• 제목/요약/키워드: three layer coating

검색결과 161건 처리시간 0.022초

수계 장용 정제 코팅에 관한 공정개선 및 효과 (Process Improvement and Effect for Enteric Tablet Coating Using Aqueous System)

  • 정노희;신강현
    • 한국응용과학기술학회지
    • /
    • 제22권3호
    • /
    • pp.234-240
    • /
    • 2005
  • In this study, we have prepared three kinds of enteric tablet coating formulations for prevention the crack incidence and enhanced process improvement of enteric tablet using aqueous system. we determined the mechanical strength of three formulatons on the enteric film-coating process. The compared experiment of one-layer and two-layer (A), (B) coating treated having placebo tablets without breakline and logo. In result, the breaking force time of two-layer (B) film strength was found to increase 0.8min than two-layer (A). We confirmed the half reduction of working hour and the simplification in the one-layer coating process, and the coating troubles was solved as setting up a dehumidifier in inlet of coater. In result, we recovered that optimum running capacity(g/kg) of dehumidifier is 10g/kg and below.

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • 한국재료학회지
    • /
    • 제31권6호
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.

Bacillus polyfermenticus SCD의 Three Layer Coating에 의한 pH, 열, 높은 glucose 농도에 대한 안정성효과 (Increased Stability of Bacillus polyfermenticus SCD in Low pH, High Temperature and High Glucose Concentration via Three Layer Coating)

  • 이진옥;전경동;강재선;이재화
    • KSBB Journal
    • /
    • 제19권3호
    • /
    • pp.221-225
    • /
    • 2004
  • Bacillus sp. 유래의 Bacillus polyfermenticus SCD를 Bisroo $t^{ⓡ}$라고 부르고, 이것은 생균제로서 산업적으로 매우 유용하다. 본 연구에서는 B. polyfermenticus SCD를 산업적으로 활용성을 증대시키기 위해 three layer coating법을 사용하여 인공위액의 pH 변화에 대한 안정성과 열안정성, glucose 농도에 따른 안정성을 연구하였다. 그 결과 코팅한 B. polyfermenticus SCD가 인공위액에 대한 내성에서는 배양 4시간을 기준으로 pH 2는 30%, pH 4는 20%, pH 6은 14% 상승효과가 있었음을 알 수 있었고, 온도변화에 대한 안정성에서는 코팅한 B. polyfermenticus SCD가 8$0^{\circ}C$에서 2시간 기준으로 안정성이 약 40% 증진됨을 확인할 수 있었다. 고농도 (30%)의 glucose에서 코팅한 B. polyfermenticus SCD는 안정하였으며, 코팅하지 않은 것보다 약 50% 안정성이 증대됨을 확인할 수 있었다. 그리고 pH 4.0에서는 코팅한 B. polyfermenticus SCD는 코팅을 하지 않은 B polyfermenticus SCD보다 전체적으로 생존율이 40% 이상, pH 6.0에서는 생존율이 42% 이상 증진됨을 알 수 있었다.

Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.1-13
    • /
    • 2016
  • This review deals with one of the surface modification techniques, chemical conversion coating and particularly cerium-based conversion coatings (CeCC) as a promising substitute for chromium and phosphate conversion coating on magnesium and its alloys. The CeCCs are commonly considered environmentally friendly. The effects of surface preparation, coating thickness, bath composition, and e-paint on the corrosion behavior of CeCCs have been studied on the AZ31 magnesium alloy. This review also correlates the coating microstructural, morphological, and chemical characteristics with the processing parameters and corrosion protection. Results showed that the as-deposited coating system consists of a three layer structure (1) a nanocrystalline MgO transition layer in contact with the Mg substrate, (2) a nanocrystalline CeCC layer, and (3) an outer amorphous CeCC layer. The nanocrystalline CeCC layer thickness is a function of immersion time and cerium salt used. The overall corrosion protection was crucially dependent on the presence of coating defects. The corrosion resistance of AZ31 magnesium alloy was better for thinner CeCCs, which can be explained by the presence of fewer and smaller cracks. On the other hand, maximum corrosion protection was achieved when AZ31 magnesium samples with thin CeCCs are e-painted. The e-paint layer further restricts and hinders the movement of chloride and other aggressive ions present in the environment from reaching the magnesium surface.

