• Title/Summary/Keyword: symmetric algebras

Search Result 36, Processing Time 0.027 seconds

ON SYMMETRIC BI-GENERALIZED DERIVATIONS OF LATTICE IMPLICATION ALGEBRAS

  • Kim, Kyung Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.179-189
    • /
    • 2019
  • In this paper, we introduce the notion of symmetric bi-generalized derivation of lattice implication algebra L and investigated some related properties. Also, we prove that a map $F:L{\times}L{\rightarrow}L$ is a symmetric bi-generalized derivation associated with symmetric bi-derivation D on L if and only if F is a symmetric map and it satisfies $F(x{\rightarrow}y,z)=x{\rightarrow}F(y,z)$ for all $x,y,z{\in}L$.

Note on Cellular Structure of Edge Colored Partition Algebras

  • Kennedy, A. Joseph;Muniasamy, G.
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.669-682
    • /
    • 2016
  • In this paper, we study the cellular structure of the G-edge colored partition algebras, when G is a finite group. Further, we classified all the irreducible representations of these algebras using their cellular structure whenever G is a finite cyclic group. Also we prove that the ${\mathbb{Z}}/r{\mathbb{Z}}$-Edge colored partition algebras are quasi-hereditary over a field of characteristic zero which contains a primitive $r^{th}$ root of unity.

PACKING LATIN SQUARES BY BCL ALGEBRAS

  • LIU, YONGHONG
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.133-139
    • /
    • 2022
  • We offered a new method for constructing Latin squares. We introduce the concept of a standard form via example for Latin squares of order n and we also call it symmetric BCL algebras matrix, and thereby become BCL algebra representations of the picture of Latin squares. Our research shows that some new properties of the Latin squares with BCL algebras are in ℤn.

ROTA-BAXTER OPERATORS OF 3-DIMENSIONAL HEISENBERG LIE ALGEBRA

  • Ji, Guangzhi;Hua, Xiuying
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • In this paper, we consider the question of the Rota-Baxter operators of 3-dimensional Heisenberg Lie algebra on ${\mathbb{F}}$, where ${\mathbb{F}}$ is an algebraic closed field. By using the Lie product of the basis elements of Heisenberg Lie algebras, all Rota-Baxter operators of 3-dimensional Heisenberg Lie algebras are calculated and left symmetric algebras of 3-dimensional Heisenberg Lie algebra are determined by using the Yang-Baxter operators.

ON SUB-KAC ALGEBRAS AND SUBGROUPS

  • Lee, Jung-Rye
    • The Pure and Applied Mathematics
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • Let $K_{\alpha}(G)$ (resp. $K_s(G)$) be the abelian (resp. symmetric) Kac algebra for a locally compact group G. We show that there exists a one-to-one correspondence between the subgroups of G and the sub-Kac algebras of $K_{\alpha}(G)$ (resp. $K_s(G)$). Moreover we obtain similar correspondences between the subgroups of G and the reduced Kac algebras of $K_{\alpha}(G)$ (resp. $K_s(G)$).

  • PDF