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ON SYMMETRIC BI-f-DERIVATIONS OF LATTICE

IMPLICATION ALGEBRAS

Kyung Ho Kim

Abstract. In this paper, we introduce the notion of symmetric bi-f -

derivation of lattice implication algebra and investigated some related

properties. Also, we prove that if D is a symmetric bi-f -derivation of
L, then D(x → y, z) = f(x) → D(y, z) for all x, y, z ∈ L.

1. Introduction

The concept of lattice implication algebra was proposed by Y. Xu [11], in
order to establish an alternative logic knowledge representation. Also, in [12],
Y. Xu and K. Y. Qin discussed the properties lattice H implication algebras,
and gave some equivalent conditions about lattice H implication algebras. Y.
Xu and K. Y. Qin [13] introduced the notion of filters in a lattice implication,
and investigated their properties. The present author [5, 14] introduced the
notion of derivation and f -derivation in lattice implications algebras and ob-
tained some related results. In this paper, we introduce the notion of symmet-
ric bi-f -derivation of lattice implication algebra and investigated some related
properties. Also, we prove that if D is a symmetric bi-f -derivation of L, then
D(x→ y, z) = f(x)→ D(y, z) for all x, y, z ∈ L.

2. Preliminary

A lattice implication algebra is an algebra (L; ∧, ∨, ′, →, 0, 1) of type
(2, 2, 1, 2, 0, 0), where (L;∧,∨, 0, 1) is a bounded lattice, “ ′ ” is an order-
reversing involution and “ → ” is a binary operation, satisfying the following
axioms, for all x, y, z ∈ L,

(L1) x→ (y → z) = y → (x→ z),
(L2) x→ x = 1,
(L3) x→ y = y′ → x′,
(L4) x→ y = y → x = 1⇒ x = y,
(L5) (x→ y)→ y = (y → x)→ x,
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(L6) (x ∨ y)→ z = (x→ z) ∧ (y → z),
(L7) (x ∧ y)→ z = (x→ z) ∨ (y → z).

If L satisfies conditions (L1) – (L5), we say that L is a quasi lattice implication
algebra. A lattice implication algebra L is called a lattice H implication algebra
if it satisfies x ∨ y ∨ ((x ∧ y)→ z) = 1 for all x, y, z ∈ L.

In the sequel the binary operation “ → ” will be denoted by juxtaposition. We
can define a partial ordering “ ≤ ” on a lattice implication algebra L by x ≤ y
if and only if x→ y = 1 for all x, y ∈ L.

In a lattice implication algebra L, the following hold (see [11]),

(u1) 0→ x = 1, 1→ x = x and x→ 1 = 1,
(u2) x→ y ≤ (y → z)→ (x→ z),
(u3) x ≤ y implies y → z ≤ x→ z and z → x ≤ z → y,
(u4) x′ = x→ 0.
(u5) x ∨ y = (x→ y)→ y,
(u6) ((y → x)→ y′)′ = x ∧ y = ((x→ y)→ x′)′,
(u7) x ≤ (x→ y)→ y.

for all x, y, z ∈ L.

Definition 1. In a lattice H implication algebra L, the following hold, for all
x, y, z ∈ L,

(u8) x→ (x→ y) = x→ y,
(u9) x→ (y → z) = (x→ y)→ (x→ z).

Definition 2. A subset F of a lattice implication algebra L is called a filter of
L it satisfies,

(F1) 1 ∈ F,
(F2) x ∈ F and x→ y ∈ F imply y ∈ F, for all x, y ∈ L.

Definition 3. Let L1 and L2 be lattice implication algebras. A mapping f :
L1 → L2 is an implication homomorphism if

f(x→ y) = f(x)→ f(y)

for all x, y ∈ L1. Moreover, if f : L1 → L2 satisfies the conditions

f(x ∨ y) = f(x) ∨ f(y), f(x ∧ y) = f(x) ∧ f(y), f(x′) = f(x)′

for all x, y ∈ L1, we say that f is a lattice implication homomorphism on L1.

Definition 4. Let L be a lattice implication algebra. A mapping D(., .) :
L× L→ L is called symmetric if D(x, y) = D(y, x) holds for all x, y ∈ L.

Definition 5. Let L be a lattice implication algebra and x ∈ L. A mapping
d(x) = D(x, x) is called trace of D(., .), where D(., .) : L×L→ L is a symmetric
mapping on L.
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3. Symmetric bi-f-derivations of lattice implication algebras

In what follows, let L denote a lattice implication algebra and let f be an
implication homomorphism on L unless otherwise specified.