알루미늄 기지에 알루미늄-알루미나 혼합분말을 이용한 고온플라즈마 열분사 코팅층의 밀착강도 향상기구 (Improvement of Adhesion Strength of High Temperature Plasma Coated Aluminum Substrate with Aluminum-Alumina Powder Mixture)

  • 박진수;이효룡;이범호;박준식
    • 한국재료학회지
    • /
    • 제25권5호
    • /
    • pp.226-232
    • /
    • 2015
  • 본 연구에서는 손상된 알루미늄 금형의 복원을 위해 고온플라즈마 용사법을 이용하여 금형의 표면에 $Al/Al_2O_3$ 혼합분말을 용사한 후 코팅층과 모재의 증착강도에 대한 평가를 수행하였다. 증착강도의 평가는 분사노즐의 이동속도, 순수한 알루미늄 bond coat 층의 유무에 따라 평가되었으며, bond coat 층을 생성시키지 않았을 때, 코팅층의 두께는 열팽창에 의한 잔류인장응력의 감소를 위해 두껍지 않아야 하지만 일정두께 이상이 되어야 최대의 증착강도를 얻을 수 있음이 나타났다. 또한 순수한 알루미늄 bond coat 층은 내부 결함이 없는 응고된 금속이기 때문에 두께에 따른 증착강도의 영향을 그대로 받아 두께가 두꺼울수록 bond coat 층을 생성시키지 않은 시험편보다 증착강도가 매우 낮게 측정되었다. 반면, 가장 얇게 bond coating 된 시험편 Bc3(3회의 bond coating층과 분사건의 이동속도가 20 cm/sec인 시험편) 는 bond coating을 하지 않은 시험편 중 가장 높은 증착강도를 가지는 시험편 Wbc20(bond coating층이 없고 분사건의 이동속도가 20 cm/sec인 시험편)보다 약 2배 이상증착강도가 향상되었다. 따라서 금형의 복원시에 중간층의 형성이 반드시 필요하며, 이는 코팅층의 잔류 인장응력을 보완시키며 고인성의 순수한 알루미늄과 같은 코팅층과 유사한 층을 코팅하는 것이 필요한 것으로 사료된다.

저온 분사를 이용한 Cu계 비정질 코팅층의 제조 및 특성 연구 (Fabrication and Characterization of Cu-based Amorphous Coatings by Cold Spray Process)

  • 정동진;박동용;이진규;김형준;이기안
    • 대한금속재료학회지
    • /
    • 제46권5호
    • /
    • pp.321-327
    • /
    • 2008
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_6$) coating was produced by cold spraying as a new fabrication process. The microstructure and macroscopic properties of amorphous coating layer was investigated and compared with those of cold sprayed pure Cu coating. Amorphous powders were prepared by gas atomization and Al 6061 was used as the substrate plate. X-ray diffraction results showed that Cu based amorphous powder could be successfully deposited by cold spraying without any crystallization. The Cu based amorphous coating layer ($300{\sim}400{\mu}m$ thickness) contained 4.87% porosity. The hardness of Cu based amorphous coating represented $412.8H_v$, which was correspond to 68% of the hardness of injection casted bulk amorphous material. The wear resistance of Cu based amorphous coating was found to be three times higher than that of pure Cu coating. The 3-point bending test results showed that the adhesion strength of Cu based amorphous coating layer was higher than that pure Cu coating. It was also observed that hard Cu base amorphous particle could easily deform soft substrate by particle collisions and thus generated strong adhesion between coating and substrate. However, the amorphous coating layer unexpectedly represented lower corrosion resistance than pure Cu coating, which might be resulted from the higher content of porosity in the cold sprayed amorphous coating.

연소합성 코팅된 NiAl 금속간화합물의 화학양론이 미끄럼 마모특성에 미치는 영향 (Effects of Stoichiometry on Properties of NiAl Intermetallics coated on Carbon Steel through Combustion Synthesis)

  • 이한영;이재성
    • Tribology and Lubricants
    • /
    • 제36권3호
    • /
    • pp.124-132
    • /
    • 2020
  • The effect of the stoichiometry on the sliding wear properties of NiAl coatings has been investigated. Three different powder mixtures with the compositions of Ni-50at%Al, Ni-54at%Al and Ni-42at%Al were diepressed respectively, and which were subsequently coated on mild steel through combustion synthesis in an induction heating system. Sliding wear behavior of the coatings was examined against an alloyed tool steel using a pin-on-disc type sliding wear test machine. As results, it could be seen that powder mixture(Ni-54at%Al) with displaying Al-rich deviations from the stoichiometry of NiAl(Ni-50at%Al) was promoted the most the synthetic reactivity. The microstructure of the coating layer with the compositions of Ni-54at%Al exhibits the porous NiAl single phase structure. However, the microstructure of the coating layer of the compositions of Ni-42at%Al exhibits the denser multi-phase structure containing several intermediate phases in addition to NiAl. Densification of the coating layer was enhanced by increasing the reacting temperature. On the other hand, the wear properties of the coating layers showed that the wear mode at speeds of around 1 m/s was severe wear, regardless of the stoichiometry and reacting temperature. However, wear properties of coating layer with the compositions of Ni-42at%Al were superior to those of coating layer with the compositions of Ni-54at%Al. This would be attributed by the fact that coating layer with the compositions of Ni-42at%Al develops little void and much intermediate phases with high strength.

