JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **32**, No. 4, November 2019 http://dx.doi.org/10.14403/jcms.2019.32.4.441

ON SYMMETRIC BI-f-DERIVATIONS OF SUBTRACTION ALGEBRAS

Kyung Ho Kim

ABSTRACT. In this paper, we introduce the notion of symmetric bif-derivation on subtraction algebra and investigated some related properties. Also, we prove that if $D: X \to X$ is a symmetric bif-derivation on X, then D satisfies D(x - y, z) = D(x, z) - f(y) for all $x, y, z \in X$.

1. Introduction

B. M. Schein ([4]) considered systems of the form $(\Phi; \circ, \backslash)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence $(\Phi; \circ)$ is a function semigroup) and the set theoretic subtraction " \backslash " (and hence $(\Phi; \backslash)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka ([6]) discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. In this paper, we introduce the notion of symmetric bi-*f*-derivation on subtraction algebra and investigated some related properties. Also, we prove that if $D: X \to X$ is a symmetric bi-*f*-derivation on X, then D satisfies D(x - y, z) = D(x, z) - f(y) for all $x, y, z \in X$.

2. Preliminaries

By a subtraction algebra we mean an algebra (X; -) with a single binary operation "-" that satisfies the following identities, for any $x, y, z \in X$,

Received March 17, 2019; Accepted September 23, 2019.

²⁰¹⁰ Mathematics Subject Classification: Primary 16Y30, 03G25.

Key words and phrases: Subtraction algebra, f-derivation, symmetric bi-f-derivation, isotone, $Fix_a(X)$..

(S1) x - (y - x) = x;(S2) x - (x - y) = y - (y - x);(S3) (x - y) - z = (x - z) - y.

The last identity permits us to omit parentheses in expressions of the form (x - y) - z. The subtraction determines an order relation on X: $a \leq b \Leftrightarrow a - b = 0$, where 0 = a - a is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval [0, a] is a Boolean algebra with respect to the induced order. Here $a \wedge b = a - (a - b)$; the complement of an element $b \in [0, a]$ is a - b; and if $b, c \in [0, a]$, then

$$b \lor c = (b' \land c')' = a - ((a - b) \land (a - c))$$

= $a - ((a - b) - ((a - b) - (a - c))).$

In a subtraction algebra, the following are true (see [4]).

(p1) (x - y) - y = x - y. (p2) x - 0 = x and 0 - x = 0. (p3) (x - y) - x = 0. (p4) $x - (x - y) \le y$. (p5) (x - y) - (y - x) = x - y. (p6) x - (x - (x - y)) = x - y. (p7) $(x - y) - (z - y) \le x - z$. (p8) $x \le y$ if and only if x = y - w for some $w \in X$. (p9) $x \le y$ implies $x - z \le y - z$ and $z - y \le z - x$ for all $z \in X$. (p10) $x, y \le z$ implies $x - y = x \land (z - y)$. (p11) $(x \land y) - (x \land z) \le x \land (y - z)$. (p12) (x - y) - z = (x - z) - (y - z). for any $x, y, z \in X$,

A mapping d from a subtraction algebra X to a subtraction algebra Y is called a *morphism* if d(x - y) = d(x) - d(y) for all $x, y \in X$. A self map d of a subtraction algebra X which is a morphism is called an *endomorphism*.

LEMMA 2.1. Let X be a subtraction algebra. Then the following properties hold:

- (1) $x \wedge y = y \wedge x$, for every $x, y \in X$.
- (2) $x y \le x$ for all $x, y \in X$.

LEMMA 2.2. Every subtraction algebra X satisfies the following property

$$(x-y) - (x-z) \le z - y$$

for all $x, y, z \in X$.

DEFINITION 2.3. Let X be a subtraction algebra and let Y be a nonempty set of X. Then Y is called a *subalgebra* if $x - y \in Y$ whenever $x, y \in Y$.

DEFINITION 2.4. Let X be a subtraction algebra. A mapping D(.,.): $X \times X \to X$ is called *symmetric* if D(x,y) = D(y,x) holds for all $x, y \in X$.

DEFINITION 2.5. Let X be a subtraction algebra and $x \in X$. A mapping d(x) = D(x, x) is called *trace* of D(., .), where $D(., .) : X \times X \to X$ is a symmetric mapping.

