ON SYMMETRIC BI- f-DERIVATIONS OF SUBTRACTION ALGEBRAS

Kyung Ho Kim

Abstract

In this paper, we introduce the notion of symmetric bi-f-derivation on subtraction algebra and investigated some related properties. Also, we prove that if $D: X \rightarrow X$ is a symmetric bi- f derivation on X, then D satisfies $D(x-y, z)=D(x, z)-f(y)$ for all $x, y, z \in X$.

1. Introduction

B. M. Schein ([4]) considered systems of the form $(\Phi ; \circ, \backslash)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence ($\Phi ; \circ$) is a function semigroup) and the set theoretic subtraction " \backslash " (and hence $(\Phi ; \backslash)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka ([6]) discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. In this paper, we introduce the notion of symmetric bi- f-derivation on subtraction algebra and investigated some related properties. Also, we prove that if $D: X \rightarrow X$ is a symmetric bi- f-derivation on X, then D satisfies $D(x-y, z)=D(x, z)-f(y)$ for all $x, y, z \in X$.

2. Preliminaries

By a subtraction algebra we mean an algebra ($X ;-$) with a single binary operation "-" that satisfies the following identities, for any $x, y, z \in X$,

[^0](S1) $x-(y-x)=x$;
(S2) $x-(x-y)=y-(y-x)$;
(S3) $(x-y)-z=(x-z)-y$.
The last identity permits us to omit parentheses in expressions of the form $(x-y)-z$. The subtraction determines an order relation on X : $a \leq b \Leftrightarrow a-b=0$, where $0=a-a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X ; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \wedge b=a-(a-b)$; the complement of an element $b \in[0, a]$ is $a-b$; and if $b, c \in[0, a]$, then
\[

$$
\begin{aligned}
b \vee c & =\left(b^{\prime} \wedge c^{\prime}\right)^{\prime}=a-((a-b) \wedge(a-c)) \\
& =a-((a-b)-((a-b)-(a-c)))
\end{aligned}
$$
\]

In a subtraction algebra, the following are true (see [4]).
(p1) $(x-y)-y=x-y$.
(p2) $x-0=x$ and $0-x=0$.
(p3) $(x-y)-x=0$.
(p4) $x-(x-y) \leq y$.
(p5) $(x-y)-(y-x)=x-y$.
(p6) $x-(x-(x-y))=x-y$.
(p7) $(x-y)-(z-y) \leq x-z$.
(p8) $x \leq y$ if and only if $x=y-w$ for some $w \in X$.
(p9) $x \leq y$ implies $x-z \leq y-z$ and $z-y \leq z-x$ for all $z \in X$.
(p10) $x, y \leq z$ implies $x-y=x \wedge(z-y)$.
(p11) $(x \wedge y)-(x \wedge z) \leq x \wedge(y-z)$.
(p12) $(x-y)-z=(x-z)-(y-z)$.
for any $x, y, z \in X$,

A mapping d from a subtraction algebra X to a subtraction algebra Y is called a morphism if $d(x-y)=d(x)-d(y)$ for all $x, y \in X$. A self map d of a subtraction algebra X which is a morphism is called an endomorphism.

Lemma 2.1. Let X be a subtraction algebra. Then the following properties hold:
(1) $x \wedge y=y \wedge x$, for every $x, y \in X$.
(2) $x-y \leq x$ for all $x, y \in X$.

Lemma 2.2. Every subtraction algebra X satisfies the following property

$$
(x-y)-(x-z) \leq z-y
$$

for all $x, y, z \in X$.
Definition 2.3. Let X be a subtraction algebra and let Y be a nonempty set of X. Then Y is called a subalgebra if $x-y \in Y$ whenever $x, y \in Y$.

Definition 2.4. Let X be a subtraction algebra. A mapping $D(.,$.$) :$ $X \times X \rightarrow X$ is called symmetric if $D(x, y)=D(y, x)$ holds for all $x, y \in X$.

Definition 2.5. Let X be a subtraction algebra and $x \in X$. A mapping $d(x)=D(x, x)$ is called trace of $D(.,$.$) , where D(.,):. X \times X \rightarrow X$ is a symmetric mapping.

Definition 2.6. Let X be a subtraction algebra and $D: X \times X \rightarrow X$ be a symmetric mapping. We call D a symmetric bi-derivation on X if it satisfies the following condition

$$
D(x-y, z)=(D(x, z)-y) \wedge(x-D(y, z))
$$

for all $x, y, z \in X$.
Definition 2.7. Let X be a subtraction algebra. A function $d: X \rightarrow$ X is called an f-derivation on X if there exists a function $f: X \rightarrow X$ such that

$$
d(x-y)=(d(x)-f(y)) \wedge(f(x)-d(y))
$$

for all $x, y \in X$.