저온 분사 공정으로 제조된 티타늄 코팅층의 치밀화에 미치는 열처리 분위기의 영향 (Effect of Heat Treatment Environment on the Densification of Cold Sprayed Ti Coating Layer)

  • 유지상;김형준;오익현;이기안
    • 한국분말재료학회지
    • /
    • 제19권2호
    • /
    • pp.110-116
    • /
    • 2012
  • This study investigated the effects of annealing environment for the densification and purification properties of pure titanium coating layer manufactured by cold spraying. The annealing was conducted at $600^{\circ}C$/1 h and three kinds of environments of vacuum, Ar gas, and $5%H_2+Ar$ mixture gas were controlled. Cold sprayed Ti coating layer (as sprayed) represented 6.7% of porosity and 228 HV of hardness, showing elongated particle shapes (severe plastic deformation) perpendicular to injection direction. Regardless of gas environments, all thermally heat treated coating layers consisted of pure ${\alpha}$-Ti and minimal oxide. Vacuum environment during heat treatment represented superior densification properties (3.8% porosity, 156.7 HV) to those of Ar gas (5.3%, 144.5 HV) and $5%H_2+Ar$ mixture gas (5.5%, 153.1 HV). From the results of phase analysis (XRD, EPMA, SEM, EDS), it was found that the vacuum environment during heat treatment could be effective for reducing oxide contents (purification) in the Ti coating layer. The characteristic of microstructural evolution with heat treatment was found to be different at three different gas environments. The controlling method for improving densification and purification in the cold sprayed Ti coating material was also discussed.

Effect of Ti Intermediate Layer on Properties of HAp Plasma Sprayed Biocompatible Coatings

  • Take, Seisho;Otabe, Tusyoshi;Ohgake, Wataru;Atsumi, Taro
    • Corrosion Science and Technology
    • /
    • 제19권2호
    • /
    • pp.51-56
    • /
    • 2020
  • The objective of this study was to improve properties of plasma sprayed HAp layer to titanium substrate by introducing an intermediate layer with two different methods. Before applying Zn doped HAp coating on titanium substrate, an intermediate layer was introduced by titanium plasma spray or titanium anodization. Heat treatments were conducted for some samples after titanium intermediate layer was formed. Zn doped HAp top layer was applied by plasma spraying. Three-point bending test and pull-off adhesion test were performed to determine the adhesion of Zn doped HAp coatings to substrates. Long-term credibility of Zn doped HAp plasma sprayed coatings on titanium was assessed by electrochemical impedance measurements in Hanks' solution. It was found that both titanium plasma sprayed and titanium anodized intermediate layer had excellent credibility. Strong adhesion to the titanium substrate was confirmed after 12 weeks of immersion for coating samples with titanium plasma sprayed intermediate layer. Samples with titanium anodized intermediate layer showed good bending strength. However, they showed relatively poor resistance against pulling off. The thickness of titanium anodized intermediate layer can be controlled much more precisely than that of plasma sprayed one, which is important for practical application.

Plasma spray 공정을 이용한 BCuP-5 filler 금속/Ag 기판 복합 소재의 제조, 미세조직 및 접합 특성 (Fabrication, Microstructure and Adhesive Properties of BCuP-5 Filler Metal/Ag Plate Composite by using Plasma Spray Process)

  • 윤성준;김영균;박재성;박주현;이기안
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.333-338
    • /
    • 2020
  • In this study, we fabricate a thin- and dense-BCuP-5 coating layer, one of the switching device multilayers, through a plasma spray process. In addition, the microstructure and macroscopic properties of the coating layer, such as hardness and bond strength, are investigated. Both the initial powder feedstock and plasma-sprayed BCuP-5 coating layer show the main Cu phase, Cu-Ag-Cu3P ternary phases, and Ag phase. This means that microstructural degradation does not occur during plasma spraying. The Vickers hardness of the coating layer was measured as 117.0 HV, indicating that the fine distribution of the three phases enables the excellent mechanical properties of the plasma-sprayed BCuP-5 coating layer. The pull-off strength of the plasma-sprayed BCuP-5 coating layer is measured as 16.5 kg/㎠. Based on the above findings, the applicability of plasma spray for the fabrication process of low-cost multi-layered electronic contact materials is discussed and suggested.