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ON SYMMETRIC BI-f-DERIVATIONS OF LATTICE
IMPLICATION ALGEBRAS

Kyuncg Ho Kim

ABSTRACT. In this paper, we introduce the notion of symmetric bi-f-
derivation of lattice implication algebra and investigated some related
properties. Also, we prove that if D is a symmetric bi-f-derivation of
L, then D(z — y,z) = f(z) = D(y, z) for all z,y,z € L.

1. Introduction

The concept of lattice implication algebra was proposed by Y. Xu [11], in
order to establish an alternative logic knowledge representation. Also, in [12],
Y. Xu and K. Y. Qin discussed the properties lattice H implication algebras,
and gave some equivalent conditions about lattice H implication algebras. Y.
Xu and K. Y. Qin [13] introduced the notion of filters in a lattice implication,
and investigated their properties. The present author [5, 14] introduced the
notion of derivation and f-derivation in lattice implications algebras and ob-
tained some related results. In this paper, we introduce the notion of symmet-
ric bi- f-derivation of lattice implication algebra and investigated some related
properties. Also, we prove that if D is a symmetric bi-f-derivation of L, then
D(x — y,z) = f(x) = D(y, 2) for all z,y, 2 € L.

2. Preliminary

A lattice implication algebra is an algebra (L; A, V, 1, —, 0, 1) of type
(2,2,1,2,0,0), where (L;A,V,0,1) is a bounded lattice, “ 7 7 is an order-
reversing involution and “ — ” is a binary operation, satisfying the following
axioms, for all z,y,z € L,

L) 2= (y—=2)=y— (= 2),

(L2) z —»z =1,

(L3) e my=y — 2,

I4) z—y=y—z=1=>z=y,
L5 (@ —=y) »y=(Wy—2) -2,
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(L6) (zVy) = z=(z— 2)A(y — 2),

(L7) (zAy) = z=(z—2)V(y — 2).
If L satisfies conditions (L1) — (L5), we say that L is a quasi lattice implication
algebra. A lattice implication algebra L is called a lattice H implication algebra
if it satisfies z Vy V ((z Ay) — 2) =1 for all z,y,z € L.
In the sequel the binary operation “ — ” will be denoted by juxtaposition. We
can define a partial ordering “ < ” on a lattice implication algebra L by z <y
ifand only if z — y =1 for all z,y € L.

In a lattice implication algebra L, the following hold (see [11]),
(u) 0—sz=11-z=zandz— 1=1,
2) z—=y<(y—2) —(r—2),

ud) x <yimpliesy - z<z—zand z 5>z <z —y,

ud) ¢’ =x — 0.

us) xVy=(z—y) =y,

ub) ((y—>x)—>y) =zhy=((x—=y) =),

u?) < (x—=vy) —=vy.

(u
(
(
(
(
(

for all z,y,z € L.
Definition 1. In a lattice H implication algebra L, the following hold, for all
x,y,2 € L,

() z = (z = y)=1z—vy,

(W) z— (y—2)=(x =y — (x = 2).
Definition 2. A subset F' of a lattice implication algebra L is called a filter of
L it satisfies,

(F1) 1 € F,

(F2) x € Fand x -y € F imply y € F, for all z,y € L.

Definition 3. Let Ly and Lo be lattice implication algebras. A mapping f :
L1 — Lo is an implication homomorphism if

fl@—=y)=fz) = f(y)
for all x,y € Ly. Moreover, if f: L1 — Ly satisfies the conditions
f@vy) = f(@)V fy), [z Ay) = fl@)Afy), f@) = fz)
for all x,y € L1, we say that f is a lattice implication homomorphism on L.

Definition 4. Let L be a lattice implication algebra. A mapping D(.,.) :
L x L — L is called symmetric if D(z,y) = D(y, z) holds for all z,y € L.

Definition 5. Let L be a lattice implication algebra and x € L. A mapping
d(z) = D(z,z) is called trace of D(.,.), where D(.,.) : L x L — L is a symmetric
mapping on L.
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3. Symmetric bi-f-derivations of lattice implication algebras

In what follows, let L denote a lattice implication algebra and let f be an
implication homomorphism on L unless otherwise specified.

Definition 6. Let L be a lattice implication algebra and let f be an implication
homomorphism on L. A symmetric map D : L x L — L is called a symmetric
bi- f -derivation of L if the following condition holds

D(x = y,z) = (f(x) = D(y,2)) V (D(z,2) = f(y))
for all z,y,z € L.

The mapping d : L — L defined by d(z) = D(z,x) is called the trace of
symmetric bi-f-derivation D. Obviously, a symmetric bi- f-derivation D on L
satisfies the relation

D(z,y — z) = (D(z,y) — f(2)) V (f(y) = D(z,z))
for all z,y,z € L.