3. Symmetric bi-f-derivations of subtraction algebras

In what follows, let X denote a subtraction algebra unless otherwise specified.

Definition 3.1. Let X be a subtraction algebra and $D: X \times X \rightarrow X$ be a symmetric mapping. We call D a symmetric bi- f-derivation on X if there exists a function $f: X \rightarrow X$ such that

$$
D(x-y, z)=(D(x, z)-f(y)) \wedge(f(x)-D(y, z))
$$

for all $x, y, z \in X$.

Obviously, a symmetric bi- f-derivation D on X satisfies the relation

$$
D(x, y-z)=(D(x, y)-f(z)) \wedge(f(y)-D(x, z))
$$

for all $x, y, z \in X$.
Example 3.2. Let $X=\{0, a, b\}$ be a subtraction algebra with the following Cayley table

$$
\begin{array}{c|ccc}
- & 0 & a & b \\
\hline 0 & 0 & 0 & 0 \\
a & a & 0 & a \\
b & b & b & 0
\end{array}
$$

Define a map $D: X \times X \rightarrow X$ by

$$
D(x, y)= \begin{cases}0 & \text { if }(x, y)=(0,0),(0, a),(a, 0),(0, b),(b, 0),(a, b),(b, a) \\ b & \text { if }(x, y)=(a, a) \\ a & \text { if }(x, y)=(b, b)\end{cases}
$$

and $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ a & \text { if } x=b \\ b & \text { if } x=a\end{cases}
$$

Then it is easily checked that D is a symmetric bi- f-derivation of subtraction algebra X. But D is not a symmetric bi-derivation since $a=D(b-a, b) \neq(D(b, b)-a) \wedge(b-D(a, b))=(a-a) \wedge(b-0)=0 \wedge b=0$.

Example 3.3. Let $X=\{0,1,2,3\}$ be a set in which "-" is defined by

-	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	2	1	0

It is easy to check that $(X ;-)$ is a subtraction algebra. Define a map $D: X \times X \rightarrow X$ by

$$
D(x, y)= \begin{cases}2 & \text { if }(x, y)=(2,2),(3,3),(2,3),(3,2) \\ 0 & \text { otherwise }\end{cases}
$$

and $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}0 & \text { if } x=0,1 \\ 2 & \text { if } x=2,3\end{cases}
$$

Figure 1. Hasse diagram of Example 3.3
Then it is easily checked that D is a symmetric bi- f-derivation of a subtraction algebra X.

Proposition 3.4. Let X be a subtraction algebra and let D be a symmetric bi-f-derivation on X. Then the following identities hold:
(1) $D(0,0)=0$.
(2) $D(0, x)=0$ for all $x \in X$.
(3) If d is a trace of $D, d(x) \leq f(x)$ for all $x \in X$.

Proof. (1) Since $D(0,0)=D(0-0,0)$, we have
$D(0,0)=D(0-0,0)=(D(0,0)-f(0)) \wedge(f(0)-D(0,0))$

$$
=(D(0,0)-f(0))-((D(0,0)-f(0))-(f(0)-D(0,0)))
$$

$$
=(D(0,0)-f(0))-(D(0,0)-f(0))=0
$$

by (p 5).
(2) For all $x \in X$, we get

$$
\begin{aligned}
D(0, x)= & D(0-0, x)=(D(0, x)-f(0)) \wedge(f(0)-D(0, x)) \\
& =(D(0, x)-f(0))-((D(0, x)-f(0))-(f(0)-D(0, x))) \\
& =(D(0, x)-f(0))-(D(0, x)-f(0))=0
\end{aligned}
$$

(3) Since $d(x)=D(x, x)$, we obtain

$$
\begin{aligned}
d(x) & =D(x, x)=D(x-0, x)=(D(x, x)-f(0)) \wedge(f(x)-D(0, x)) \\
& =(D(x, x)-f(0)) \wedge(f(x)-0)=(D(x, x)-f(0)) \wedge f(x) \\
& =f(x) \wedge(D(x, x)-f(0))=f(x)-(f(x)-(D(x, x)-f(0))) \\
& \leq f(x) \quad \text { by Lemma } 2.1(2))
\end{aligned}
$$

Proposition 3.5. Let X be a subtraction algebra and let D be a symmetric bi-f-derivation of X. Then $D(x, y) \leq f(x)$ and $D(x, y) \leq$ $f(y)$ for all $x, y \in X$.

