Fabrication and Characterization of Cu-based Amorphous Coatings by Cold Spray Process

저온 분사를 이용한 Cu계 비정질 코팅층의 제조 및 특성 연구

  • 정동진 (안동대학교 공과대학 신소재공학부) ;
  • 박동용 ((주) 태광테크 기술연구소) ;
  • 이진규 (한국생산기술연구원 신기능소재팀) ;
  • 김형준 (포항산업과학연구원 용접연구실) ;
  • 이기안 (안동대학교 공과대학 신소재공학부)
  • Received : 2008.02.23
  • Published : 2008.05.22

Abstract

Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_6$) coating was produced by cold spraying as a new fabrication process. The microstructure and macroscopic properties of amorphous coating layer was investigated and compared with those of cold sprayed pure Cu coating. Amorphous powders were prepared by gas atomization and Al 6061 was used as the substrate plate. X-ray diffraction results showed that Cu based amorphous powder could be successfully deposited by cold spraying without any crystallization. The Cu based amorphous coating layer ($300{\sim}400{\mu}m$ thickness) contained 4.87% porosity. The hardness of Cu based amorphous coating represented $412.8H_v$, which was correspond to 68% of the hardness of injection casted bulk amorphous material. The wear resistance of Cu based amorphous coating was found to be three times higher than that of pure Cu coating. The 3-point bending test results showed that the adhesion strength of Cu based amorphous coating layer was higher than that pure Cu coating. It was also observed that hard Cu base amorphous particle could easily deform soft substrate by particle collisions and thus generated strong adhesion between coating and substrate. However, the amorphous coating layer unexpectedly represented lower corrosion resistance than pure Cu coating, which might be resulted from the higher content of porosity in the cold sprayed amorphous coating.

Keywords

Acknowledgement

Supported by : 산업자원부

References

  1. C. C. Hays, C. P. Kim and W. L. Johnson, Phys. Rev. Lett. 84, 2901 (2000) https://doi.org/10.1103/PhysRevLett.84.2901
  2. Shen Bao-gen, Ding Jun, Gu Ben-xi, Zhang Zhi-ying, H. Homburg, Zhao Jian-gao and S. Methfessel, J. of Magnetism and Magnetic Mater. 92, 53 (1990) https://doi.org/10.1016/0304-8853(90)90678-J
  3. Y. S. Park, S. B. Lee and N. J. Kim, Mater. Trans. 44, 2617 (2003) https://doi.org/10.2320/matertrans.44.2617
  4. W. L. Johnson, MRS Bull. 24, 42 (1999) https://doi.org/10.1557/S0883769400069980
  5. A. Inoue, Acta mater. 48, 279 (2000) https://doi.org/10.1016/S1359-6454(99)00300-6
  6. E. J. Young, E. Mateeva, J. J. Moore, B. Mishra and M. Loch, Thin Solid Films, 377-378, 788 (2000) https://doi.org/10.1016/S0040-6090(00)01452-8
  7. S. Y. Lee and C. H. Lee, Journal of KWS 21, 20 (2003)
  8. K. M. Lim, C. G. Park, H. J. Kim and C. G. Park, J. Kor Inst. Met. & Mater. 38, 565 (2000)
  9. H. K. Seok and K. Y. Kim, J. Kor. Inst. Met. & Mater. 44, 252 (2006)
  10. S. V. Klinkov, V.F. Kosarev and M. Rein, Aerospace Science and Technology 9, 582 (2005) https://doi.org/10.1016/j.ast.2005.03.005
  11. T. Schmidt, F. Gtner and H. Kreye, Acta Mater. 54, 729 (2006) https://doi.org/10.1016/j.actamat.2005.10.005
  12. S. H. Yoon, S. K. Kim and C. H. Lee, Journal of KWS 25, 250 (2007)
  13. J. S. Kim, Y. M. Xiong, C. Lee, H. S. Choi and H. J. Kim, Proc. Thermal Spray 2007, p.114 (2007)
  14. J. K. Lee, T. S. Kim and J. G. Kim, J. Kor. Powder Metall. Inst. 14, 197 (2007) https://doi.org/10.4150/KPMI.2007.14.3.197
  15. T. S. Kim, J. K. Lee, H. J. Kim and J. C. Bae, Trans. Mat. Process. 14, 417 (2005) https://doi.org/10.5228/KSPP.2005.14.5.417
  16. S. H. Kwon, D. Y. Park, H. J Kim and K. A. Lee, J. Kor. Inst. Met. & Mater. 45, 216 (2007)
  17. T. Stoltenhoff, C. Borchers, F. Grtner and H. Kreye, Surf. Coat. Tech. 200, 4947 (2006) https://doi.org/10.1016/j.surfcoat.2005.05.011
  18. C. K. Kim, H. S. Lee, S. Y. Shin, J. C. Lee, D. H. Kim and S. H. Lee, J. Kor. Inst. Met. & Mater. 42, 977 (2004)
  19. H. Fukanuma, N. Ohno and Toda/JPN, ASM International, May 10-12, Osaka, Japan (2004)
  20. H. Mkinen, J. Lagerbom, P. Vuoristo, Proc. 2006 International Thermal Spray Conference, May 15-18, Seattle, USA (2006)