Definition 6. Let L be a lattice implication algebra and let f be an implication
homomorphism on L. A symmetric map D : L× L→ L is called a symmetric
bi-f -derivation of L if the following condition holds

D(x→ y, z) = (f(x)→ D(y, z)) ∨ (D(x, z)→ f(y))

for all x, y, z ∈ L.

The mapping d : L → L defined by d(x) = D(x, x) is called the trace of
symmetric bi-f -derivation D. Obviously, a symmetric bi-f -derivation D on L
satisfies the relation

D(x, y → z) = (D(x, y)→ f(z)) ∨ (f(y)→ D(x, z))

for all x, y, z ∈ L.

Example 1. Let L := {0, a, b, 1} be a set with the Cayley table.

x x′

0 1
a b
b a
1 0

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

For any x ∈ L, we have x′ = x→ 0. The operations ∧ and ∨ on L are defined
as follows:

x ∨ y = (x→ y)→ y, x ∧ y = ((x′ → y′)→ y′)′.

Then (L,∨,∧, ′,→) is a lattice implication algebra. Define a map D : L×L→ L
by

D(x, y) =


a if (x, y) = (0, 0)

b if (x, y) = (0, a) or (x, y) = (a, 0)

1, otherwise

and define an endomorphism f : L→ L by

f(x) =


a if x = 0, a

1 if x = 1

b if x = b

Then it is easily checked that D is a symmetric bi-f -derivation of lattice impli-
cation algebra L.

Proposition 3.1. Let L be a lattice implication algebra and let D be a symmet-
ric bi-f -derivation on L. Then the mapping f1(x) = D(x, z) is a f -derivation
on L.
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Proof. Let L be a lattice implication algebra and let D be a symmetric bi-f -
derivation on L. Then

f1(x→ y) = D(x→ y, z) = (f(x)→ D(y, z)) ∨ (D(x, z)→ f(y))

= (f(x)→ f1(y)) ∨ (f1(x)→ f(y))

for every x, y, z ∈ L. This implies that f1 is a f -derivation on L. �

Proposition 3.2. Let D be a symmetric bi-f -derivation of L. Then D(1, x) =
D(x, 1) = 1 for all x ∈ L.

Proof. Let D be a symmetric bi-f -derivation of L. Since f(1) = 1, we have

D(1, x) = D(1→ 1, x)

= (f(1)→ D(1, x)) ∨ (D(1, x)→ f(1))

= (1→ D(1, x) ∨ (D(1, x)→ 1)

= D(1, x) ∨ 1 = 1

for every x ∈ L. Similarly, D(x, 1) = 1 for every x ∈ L. �

Corollary 3.3. Let D be a symmetric bi-f -derivation of L. Then D(1, 1) = 1.

Proposition 3.4. Let D be a symmetric bi-f -derivation of L. Then D(x, y) =
D(x, y) ∨ f(x) for all x, y ∈ L.

Proof. Let D be a symmetric bi-f -derivation of L. Then we have

D(x, y) = D(1→ x, y)

= (f(1) ∨D(x, y)) ∨ (D(1, y)→ f(x))

= (1→ D(x, y)) ∨ (1→ f(x))

= D(x, y) ∨ f(x)

for all x, y ∈ L. �

Proposition 3.5. Let D be a symmetric bi-f -derivation of L. If d is a trace of
D, then d(x) = d(x) ∨ f(x) for all x ∈ L.

Proof. Let d be a trace of symmetric bi-f -derivation D of L. Then we have

d(x) = D(x, x) = D(1→ x, x)

= (f(1)→ D(x, x)) ∨ (D(1, x)→ f(x)) = (1→ d(x)) ∨ (1→ f(x))

= d(x) ∨ f(x)

for all x ∈ L. This completes the proof. �

Corollary 3.6. Let D be a symmetric bi-f -derivation of L. If d is a trace of
D, then f(x) ≤ d(x) for all x ∈ L.

