Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.6.331

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold  

Jeon, Changwoo (School of Engineering, Brown University)
Lee, Juho (Eloi Materials Laboratory)
Park, Eun Soo (Eloi Materials Laboratory)
Publication Information
Korean Journal of Materials Research / v.31, no.6, 2021 , pp. 331-338 More about this Journal
Abstract
Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.
Keywords
multi-layered nitride coating; liquid metal injection casting; nano-composite coating;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Mitterer, F. Holler, F. Ustel and D. Heim, Surf. Coat. Technol., 125, 233 (2000).   DOI
2 I. Tsutomu and S. Hiroshi, Thin Solid Films, 195, 99 (1991).   DOI
3 R. Shivpuri and S. L. Semiatin, Fric. Lub. Wear Tech., p. 621, Mater. Park, OH, USA (1992).
4 B. Huang, W. Le, Y. Wang, X. Luo and Y. Yang, Appl. Surf. Sci., 464, 10 (2019).   DOI
5 C. Jeon, D. J. Ha, C. P. Kim and S. Lee, Metall. Mater. Trans. A, 43, 3663 (2012).   DOI
6 J. Schroers, T. M. Hodges, G. Kumar, H. Raman, A. J. Barnes, Q. Pham and T. A. Waniuk, Mater. Today, 14, 14 (2011).   DOI
7 N. Nagendra, U. Ramamurty, T. T. Goh and Y. Li, Acta Mater., 48, 2603 (2000).   DOI
8 P. Y. Lee, S. S. Hung, J. T. Hsieh, Y. L. Lin and C. K. Lin, Intermetallics, 10, 1277 (2002).   DOI
9 J. Degmova, S. Roth, J. Eckert, H. Grahl and L. Schultz, Mater. Sci. Eng., A, 375-377, 265 (2004).   DOI
10 W. L. Johnson, JOM, 54, 40 (2002).   DOI
11 Y. H. Kim, K. R. Lim, W. T. Kim, D. H. Kim, Y. S. Choi and Y. S. Na, Res. Mater., 3, 100045 (2019).   DOI
12 V. Nunes, F. J. G. Silva, M. F. Andrade, R. Alexandre and A. P. M. Baptista, Surf. Coat. Technol., 332, 319 (2017).   DOI
13 S. Naimi and S. M. Hosseini, Adv. Mech. Eng., 7, 286071 (2015).   DOI
14 O. Knotek, F. Loffler and B. Bosserhoff, Surf. Coat. Technol., 62, 630 (1993).   DOI
15 V. K. W. Grips, V. E. Selvi, H. C. Barshilia and K. S. Rajam, Electrochim. Acta, 51, 3461 (2006).   DOI
16 B. Yang, L. Chen, K. K. Chang, W. Pan, Y. B. Peng, Y. Du and Y. Liu, Int. J. Refract. Met. Hard Mater., 35, 235 (2012).   DOI
17 M. Danek, F. Fernandes, A. Cavaleiro and T. Polcar, Surf. Coat. Technol., 313, 158 (2017).   DOI
18 W. Tillmann and M. Dildrop, Surf. Coat. Technol., 321, 448 (2017).   DOI
19 H. C. Barshilia and K. S. Rajam, Surf. Coat. Technol., 155, 195 (2002).   DOI
20 S. Maim and L. A. Norstrom, Met. Sci., 13, 544 (1979).   DOI
21 A. A. Vereschaka, S. N. Grigoriev, N. N. Sitnikov, G. V. Oganyan and A. Batako, Surf. Coat. Technol., 332, 198 (2017).   DOI
22 P. E. Hovsepian, A. P. Ehiasarian and U. Ratayski, Surf. Coat. Technol., 203, 1237 (2009).   DOI
23 J. R. Roos, J. P. Celis, E. Vancoille, H. Veltrop, S. Boelens, F. Jungblut, J. Ebberink and H. Homberg, Thin Solid Films, 193-194, 547 (1990).   DOI
24 M. T. Nagata, J. G. Speer and D. K. Matlock, Scr. Mater., 44, 899 (2001).   DOI
25 S. Y. Kim, E. S. Park, R. T. Ott, T. A. Lograsso, M. Y. Huh, D. H. Kim, J. Eckert and M. H. Lee, Sci. Rep., 5, 16540 (2015).   DOI
26 M. G. Faga, G. Gautier, R. Calzavarini, M. Perucca, E. A. Boot, F. Cartasegna and L. Settineri, Wear, 263, 1306 (2007).   DOI
27 A. Inoue, Mater. Sci. Eng., A, 304-306, 1 (2001).   DOI
28 O. Knotek, F. Loffler, A. Schrey and B. Bosserhoff, Surf. Coat. Technol., 61, 133 (1993).   DOI
29 H. C. Barshilia and K. S. Rajam, Bull. Mater. Sci., 30, 607 (2007).   DOI
30 E. J. Vinarcik, High Integ. Die Cast. Proc., p.161, John Wiley & Sons, Hoboken, New Jersey, USA (2003).
31 P. E. Hovsepian, A. P. Ehiasarian, A. Deeming and C. Schimpf, Vacuum, 82, 1312 (2008).   DOI
32 A. Inoue, Acta Mater., 48, 279 (2000).   DOI
33 Y. C. Chim, X. Z. Ding, X. T. Zeng and S. Zhang, Thin Solid Films, 517, 4845 (2009).   DOI