Example 1. Let L :={0,a,b, 1} be a set with the Cayley table.

z |2 —>‘0 a b 1
01 0|1 1 1 1
al|b alb 1 1 1
b | a bla b 1 1
110 10 a b 1

For any x € L, we have ' = x — 0. The operations A and vV on L are defined
as follows:
aVy=(z—=y) =y, zhy=(a"—=y)=y).
Then (L,V,\,1,—) is a lattice implication algebra. Define a map D : LxL — L
by
a if (z,y) =(0,0)
D(z,y) = qb  if (z,y) = (0,a) or (z,y) = (a,0)
1, otherwise

and define an endomorphism f: L — L by

a ifx=0,a
f@y=<1 ifz=1
b ifx=0>b

Then it is easily checked that D is a symmetric bi-f-derivation of lattice impli-
cation algebra L.

Proposition 3.1. Let L be a lattice implication algebra and let D be a symmet-
ric bi-f-derivation on L. Then the mapping fi1(z) = D(x,z) is a f-derivation
on L.
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Proof. Let L be a lattice implication algebra and let D be a symmetric bi-f-
derivation on L. Then

fiz = y) =Dz =y, 2) = (f(z) = D(y,2)) V (D(z,2) = f(y))
= (f(@) = A@) Vv (h(z) = fy)

for every x,y,z € L. This implies that f; is a f-derivation on L. O

Proposition 3.2. Let D be a symmetric bi-f-derivation of L. Then D(1,z) =
D(z,1) =1 for all x € L.

Proof. Let D be a symmetric bi- f-derivation of L. Since f(1) = 1, we have
D(1,z) = D(1 — 1,x)
— (1) = D(1,2)) V (D(1,2) - f(1))
1

=(1—=D(,z)Vv (D(l,z) = 1)
=D(l,z)V1=1
for every x € L. Similarly, D(z,1) = 1 for every « € L. O

Corollary 3.3. Let D be a symmetric bi-f-derivation of L. Then D(1,1) = 1.

Proposition 3.4. Let D be a symmetric bi-f-derivation of L. Then D(x,y) =
D(z,y)V f(z) for all z,y € L.

Proof. Let D be a symmetric bi- f-derivation of L. Then we have
D(z,y) = D(1 = z,y)
(f) v D(z,y)) vV (D(,y) = f(z))
=1 = D(z,y)) V(1 — f(z))
= D(z,y) V f(z)
for all z,y € L. O

Proposition 3.5. Let D be a symmetric bi-f-derivation of L. If d is a trace of
D, then d(x) = d(z) V f(x) for all z € L.
Proof. Let d be a trace of symmetric bi- f-derivation D of L. Then we have
d(z) = D(z,z) = D(1 — z,x)
= (f(1) = D(z,2)) vV (D(1,z) = f(z)) =1 —=d@)V (1= f(z)
=d(z)V f(x)
for all € L. This completes the proof. O

Corollary 3.6. Let D be a symmetric bi-f-derivation of L. If d is a trace of
D, then f(z) < d(x) for all z € L.

Proposition 3.7. Let D be a symmetric bi-f-derivation of L. Then D(z,y) >
f(x) and D(z,y) > f(y) for all z,y € L.
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Proof. Let D be a symmetric bi- f-derivation of L. Then we have
D(z,y) = D(1 = z,y) = (f(1) = D(z,y)) vV (D(1,y) = f(z))
=1 = D(z,y) v (1— f(z))
=D(z,y) v f(z) = (D(z,y) = f(x)) = f(z)
= (f(z) = D(z,y)) = D(z,y) > f(z)
for all z,y € L by (u7). Similarly, we have f(y) < D(z,y) for all 2,y € L. This
completes the proof. O

Proposition 3.8. Let D be a symmetric bi-f-derivation of L and let d be a
trace of D. Then d(z) — f(y) < f(z) — f(y) < f(z) — d(y) for all z,y € L.

Proof. By Corollary 3.6, we have f(z) < d(z) and f(y) < d(y) for all z,y € L.
Hence we obtain

d(z) = f(y) < f(z) = fy) < f(z) = d(y)
for all z,y € L, by (u3). O

Theorem 3.9. Let D be a symmetric bi-f-derivation of L. Then D(x — y,z) =
f(z) = D(y,z) for all x,y,z € L.

Proof. Since f(z) < D(x,z) and f(y)

< D(y, z) by Proposition 3.9, we have
D(z,z) = f(y) < f(z) = f

Y

(y) < f(x) = D(y, 2)

for all x,y, z € L. Hence we get

D(z = y,z) = (f(z) = D(z,y)) V (D(z,2) = f(y))

= (((f(x) = D(z,y)) = (D(z,2) = f(y))) = (D(x,2) = f(y))
= (((D(x,2) = f(y)) = (f(x) = D(y,2)))) = (f(z) = D(y, 2))
= f(z) = D(y,2)

for all x,y, z € L. This completes the proof. O

Proposition 3.10. Let D be a symmetric bi-f-derivation of L. Then D(z,y —
z) = f(y) = D(z,z) for all z,y,z € L.