Proposition 3.7. Let D be a symmetric bi-f -derivation of L. Then D(x, y) ≥
f(x) and D(x, y) ≥ f(y) for all x, y ∈ L.
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Proof. Let D be a symmetric bi-f -derivation of L. Then we have

D(x, y) = D(1→ x, y) = (f(1)→ D(x, y)) ∨ (D(1, y)→ f(x))

= (1→ D(x, y) ∨ (1→ f(x))

= D(x, y) ∨ f(x) = (D(x, y)→ f(x))→ f(x)

= (f(x)→ D(x, y))→ D(x, y) ≥ f(x)

for all x, y ∈ L by (u7). Similarly, we have f(y) ≤ D(x, y) for all x, y ∈ L. This
completes the proof. �

Proposition 3.8. Let D be a symmetric bi-f -derivation of L and let d be a
trace of D. Then d(x)→ f(y) ≤ f(x)→ f(y) ≤ f(x)→ d(y) for all x, y ∈ L.

Proof. By Corollary 3.6, we have f(x) ≤ d(x) and f(y) ≤ d(y) for all x, y ∈ L.
Hence we obtain

d(x)→ f(y) ≤ f(x)→ f(y) ≤ f(x)→ d(y)

for all x, y ∈ L, by (u3). �

Theorem 3.9. Let D be a symmetric bi-f -derivation of L. Then D(x→ y, z) =
f(x)→ D(y, z) for all x, y, z ∈ L.

Proof. Since f(x) ≤ D(x, z) and f(y) ≤ D(y, z) by Proposition 3.9, we have

D(x, z)→ f(y) ≤ f(x)→ f(y) ≤ f(x)→ D(y, z)

for all x, y, z ∈ L. Hence we get

D(x→ y, z) = (f(x)→ D(x, y)) ∨ (D(x, z)→ f(y))

= (((f(x)→ D(x, y))→ (D(x, z)→ f(y))))→ (D(x, z)→ f(y))

= (((D(x, z)→ f(y))→ (f(x)→ D(y, z))))→ (f(x)→ D(y, z))

= f(x)→ D(y, z)

for all x, y, z ∈ L. This completes the proof. �

Proposition 3.10. Let D be a symmetric bi-f -derivation of L. Then D(x, y →
z) = f(y)→ D(x, z) for all x, y, z ∈ L.

Proof. Let D be a symmetric bi-f -derivation of L. Then we have

D(x, y → z) = D(y → z, x) = f(y)→ D(z, x)

= f(y)→ D(x, z)

for all x, y, z ∈ L by Theorem 3.9. This completes the proof. �

Proposition 3.11. Let D be a symmetric bi-f -derivation of L. Then D(x, y) =
f(x′)→ (f(y′)→ D(0, 0)) for all x, y ∈ L.
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Proof. Let D be a symmetric bi-f -derivation of L. Then we have

D(x, y) = D(x′′, y′′) = D(x′ → 0, y′ → 0)

= f(x′)→ D(0, y′ → 0) = f(x′)→ (f(y′)→ D(0, 0))

for all x, y ∈ L by Theorem 3.9. This completes the proof. �

Proposition 3.12. Let D be a symmetric bi-f -derivation of L and let d be a
trace of D. Then d(x→ y) = f(x)→ (f(x)→ d(y)) for all x, y ∈ L.

Proof. Let d be a trace of symmetric bi-f -derivation of L. Then we have

d(x→ y) = D(x→ y, x→ y)

= f(x)→ D(y, x→ y) = f(x)→ D(x→ y, y)

= f(x)→ (f(x)→ D(y, y)) = f(x)→ (f(x)→ d(y))

for all x, y ∈ L by Theorem 3.9. This completes the proof. �

Proposition 3.13. Let D be a symmetric bi-f -derivation of L and let d be a
trace of D. Then d(x ∨ y) = f(x→ y)→ (f(x→ y)→ d(y)) for all x, y ∈ L.

Proof. Let d be a trace of symmetric bi-f -derivation of L. Then we have

d(x ∨ y) = D(x ∨ y, x ∨ y) = D((x→ y)→ y, (x→ y)→ y)

= f(x→ y)→ D(y, (x→ y)→ y) = f(x→ y)→ D((x→ y)→ y, y)

= f(x→ y)→ (f(x→ y)→ D(y, y)) = f(x→ y)→ (f(x→ y)→ d(y))

for all x, y ∈ L by Theorem 3.9. This completes the proof. �

Corollary 3.14. Let D be a symmetric bi-f -derivation of L and let d be a trace
of D. If x ≤ y, then d(x ∨ y) = d(y) for all x, y ∈ L.

Let L be a lattice implication algebra and let D be a symmetric bi-f -
derivation of L. For a fixed element a ∈ L, define a map da : L → L by
da(x) = D(x, a) for all x ∈ L.

Proposition 3.15. Let D be a symmetric bi-f -derivation of L. Then da is a
f -derivation of L.