DEFINITION 2.6. Let X be a subtraction algebra and $D: X \times X \to X$ be a symmetric mapping. We call D a symmetric bi-derivation on X if it satisfies the following condition

$$D(x - y, z) = (D(x, z) - y) \land (x - D(y, z))$$

for all $x, y, z \in X$.

DEFINITION 2.7. Let X be a subtraction algebra. A function $d: X \to X$ is called an *f*-derivation on X if there exists a function $f: X \to X$ such that

$$d(x - y) = (d(x) - f(y)) \land (f(x) - d(y))$$

for all $x, y \in X$.

3. Symmetric bi-*f*-derivations of subtraction algebras

In what follows, let X denote a subtraction algebra unless otherwise specified.

DEFINITION 3.1. Let X be a subtraction algebra and $D: X \times X \to X$ be a symmetric mapping. We call D a symmetric bi-f-derivation on X if there exists a function $f: X \to X$ such that

$$D(x-y,z) = (D(x,z) - f(y)) \land (f(x) - D(y,z))$$

for all $x, y, z \in X$.

Obviously, a symmetric bi-f-derivation D on X satisfies the relation

$$D(x, y - z) = (D(x, y) - f(z)) \land (f(y) - D(x, z))$$

for all $x, y, z \in X$.

EXAMPLE 3.2. Let $X = \{0, a, b\}$ be a subtraction algebra with the following Cayley table

$$\begin{array}{c|cccc} - & 0 & a & b \\ \hline 0 & 0 & 0 & 0 \\ a & a & 0 & a \\ b & b & b & 0 \end{array}$$

Define a map $D: X \times X \to X$ by

$$D(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0), (0,a), (a,0), (0,b), (b,0), (a,b), (b,a) \\ b & \text{if } (x,y) = (a,a) \\ a & \text{if } (x,y) = (b,b) \end{cases}$$

and $f: X \to X$ by

$$f(x) = \begin{cases} 0 & \text{ if } x = 0 \\ a & \text{ if } x = b \\ b & \text{ if } x = a \end{cases}$$

Then it is easily checked that D is a symmetric bi-f-derivation of subtraction algebra X. But D is not a symmetric bi-derivation since

 $a=D(b-a,b)\neq (D(b,b)-a)\wedge (b-D(a,b))=(a-a)\wedge (b-0)=0\wedge b=0.$

EXAMPLE 3.3. Let $X = \{0, 1, 2, 3\}$ be a set in which "-" is defined by

_	0	1	2	3	
0	0	0	0	0	
1	1	0	1	0	
2	2	2	0	0	
3	3	2	1	0	

It is easy to check that (X; -) is a subtraction algebra. Define a map $D: X \times X \to X$ by

$$D(x,y) = \begin{cases} 2 & \text{if } (x,y) = (2,2), (3,3), (2,3), (3,2) \\ 0 & \text{otherwise} \end{cases}$$

and $f: X \to X$ by

FIGURE 1. Hasse diagram of Example 3.3

Then it is easily checked that D is a symmetric bi-f-derivation of a subtraction algebra X.

PROPOSITION 3.4. Let X be a subtraction algebra and let D be a symmetric bi-f-derivation on X. Then the following identities hold:

(1) D(0,0) = 0.(2) D(0, x) = 0 for all $x \in X$. (3) If d is a trace of D, $d(x) \leq f(x)$ for all $x \in X$. *Proof.* (1) Since D(0,0) = D(0-0,0), we have $D(0,0) = D(0-0,0) = (D(0,0) - f(0)) \land (f(0) - D(0,0))$ = (D(0,0) - f(0)) - ((D(0,0) - f(0)) - (f(0) - D(0,0)))= (D(0,0) - f(0)) - (D(0,0) - f(0)) = 0.by (p5). (2) For all $x \in X$, we get $D(0,x) = D(0-0,x) = (D(0,x) - f(0)) \land (f(0) - D(0,x))$ = (D(0,x) - f(0)) - ((D(0,x) - f(0)) - (f(0) - D(0,x)))= (D(0,x) - f(0)) - (D(0,x) - f(0)) = 0.(3) Since d(x) = D(x, x), we obtain $d(x) = D(x, x) = D(x - 0, x) = (D(x, x) - f(0)) \land (f(x) - D(0, x))$ $= (D(x,x) - f(0)) \land (f(x) - 0) = (D(x,x) - f(0)) \land f(x)$ $= f(x) \land (D(x,x) - f(0)) = f(x) - (f(x) - (D(x,x) - f(0)))$

$$\leq f(x)$$
 (by Lemma 2.1 (2))

PROPOSITION 3.5. Let X be a subtraction algebra and let D be a symmetric bi-f-derivation of X. Then $D(x,y) \leq f(x)$ and $D(x,y) \leq f(y)$ for all $x, y \in X$.