Proof. For all $x, y \in X$, we have $D(x, y)=D(x-0, y)=(D(x, y)-$ $f(0)) \wedge(f(x)-D(0, y))=(D(x, y)-f(0)) \wedge f(x)=(D(x, y)-f(0))-$ $((D(x, y)-f(0))-f(x))=f(x)-(f(x)-(D(x, y)-f(0))) \leq f(x)$. Hence $D(x, y) \leq f(x)$. Similarly, we have $D(x, y) \leq f(y)$.

Corollary 3.6. Let X be a subtraction algebra and let D be a symmetric bi-f-derivation of X. Then $D(x, y)-f(y) \leq f(x)-D(x, y)$ for all $x, y \in X$.

Proof. For all $x, y \in X$, we have $D(x, y)-f(y) \leq f(x)-f(y)$ and $f(x)-f(y) \leq f(x)-D(x, y)$ from (p6). Hence we obtain $D(x, y)-f(y) \leq$ $f(x)-D(x, y)$. This completes the proof.

Theorem 3.7. Let X be a subtraction algebra and let $D: X \rightarrow X$ be a symmetric bi-f-derivation of X. Then D satisfies $D(x-y, z)=$ $D(x, z)-f(y)$ for all $x, y, z \in X$.

Proof. Let D be a symmetric bi- f-derivation and $x, y, z \in X$. Since $D(x, z) \leq f(x)$ and $D(y, z) \leq f(y)$ by Proposition 3.5, we have

$$
D(x, z)-f(y) \leq f(x)-f(y) \leq f(x)-D(y, z)
$$

for all $x, y, z \in X$. Hence $D(x-y, z)=(D(x, z)-f(y)) \wedge(f(x)-$ $D(y, z))=D(x, z)-f(y)$ for all $x, y, z \in X$.

Proposition 3.8. Let D be a symmetric bi- f-derivation of X and let d be a trace of D. Then d is an isotone mapping of X.

Proof. If $x \leq y$ for all $x, y \in X$, then we have $x=y-w$ for some $w \in X$. Hence

$$
\begin{aligned}
d(x) & =D(x, x)=D(y-w, y-w)=D(y, y-w)-f(w) \\
& =D(y-w, y)-f(w)=(D(y, y)-f(w))-f(w) \\
& \leq D(y, y)-f(w) \leq D(y, y)=d(y)
\end{aligned}
$$

This completes the proof.
Proposition 3.9. Let D be a symmetric bi-f-derivation of X and let d be a trace of D. Then $d(x-y) \leq d(x)$ for all $x, y \in X$.

Proof. Let $x, y \in X$. Then we have

$$
\begin{aligned}
d(x-y) & =D(x-y, x-y)=D(x, x-y)-f(y) \\
& =D(x-y, x)-f(y) \\
& =(D(x, x)-f(y))-f(y) \leq D(x, x)=d(x)
\end{aligned}
$$

This completes the proof.
Proposition 3.10. Let D be a symmetric bi- f-derivation of X and let d be a trace of D. If $x \leq y$ for $x, y \in X$, then $d(x \wedge y)=d(x)$.

Proof. Let $x \leq y$. Then we get $x-y=0$ and

$$
\begin{aligned}
d(x \wedge y) & =D(x \wedge y, x \wedge y) \\
& =D(x-(x-y), x-(x-y)) \\
& =D(x-0, x-0)) \\
& =D(x, x)=d(x)
\end{aligned}
$$

This completes the proof.

Proposition 3.11. Let D be a symmetric bi- f-derivation of X and let d be a trace of D. If $f(0)=0$, we have $d(0)=0$.

Proof. Let $x \in X$. Then $d(0)=D(0,0)=D(0-x, 0)=(D(0,0)-$ $f(x)) \wedge(f(0)-D(x, 0))=(d(0)-f(x)) \wedge 0=0$.

Let X be a subtraction algebra and let D be a symmetric bi- f derivation of X. For a fixed element $a \in X$, define a mapping $d_{a}: X \rightarrow X$ by $d_{a}(x)=D(x, a)$ for all $x \in X$.

Theorem 3.12. Let X be a subtraction algebra and let D be a symmetric bi- f-derivation of X. Then d_{a} is a f-derivation of X.