Proof. Let D be a symmetric bi-f -derivation of L. Then we have

da(x→ y) = D(x→ y, a) = (f(x)→ D(y, a)) ∨ (D(x, a)→ f(y))

= (f(x)→ da(y)) ∨ (da(x)→ f(y))

for all x, y ∈ L. This completes the proof. �

Proposition 3.16. Let L be a lattice implication algebra and let D be a sym-
metric bi-f -derivation of L. Then the following conditions hold:

(1) da(x) = da(x) ∨ f(x) for every x ∈ L.
(2) da(x ∨ y) = f(x→ y) ∨ da(y) for every x, y ∈ L.
(3) If x ≤ y, then da(x ∨ y) = da(y) ∨ f(y) for x, y ∈ L.
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Proof. (1) For every x ∈ L, we have

da(x) = D(x, a) = D(1→ x, a)

= (f(1)→ D(x, a)) ∨ (D(1, a)→ f(x))

= (1→ da(x)) ∨ (1→ f(x))

= da(x) ∨ f(x).

(2) For every x, y ∈ L, we have

da(x ∨ y) = D(x ∨ y, a) = D((x→ y)→ y, a)

= f(x→ y)→ D(y, a) = f(x→ y)→ da(y)

(3) Let x, y ∈ L be such that x ≤ y. Then x→ y = 1. Hence

da(x ∨ y) = D(x ∨ y, a) = D((x→ y)→ y, a)

= (f(x→ y)→ D(y, a)) ∨ (D(x→ y, a)→ f(y))

= (1→ D(y, a) ∨ (D(1, a)→ f(y)) = da(y) ∨ f(y).

�

Proposition 3.17. Let L be a lattice implication algebra and let D be a sym-
metric bi-f -derivation of L. Then da(1) = 1.

Proof. Let L be a lattice implication algebra and let D be a symmetric bi-f -
derivation of L. By Theorem 3.9, we get

da(1) = D(1, a) = D(1→ 1, a)

= f(1)→ D(1, a) = 1 ∨ 1 = 1.

This completes the proof. �

Definition 7. Let L be a lattice implication algebra and let D be a symmetric
mapping on L. The mapping D : L → L satisfying D(x → y, z) = D(x, z) →
D(y, z) for all x, y, z ∈ L, is called a joinitive mapping.

Proposition 3.18. Let L be a lattice implication algebra and let D be a sym-
metric mapping on L. If D is a joinitive mapping, then da is isotone.

Proof. Let D be a symmetric mapping on L and x ≤ y. Then

da(x)→ da(y) = D(x, a)→ D(y, a) = D(x→ y, a) = D(1, a) = 1,

which implies da(x) ≤ da(y) for all x, y ∈ L. This completes the proof. �

Let L be a lattice implication algebra and let d be a symmetric bi-f -derivation
of L. Define a set Fixd(L) by

Fixd(L) = {x ∈ L | d(x) = D(x, x) = f(x)}.

Proposition 3.19. Let L be a lattice H implication algebra and let d be a
trace of symmetric bi-f -derivation D of L. If x ∈ L and y ∈ Fixd(L), then
x ∨ y ∈ Fixd(L).
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Proof. Let x ∈ L and y ∈ Fixd(L). Then we obtain

d(x ∨ y) = D(x ∨ y, x ∨ y) = D((x→ y)→ y, (x→ y)→ y)

= f(x→ y)→ D(y, (x→ y)→ y) = f(x→ y)→ D((x→ y)→ y, y)

= f(x→ y)→ (f(x→ y)→ D(y, y)) = f(x→ y)→ (f(x→ y)→ d(y))

= f(x→ y)→ (f(x→ y)→ f(y)) = f(x→ y)→ f((x→ y)→ y)

= f((x→ y)→ (x→ y)→ y)) = f(((x→ y)→ (x→ y))→ (x→ y)→ y)

= f(1→ (x→ y)→ y) = f((x→ y)→ y)

= f(x ∨ y).

This implies x ∨ y ∈ Fixd(L). This completes the proof. �

Proposition 3.20. Let L be a lattice H implication algebra and let d be a
trace of symmetric bi-f -derivation D of L. If x ∈ L and y ∈ Fixd(L), then
x→ y ∈ Fixd(L).