Proof. For all $x, y \in X$, we have $D(x, y) = D(x - 0, y) = (D(x, y) - f(0)) \land (f(x) - D(0, y)) = (D(x, y) - f(0)) \land f(x) = (D(x, y) - f(0)) - ((D(x, y) - f(0)) - f(x)) = f(x) - (f(x) - (D(x, y) - f(0))) \le f(x).$ Hence $D(x, y) \le f(x)$. Similarly, we have $D(x, y) \le f(y)$. □

COROLLARY 3.6. Let X be a subtraction algebra and let D be a symmetric bi-f-derivation of X. Then $D(x, y) - f(y) \le f(x) - D(x, y)$ for all $x, y \in X$.

Proof. For all $x, y \in X$, we have $D(x, y) - f(y) \leq f(x) - f(y)$ and $f(x) - f(y) \leq f(x) - D(x, y)$ from (p6). Hence we obtain $D(x, y) - f(y) \leq f(x) - D(x, y)$. This completes the proof.

THEOREM 3.7. Let X be a subtraction algebra and let $D: X \to X$ be a symmetric bi-f-derivation of X. Then D satisfies D(x - y, z) = D(x, z) - f(y) for all $x, y, z \in X$.

Proof. Let D be a symmetric bi-f-derivation and $x, y, z \in X$. Since $D(x, z) \leq f(x)$ and $D(y, z) \leq f(y)$ by Proposition 3.5, we have

$$D(x, z) - f(y) \le f(x) - f(y) \le f(x) - D(y, z)$$

for all $x, y, z \in X$. Hence $D(x - y, z) = (D(x, z) - f(y)) \land (f(x) - D(y, z)) = D(x, z) - f(y)$ for all $x, y, z \in X$.

PROPOSITION 3.8. Let D be a symmetric bi-f-derivation of X and let d be a trace of D. Then d is an isotone mapping of X.

Proof. If $x \leq y$ for all $x, y \in X$, then we have x = y - w for some $w \in X$. Hence

$$\begin{aligned} d(x) &= D(x, x) = D(y - w, y - w) = D(y, y - w) - f(w) \\ &= D(y - w, y) - f(w) = (D(y, y) - f(w)) - f(w) \\ &\le D(y, y) - f(w) \le D(y, y) = d(y). \end{aligned}$$

This completes the proof.

PROPOSITION 3.9. Let D be a symmetric bi-f-derivation of X and let d be a trace of D. Then $d(x - y) \leq d(x)$ for all $x, y \in X$.

Proof. Let $x, y \in X$. Then we have

$$d(x - y) = D(x - y, x - y) = D(x, x - y) - f(y)$$

= $D(x - y, x) - f(y)$
= $(D(x, x) - f(y)) - f(y) \le D(x, x) = d(x)$

This completes the proof.

PROPOSITION 3.10. Let D be a symmetric bi-f-derivation of X and let d be a trace of D. If $x \leq y$ for $x, y \in X$, then $d(x \wedge y) = d(x)$.

Proof. Let
$$x \leq y$$
. Then we get $x - y = 0$ and

$$d(x \wedge y) = D(x \wedge y, x \wedge y) = D(x - (x - y), x - (x - y)) = D(x - 0, x - 0)) = D(x, x) = d(x).$$

This completes the proof.

PROPOSITION 3.11. Let D be a symmetric bi-f-derivation of X and let d be a trace of D. If f(0) = 0, we have d(0) = 0.