Proof. Let $x, y \in X$. Then we have

$$
\begin{aligned}
d_{a}(x-y) & =D(x-y, a) \\
& =(D(x, a)-f(y)) \wedge(f(x)-D(y, a)) \\
& =\left(d_{a}(x)-f(y)\right) \wedge\left(f(x)-d_{a}(y)\right) .
\end{aligned}
$$

This completes the proof.
Theorem 3.13. Let X be a subtraction algebra and let D be a symmetric bi- f-derivation of X. Then d_{a} is an isotone mapping of X.

Proof. Let $x, y \in X$ be such that $x \leq y$. Then we have $x-y=0$ and so

$$
\begin{aligned}
d_{a}(x) & =D(x, a)=D(x-(x-y), a)=D(y-(y-x), a) \\
& =D(y, a)-f(y-x) \leq D(y, a)=d_{a}(y)
\end{aligned}
$$

This completes the proof.
Proposition 3.14. Let X be a subtraction algebra and let D be a symmetric bi-f-derivation of X. If $x \leq y$ for $x, y \in X$, then $d_{a}(x \wedge y)=$ $d_{a}(x)$.

Proof. Let $x, y \in X$ be such that $x \leq y$. Then we have $x-y=0$ and SO

$$
\begin{aligned}
d_{a}(x \wedge y) & =D(x \wedge y, a) \\
& =D(x-(x-y), a) \\
& =D(x, a)=d_{a}(x)
\end{aligned}
$$

This completes the proof.
Definition 3.15. Let X be a subtraction algebra and let D be a symmetric bi- f-derivation of X. If $x \leq w$ implies $D(x, y) \leq D(w, y)$ for $x, y, w \in X$, then D is called an isotone symmetric bi- f-derivation of X.

Theorem 3.16. Let X be a subtraction algebra and let D be a symmetric bi- f-derivation of X. Then D is an isotone symmetric bi-f-derivation of X.

Proof. Let $x \leq w$. Then $x=w-v$ from (p8). Hence we have

$$
\begin{aligned}
D(x, y) & =D(w-v, y)=D(w, y)-f(v) \\
& \leq D(w, y)
\end{aligned}
$$

This implies that D is an isotone symmetric bi- f-derivation of X.

Proposition 3.17. Let X be a subtraction algebra and let D be an isotone symmetric bi- f-derivation of X. Then the following identities hold.
(1) $D(x \wedge y, z) \leq D(x, z)$ for all $x, y, z \in X$.
(2) $D(x \wedge y, z) \leq D(y, z)$ for all $x, y, z \in X$.

Proof. (1) Since $x \wedge y=x-(x-y) \leq x$ from (p4), by Proposition 3.7, we have $D(x \wedge y, z) \leq D(x, z)$ for all $x, y, z \in X$.
(2) Similarly, $x \wedge y=x-(x-y)=y-(y-x) \leq y$ from (p4), we have $D(x \wedge y, z) \leq D(y, z)$ for all $x, y, z \in X$.

Let D be a symmetric bi- f-derivation of X. Fix $a \in X$ and define a set Fix $_{a}(X)$ by

$$
\operatorname{Fix}_{a}(X):=\{x \mid D(x, a)=f(x)\}
$$

for all $x \in X$.
Proposition 3.18. Let D be a symmetric bi- f-derivation of X. If f is an endomorphism on X, then $\operatorname{Fix}_{a}(X)$ is a subalgebra of X.

Proof. Let $x, y \in$ Fix $_{a}(X)$. Then we have $D(x, a)=f(x)$ and $D(y, a)=$ $f(y)$, and so by Theorem 3.7,

$$
\begin{aligned}
D(x-y, a) & =D(x, a)-f(y)=f(x)-f(y) \\
& =f(x-y) .
\end{aligned}
$$

Hence we get $x-y \in \operatorname{Fix}(X)$. This completes the proof.

Proposition 3.19. Let D be a symmetric bi- f-derivation of X and let f be an endomorphism on X. If $x, y \in F i x_{a}(X)$, we obtain $x \wedge y \in$ Fixa (X).

Proof. Let $x, y \in F i x_{a}(X)$. Then we have $D(x, a)=f(x)$ and $D(y, a)=$ $f(y)$, and so by Theorem 3.7,

$$
\begin{aligned}
D(x \wedge y, a) & =D(x-(x-y), a) \\
& =D(x, a)-f(x-y)=f(x)-(f(x)-f(y)) \\
& =f(x-(x-y))=f(x \wedge y) .
\end{aligned}
$$

Hence we get $x \wedge y \in \operatorname{Fix}_{a}(X)$. This completes the proof.