Proof. Let d be a symmetric bi-f -derivation of L. By Theorem 3.9 and by (u9),
we obtain

d(x→ y) = D(x→ y, x→ y) = f(x)→ D(x→ y, y)

= f(x)→ (f(x)→ d(y)) = f(x)→ (f(x)→ f(y))

= (f(x)→ f(x))→ (f(x)→ f(y)) = 1→ f(x→ y)

= f(x→ y).

This completes the proof. �

Definition 8. Let L be a lattice implication algebra. A non-empty set F of L
is called a normal filter if it satisfies the following conditions:

(1) 1 ∈ F,
(2) x ∈ L and y ∈ F imply x→ y ∈ F.

Theorem 3.21. Let L be a lattice H implication algebra and let D be a sym-
metric bi-f -derivation of L. Then Fixd(L) is a normal filter of L.

Proof. Clearly, 1 ∈ Fixd(L). Let x ∈ L and y ∈ Fixd(L). Then we have

d(x→ y) = D(x→ y, x→ y) = f(x)→ D(x→ y, y)

= f(x)→ (f(x)→ d(y)) = f(x)→ (f(x)→ f(y))

= (f(x)→ f(x))→ (f(x)→ f(y)) = 1→ f(x→ y)

= f(x→ y).

Therefore, this implies that Fixd(L) is normal filter of L. This completes the
proof. �

Let D be a symmetric bi-f -derivation of L and let d be a trace of D. Define
a set Kerd by

Kerd = {x ∈ L | D(x, x) = d(x) = 1}.
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Proposition 3.22. Let L be a lattice implication algebra and let D be a sym-
metric bi-f -derivation of L. If x ∈ L and y ∈ Kerd, then x→ y ∈ Kerd.

Proof. Let x ∈ L and y ∈ Fixd(L). Then

d(x→ y) = D(x→ y, x→ y) = f(x)→ D(y, x→ y)

= f(x)→ D(x→ y, y) = f(x)→ (f(x)→ D(y, y))

= f(x)→ (f(x)→ d(y)) = f(x)→ (f(x)→ 1)

= f(x)→ 1 = 1.

Hence x→ y ∈ Kerd. This completes the proof. �

Proposition 3.23. Let L be a lattice implication algebra and let D be a sym-
metric bi-f -derivation of L. If x ∈ L and y ∈ Kerd, then x ∨ y ∈ Kerd.

Proof. Let x ∈ L and y ∈ Kerd. Then we obtain d(y) = 1. Hence

d(x ∨ y) = D(x ∨ y, x ∨ y) = D((x→ y)→ y, (x→ y)→ y)

= (f(x→ y)→ D(y, (x→ y)→ y) = (f(x→ y)→ (D((x→ y)→ y, y))

= (f(x→ y)→ (f(x→ y)→ D(y, y)) = (f(x→ y)→ (f(x→ y)→ d(y))

= (f(x→ y)→ (f(x→ y)→ 1) = f(x→ y)→ 1 = 1.

Therefore, x ∨ y ∈ Kerd. This completes the proof. �

Proposition 3.24. Let L be a lattice implication algebra and let D be a sym-
metric bi-f -derivation of L. If x ≤ y and x ∈ Kerd, then y ∈ Kerd.

Proof. Let x ∈ Kerd and x ≤ y. Then

d(y) = D(y, y) = D((x→ y)→ y, (x→ y)→ y)) = D(y → x)→ x, (y → x)→ x)

= f(y → x)→ D(x, (y → x)→ x)) = f(y → x)→ D((y → x)→ x, x)

= f(y → x)→ (f(y → x)→ D(x, x)) = f(y → x)→ (f(y → x)→ 1)

= f(y → x)→ (f(y → x)→ 1) = f(y → x)→ 1 = 1.

Therefore, this implies that y ∈ Kerd. This completes the proof. �

Proposition 3.25. Let L be a lattice implication algebra and let D be a sym-
metric bi-f -derivation on L If d is isotone, then Kerd is a down closed set, that
is, x ≤ y and y ∈ Kerd(L) implies x ∈ Kerd.

Proof. Let x, y be such that x ≤ y and x ∈ Kerd. Then we have d(x) ≤ d(y) = 1,
which implies d(x) = 1, that is, x ∈ Kerd. Hence x ∈ Fixd(L). This completes
the proof. �

Theorem 3.26. Let L be a lattice implication algebra and let D be a symmetric
bi-f -derivation of L. Then Kerd is a normal filter of L.
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Proof. Clearly, 1 ∈ Kerd. Let x ∈ L and y ∈ Kerd. Then we have

d(x→ y) = D(x→ y, x→ y) = f(x)→ D(x→ y, y)

= f(x)→ (f(x)→ d(y)) = f(x)→ (f(x)→ 1)

= 1.