Proof. Let $x \in X$. Then $d(0) = D(0,0) = D(0-x,0) = (D(0,0) - f(x)) \land (f(0) - D(x,0)) = (d(0) - f(x)) \land 0 = 0.$

Let X be a subtraction algebra and let D be a symmetric bi-fderivation of X. For a fixed element $a \in X$, define a mapping $d_a : X \to X$ by $d_a(x) = D(x, a)$ for all $x \in X$.

THEOREM 3.12. Let X be a subtraction algebra and let D be a symmetric bi-f-derivation of X. Then d_a is a f-derivation of X.

Proof. Let $x, y \in X$. Then we have $d_a(x-y) = D(x-y,a)$ $= (D(x,a) - f(y)) \wedge (f(x) - D(y,a))$ $= (d_a(x) - f(y)) \wedge (f(x) - d_a(y)).$

This completes the proof.

THEOREM 3.13. Let X be a subtraction algebra and let D be a symmetric bi-f-derivation of X. Then d_a is an isotone mapping of X.

447

 $d_a(x) = D(x, a) = D(x - (x - y), a) = D(y - (y - x), a)$ = $D(y, a) - f(y - x) \le D(y, a) = d_a(y).$

Proof. Let $x, y \in X$ be such that $x \leq y$. Then we have x - y = 0 and

This completes the proof.

PROPOSITION 3.14. Let X be a subtraction algebra and let D be a symmetric bi-f-derivation of X. If $x \leq y$ for $x, y \in X$, then $d_a(x \wedge y) = d_a(x)$.

Proof. Let $x, y \in X$ be such that $x \leq y$. Then we have x - y = 0 and so

$$d_a(x \wedge y) = D(x \wedge y, a)$$

= $D(x - (x - y), a)$
= $D(x, a) = d_a(x).$

This completes the proof.

DEFINITION 3.15. Let X be a subtraction algebra and let D be a symmetric bi-f-derivation of X. If $x \leq w$ implies $D(x, y) \leq D(w, y)$ for $x, y, w \in X$, then D is called an *isotone symmetric bi-f-derivation of X*.

THEOREM 3.16. Let X be a subtraction algebra and let D be a symmetric bi-f-derivation of X. Then D is an isotone symmetric bi-f-derivation of X.

Proof. Let
$$x \le w$$
. Then $x = w - v$ from (p8). Hence we have
 $D(x, y) = D(w - v, y) = D(w, y) - f(v)$
 $\le D(w, y)$

This implies that D is an isotone symmetric bi-f-derivation of X.

PROPOSITION 3.17. Let X be a subtraction algebra and let D be an isotone symmetric bi-f-derivation of X. Then the following identities hold.

(1) $D(x \wedge y, z) \leq D(x, z)$ for all $x, y, z \in X$.

(2) $D(x \wedge y, z) \leq D(y, z)$ for all $x, y, z \in X$.

Proof. (1) Since $x \wedge y = x - (x - y) \leq x$ from (p4), by Proposition 3.7, we have $D(x \wedge y, z) \leq D(x, z)$ for all $x, y, z \in X$.

(2) Similarly, $x \wedge y = x - (x - y) = y - (y - x) \le y$ from (p4), we have $D(x \wedge y, z) \le D(y, z)$ for all $x, y, z \in X$.

448

 \mathbf{SO}

Let D be a symmetric bi-f-derivation of X. Fix $a \in X$ and define a set $Fix_a(X)$ by

$$Fix_a(X) := \{x \mid D(x,a) = f(x)\}$$

for all $x \in X$.

PROPOSITION 3.18. Let D be a symmetric bi-f-derivation of X. If f is an endomorphism on X, then $Fix_a(X)$ is a subalgebra of X.

Proof. Let $x, y \in Fix_a(X)$. Then we have D(x, a) = f(x) and D(y, a) = f(y), and so by Theorem 3.7,

$$D(x - y, a) = D(x, a) - f(y) = f(x) - f(y)$$

= f(x - y).

Hence we get $x - y \in Fix_a(X)$. This completes the proof.

PROPOSITION 3.19. Let D be a symmetric bi-f-derivation of X and let f be an endomorphism on X. If $x, y \in Fix_a(X)$, we obtain $x \wedge y \in Fix_a(X)$.