Definition 3.20. Let D be a symmetric by- f-derivation of X and let d be a trace of D. Define a set Kerd by

$$
\text { Kerd }=\{x \in X \mid d(x)=0\} .
$$

Proposition 3.21. Let D be a symmetric by- f-derivation of X and let d be a trace of D. Then Kerd is a subalgebra of X.

Proof. Let $x, y \in \operatorname{Kerd}$. Then we have $d(x)=D(x, x)=0$ and $d(y)=D(y, y)=0$ and so by Theorem 3.7,

$$
\begin{aligned}
d(x-y) & =D(x-y, x-y)=D(x, x-y)-f(y) \\
& =D(x-y, x)-f(y)=(D(x, x)-f(y))-f(y) \\
& =0-f(y)=0 .
\end{aligned}
$$

That is, $x-y \in \operatorname{Kerd}$. This completes the proof.

Theorem 3.22. Let D be a symmetric bi- f-derivation of X and let d be a trace of D. If $x \leq y$ and $y \in$ Kerd imply $x \in$ Kerd.

Proof. Let $x \leq y$. Then we have $x-y=0$ and $d(y)=D(y, y)=0$. Hence,

$$
\begin{aligned}
d(x) & =D(x, x)=D(x-(x-y), x-(x-y)) \\
& =D(y-(y-x), y-(y-x))=D(y, y-(y-x))-f(y-x) \\
& =D(y-(y-x), y)-f(y-x)=(D(y, y)-f(y-x))-f(y-x) \\
& =(0-f(y-x))-f(y-x)=0 .
\end{aligned}
$$

That is, $x \in$ Kerd. This completes the proof.

Proposition 3.23. Let D be a symmetric bi- f-derivation of X and let d be a trace of D. If $y \in$ Kerd and $x \in X$, then $x \wedge y \in$ Kerd.

Proof. Let $x \in \operatorname{Kerd}$. Then we have $d(y)=D(y, y)=0$. Hence, $d(x \wedge y)=D(x \wedge y, x \wedge y)=D(y \wedge x, y \wedge x)$

$$
=D(y-(y-x), y-(y-x))=D(y, y-(y-x))-f(y-x)
$$

$$
=D(y-(y-x), y)-f(y-x)=(D(y, y)-f(y-x))-f(y-x)
$$

$$
=(0-f(y-x))-f(y-x)=0 .
$$

That is, $x \wedge y \in \operatorname{Kerd}$. This completes the proof.

Definition 3.24. A nonempty subset I of a subtraction algebra X is called an ideal of X if it satisfies
(I1) $0 \in I$,
(I2) for any $x, y \in X, y \in I$ and $x-y \in I$ implies $x \in I$.
For an ideal I of a subtraction algebra X, it is clear that $x \leq y$ and $y \in I$ imply $x \in I$ for any $x, y \in X$.

Theorem 3.25. Let D be a symmetric by- f-derivation of X and let d be a trace of D. If d is an endomorphism of X, then Kerd is an ideal of X.

Proof. Let $y \in \operatorname{Kerd}$ and $x \in X$ with $x-y \in \operatorname{Kerd}$. Then $d(y)=0$ implies

$$
d(x)=d(x)-0=d(x)-d(y)=d(x-y)=0 .
$$

Hence $x \in$ Kerd. This completes the proof.

References

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
[2] S. D. Lee and K. H. Kim, A note on multipliers of subtraction algebras, The Hacettepe Journal of Mathematics and Statistics, 42 (2013), no. 2, 165-171.
[3] K. H. Kim, A note on f-derivations of subtraction algebras, Scientiae Mathematicae Japonicae, 72 (2010), no. 2, 127-132.
[4] B. M. Schein, Difference Semigroups, Comm. in Algebra, 20 (1992), 2153-2169.
[5] Y. H. Yon and K. H. Kim, On derivations of subtraction algebras, The Hacettepe Journal of Mathematics and statistics, 41 2012, no. 2, 157-168
[6] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445-447.

Department of Mathematics,
Korea National University of Transportation
Chungju 27469, Republic of Korea
E-mail: ghkim@ut.ac.kr

[^0]: Received March 17, 2019; Accepted September 23, 2019.
 2010 Mathematics Subject Classification: Primary 16Y30, 03G25.
 Key words and phrases: Subtraction algebra, f-derivation, symmetric bi- f derivation, isotone, $F i x_{a}(X)$..

