It makes the proposed PLL operate stably. It has been simulated and proved by HSPICE in a CMOS $0.18{\mu}m$ 1.8V process.

Comparator design using high speed Bipolar device (고속 Bipolar 소자를 이용한 comparator 설계)

  • Park Jin-Woo;Cho Jung-Ho;Gu Young Sea;An Chel
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.351-354
    • /
    • 2004
  • This thesis presents Bipolar transistor with SAVEN(Self-Aligned VErtical Nitride) structure as a high-speed device which is essential for high-speed system such as optical storage system or mobile communication system, and proposes 0.8${\mu}m$ BiCMOS Process which integrates LDD nMOS, LDD pMOS and SAVEN bipolar transistor into one-chip. The SPICE parameters of LDD nMOS, LDD pMOS and SAVEN Bipolar transistor are extracted, and comparator operating at 500MHz sampling frequency is designed with them. The small Parasitic capacitances of SAVEN bipolar transistor have a direct effect on decreasing recovery time and regeneration time, which is helpful to improve the speed of the comparator. Therefore the SAVEN bipolar transistor with high cutoff frequency is expected to be used in high-speed system.

  • PDF

Rectifier with Comparator Using Unbalanced Body Biasing to Control Comparing Time for Wireless Power Transfer (비대칭 몸체 바이어싱 비교기를 사용하여 비교시간을 조절하는 무선 전력 전송용 정류기)

  • Ha, Byeong Wan;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1091-1097
    • /
    • 2013
  • This paper presents a rectifier with comparator using unbalanced body biasing in $0.11{\mu}m$ RF CMOS process. It is composed of MOSFETs and two comparators. The comparator is used to reduce reverse leakage current which occurs when the load voltage is higher than input voltage. For the comparator, unbalanced body biasing is devised. By using unbalanced body biasing, reference voltage for comparator changing from high state to low state is increased, and it reduces time interval for leakage current to flow. 13.56 MHz 2 Vpp signal is used for input and $1k{\Omega}$ resistor and 1 nF capacitor are used for output load for simulation and experimental environment. In simulation environment, voltage conversion efficiency(VCE) is 87.5 % and Power conversion efficiency(PCE) is 50 %. When the rectifier is measured, VCE shows 90.203 % and PCE shows 45 %.

A Jitter Characteristic Improved PLL with RC Time Constant Circuit (저항-커패시턴스 시정수 회로를 이용하여 지터 특성을 개선한 위상고정루프)

  • An, Seong-Jin;Choi, Yong-Shig
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.133-138
    • /
    • 2017
  • This paper presents a jitter characteristic improved phase locked loop (PLL) with an RC time constant circuit. In the RC time constant circuit, LPF's voltage is inputted to a comparator through small and large RC time constant circuits. The signal through a small RC time constant circuit has almost same loop filter output voltage. The signal through a large RC time constant circuit has the average value of loop filter output voltage and does as a role of reference voltage to the comparator. The output of the comparator controls the sub-charge pump which provide a current to LPF. When the loop filter output voltage increases, the sub-charge pump discharges the loop filter and decreases loop filter output voltage. When the loop filter output voltage decreases, the sub-charge pump charges the loop filter and increases loop filter output voltage. The negative feedback loop reduces the variation of loop filter output voltage resulting in jitter characteristic improvement.