Therefore, this implies that Kerd is a normal filter of L. This completes the
proof. �

Theorem 3.27. Let L be a lattice implication algebra, D be a symmetric bi-
f -derivation on L and f be a lattice implication homomorphism on L. Then
D(x∨ y, z) = D(f(x), z)∨D(f(y), z) and D(x∧ y, z) = D(f(x), z)∧D(f(y), z)
for all x, y, z ∈ L.

Proof. Let x, y, z ∈ L. Then we have

D(x ∨ y, z) = D(x′′ ∨ y′′, z) = D((x′ ∧ y′)→ 0, z)

= f(x′ ∧ y′)→ D(0, z) = (f(x′)→ D(0, z)) ∨ ((y′)→ D(0, z))

= D(f(x′)→ 0, z) ∨D(f(y′)→ 0, z) = D(f(x′)′, z) ∨D(f(y′)′, z)

= D(f(x), z) ∨D(f(y), z).

We can prove the case of meet operation in the similar way. �

Proposition 3.28. Let L be a lattice implication algebra and let D be a sym-
metric bi-f -derivation on L. If f(x) = x, then D(x′, x) = D(x, x′) = 1 for every
x ∈ L.

Proof. For every x ∈ L, we have

D(x′, x) = D(x→ 0, x) = f(x)→ D(0, x)

= f(x)→ D(x, 0) = x→ D(x, 0) = D(x→ x, 0) = D(1, 0) = 1.

�

Proposition 3.29. Let L be a lattice implication algebra and let D be a sym-
metric bi-f -derivation on L. If x′ ≤ y for every x, y ∈ L and f(x) = x for all
x ∈ L, we have D(y, x) = 1.

Proof. For every x, y ∈ L, we know that x′ ≤ y implies x′ ∨ y = y. Hence

D(y, x) = D(x′ ∨ y, x) = D(f(x′), x) ∨D(f(y), x)

= D(x′, x) ∨D(y, x) = 1 ∨D(y, x) = 1.

�



ON SYMMETRIC BI-f-DERIVATIONS OF LATTICE IMPLICATION ALGEBRAS 11

References

[1] L. Bolc and P. Borowik, Many-Valued Logic, Springer, Berlin, 1994.

[2] Yilmaz Ceven and Mehmet Ali Ozturk, On f-derivations of lattice, Bull. Korean Math.
Soc, 45 (2008), 701–707.

[3] Alev Firat, On f-derivations of BCC-algebras, Ars Combinatoria, XCVIIA (2010),

377–382.
[4] J. A. Goguen, The logic of inexact concepts, Synthese 19 (1969), 325–373.

[5] S. D. Lee and K. H. Kim, On derivations of lattice implication algebras, Ars Combina-

toria, 108 (2013), 279-288.
[6] J. Liu and Y. Xu, On certain filters in lattice implication algebras, Chinese Quarterly

J. Math. 11(4) (1996), 106–111.
[7] J. Liu and Y. Xu, On the property (P ) of lattice implication algebras, J. Lanzhou Univ.

32 (1996), 344–348.

[8] J. Liu and Y. Xu, Filters and structure of lattice implication algebras, Chinese Science
Bulletin 42(18) (1997), 1517–1520.

[9] C. Prabpayak and U. Leerawat, On derivations of BCC-algebras, Kasetsart J. 43 (2009),

398-401.
[10] Z. M. Song, Study on the theoretical foundation of uncertainty information processing

based on lattice implication algebras and method of uncertainty reasoning, Ph. D. Thesis,

Southwest Jiaotong University, China (1998) (in Chinese).
[11] Y. Xu, Lattice implication algebras, J. Southwest Jiaotong Univ. 1 (1993), 20–27.

[12] Y. Xu and K. Y. Qin, Lattice H implication algebras and lattice implication algebra

classes, J. Hebei Mining and Civil Engineering Institute 3 (1992), 139–143.
[13] Y. Xu and K. Y. Qin, On filters of lattice implication algebras, J. Fuzzy Math. 1(2)

(1993), 251–260.

[14] Y. H. Yon and K. H. Kim, On f-derivations of lattice implication algebras, Ars Combi-
natoria, 110 (2013), 205-215.

Kyung Ho Kim

Department of Mathematics, Korea National University of Transportation
Chungju 27469, Korea

E-mail address: ghkim@ut.ac.kr