Proof. Let $x, y \in Fix_a(X)$. Then we have D(x, a) = f(x) and D(y, a) = f(y), and so by Theorem 3.7,

$$D(x \wedge y, a) = D(x - (x - y), a)$$

= $D(x, a) - f(x - y) = f(x) - (f(x) - f(y))$
= $f(x - (x - y)) = f(x \wedge y).$

Hence we get $x \wedge y \in Fix_a(X)$. This completes the proof.

DEFINITION 3.20. Let D be a symmetric by-f-derivation of X and let d be a trace of D. Define a set Kerd by

$$Kerd = \{ x \in X \mid d(x) = 0 \}.$$

PROPOSITION 3.21. Let D be a symmetric by-f-derivation of X and let d be a trace of D. Then Kerd is a subalgebra of X.

Proof. Let $x, y \in Kerd$. Then we have d(x) = D(x, x) = 0 and d(y) = D(y, y) = 0 and so by Theorem 3.7,

$$d(x - y) = D(x - y, x - y) = D(x, x - y) - f(y)$$

= $D(x - y, x) - f(y) = (D(x, x) - f(y)) - f(y)$
= $0 - f(y) = 0.$

That is, $x - y \in Kerd$. This completes the proof.

THEOREM 3.22. Let D be a symmetric bi-f-derivation of X and let d be a trace of D. If $x \leq y$ and $y \in Kerd$ imply $x \in Kerd$.

Proof. Let $x \leq y$. Then we have x - y = 0 and d(y) = D(y, y) = 0. Hence,

$$\begin{aligned} d(x) &= D(x, x) = D(x - (x - y), x - (x - y)) \\ &= D(y - (y - x), y - (y - x)) = D(y, y - (y - x)) - f(y - x) \\ &= D(y - (y - x), y) - f(y - x) = (D(y, y) - f(y - x)) - f(y - x) \\ &= (0 - f(y - x)) - f(y - x) = 0. \end{aligned}$$

That is, $x \in Kerd$. This completes the proof.

PROPOSITION 3.23. Let D be a symmetric bi-f-derivation of X and let d be a trace of D. If $y \in Kerd$ and $x \in X$, then $x \wedge y \in Kerd$.

Proof. Let
$$x \in Kerd$$
. Then we have $d(y) = D(y, y) = 0$. Hence,
 $d(x \wedge y) = D(x \wedge y, x \wedge y) = D(y \wedge x, y \wedge x)$
 $= D(y - (y - x), y - (y - x)) = D(y, y - (y - x)) - f(y - x)$
 $= D(y - (y - x), y) - f(y - x) = (D(y, y) - f(y - x)) - f(y - x)$
 $= (0 - f(y - x)) - f(y - x) = 0.$

That is, $x \wedge y \in Kerd$. This completes the proof.

DEFINITION 3.24. A nonempty subset I of a subtraction algebra X is called an *ideal* of X if it satisfies

(I1) $0 \in I$,

(I2) for any $x, y \in X$, $y \in I$ and $x - y \in I$ implies $x \in I$.

For an ideal I of a subtraction algebra X, it is clear that $x \leq y$ and $y \in I$ imply $x \in I$ for any $x, y \in X$.

THEOREM 3.25. Let D be a symmetric by-f-derivation of X and let d be a trace of D. If d is an endomorphism of X, then Kerd is an ideal of X.

Proof. Let $y \in Kerd$ and $x \in X$ with $x - y \in Kerd$. Then d(y) = 0 implies

$$d(x) = d(x) - 0 = d(x) - d(y) = d(x - y) = 0.$$

Hence $x \in Kerd$. This completes the proof.

References

- J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
- [2] S. D. Lee and K. H. Kim, A note on multipliers of subtraction algebras, The Hacettepe Journal of Mathematics and Statistics, 42 (2013), no. 2, 165-171.
- [3] K. H. Kim, A note on f-derivations of subtraction algebras, Scientiae Mathematicae Japonicae, 72 (2010), no. 2, 127-132.
- [4] B. M. Schein, Difference Semigroups, Comm. in Algebra, 20 (1992), 2153–2169.
- [5] Y. H. Yon and K. H. Kim, On derivations of subtraction algebras, The Hacettepe Journal of Mathematics and statistics, 41 2012, no. 2, 157-168
- [6] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445-447.

Department of Mathematics, Korea National University of Transportation Chungju 27469, Republic of Korea *E-mail*: ghkim@ut.ac.kr