Proof. Let D be a symmetric bi- f-derivation of L. Then we have
D(z,y — 2) =D(y — z,2) = f(y) = D(z,x)
= f(y) = D(x,2)
for all x,y,z € L by Theorem 3.9. This completes the proof. O

Proposition 3.11. Let D be a symmetric bi-f-derivation of L. Then D(z,y) =
f(&) = (f(y') — D(0,0)) for all z,y € L.
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Proof. Let D be a symmetric bi- f-derivation of L. Then we have
D(z,y) = D(z",y") = D(z" — 0,y — 0)
= f(z') = D(0,y — 0) = f(z') = (f(y') — D(0,0))
for all z,y € L by Theorem 3.9. This completes the proof. U

Proposition 3.12. Let D be a symmetric bi-f-derivation of L and let d be a
trace of D. Then d(x — y) = f(z) = (f(z) — d(y)) for all x,y € L.

Proof. Let d be a trace of symmetric bi- f-derivation of L. Then we have
dlx = y)=D(x = y,z = y)
= f(z) = D(y,xz = y) = f(z) = D(z = y,y)
= f(z) = (f(z) = D(y,y)) = f(z) = (f(z) = d(y))
for all x,y € L by Theorem 3.9. This completes the proof. O

Proposition 3.13. Let D be a symmetric bi-f-derivation of L and let d be a
trace of D. Then d(zVy) = f(xr = y) = (f(zx = y) = d(y)) for all z,y € L.
Proof. Let d be a trace of symmetric bi-f-derivation of L. Then we have
d(xVy) =D VyxzVy) =Dz —=y) =y (x =y =y
=fle—=y) =Dy, (z—=y) =y =flz—=y) = D((z—=y) =y
=fl@—=y) = (f(@ =y) = D(y,y) = flx = y) = (f(z = y) = d(y))
for all x,y € L by Theorem 3.9. This completes the proof. O

Corollary 3.14. Let D be a symmetric bi-f-derivation of L and let d be a trace
of D. If x <y, then d(x Vy) = d(y) for all x,y € L.

Let L be a lattice implication algebra and let D be a symmetric bi-f-
derivation of L. For a fixed element a € L, define a map d, : L — L by
do(z) = D(x,a) for all z € L.

Proposition 3.15. Let D be a symmetric bi-f-derivation of L. Then d, is a
f-derivation of L.

Proof. Let D be a symmetric bi- f-derivation of L. Then we have
do(x = y) = D(x = y,a) = (f(z) = D(y,a)) vV (D(z,a) = f(y))
= (f(x) = da(y)) V (da(z) = f(y))

for all x,y € L. This completes the proof. O
Proposition 3.16. Let L be a lattice implication algebra and let D be a sym-
metric bi-f-derivation of L. Then the following conditions hold:

(1) do(z) = do(x) V f(z) for every x € L.

(2) du(x V) = f(z = ) V daly) for every z,y € L.

(3) If # <y, then do(x vV y) = da(y) V f(y) for z,y € L.
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Proof. (1) For every x € L, we have
do(x) = D(z,a) = D(1 = z,a)
= (f(1) = D(z,a)) vV (D(L,a) = f(x))
=1 = da(z)) V(1= f(z))
=dq(z) V f(2).
(2) For every x,y € L, we have
do(xVy)=D(xVy,a)=D((z—y)—y,a)
=f(@z—=y) = D(y,a) = f(z = y) = da(y)
(3) Let «,y € L be such that x <y. Then  — y = 1. Hence
do(zVy) =D(zVy,a) =D((z = y) = y,a)
= (f(z = y) = D(y,a)) V (D(x = y,a) = f(y))
=1 = D(y,a) vV (D(1,a) = f(y)) = da(y) V f(y).
O

Proposition 3.17. Let L be a lattice implication algebra and let D be a sym-
metric bi-f-derivation of L. Then dg(1) = 1.

Proof. Let L be a lattice implication algebra and let D be a symmetric bi- f-
derivation of L. By Theorem 3.9, we get

de(1) = D(1,a) = D(1 — 1,a)
= f(1) > D(1,a) =1V1=1.
This completes the proof. O

Definition 7. Let L be a lattice implication algebra and let D be a symmetric
mapping on L. The mapping D : L — L satisfying D(z — y,2) = D(x,2) —
D(y, z) for all z,y,z € L, is called a joinitive mapping.

Proposition 3.18. Let L be a lattice implication algebra and let D be a sym-
metric mapping on L. If D is a joinitive mapping, then d, is isotone.

Proof. Let D be a symmetric mapping on L and x < y. Then
da(2) = da(y) = D(z,a) = D(y,a) = D(z — y,a) = D(1,a) = 1,
which implies d,(z) < d,(y) for all z,y € L. This completes the proof. O

Let L be a lattice implication algebra and let d be a symmetric bi- f-derivation
of L. Define a set Fizy(L) by

Fizg(L) ={zx € L|d(z) = D(z,z) = f(x)}.
Proposition 3.19. Let L be a lattice H implication algebra and let d be a

trace of symmetric bi-f-derivation D of L. If x € L and y € Fixq(L), then
xVy € Fixg(L).
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Proof. Let x € L and y € Fizq(L). Then we obtain

dxVy)=D(@VyzVy)=D({(r—y) =y (r—y) =y
=flx = y) = Dy, (x = y) =y = flx =y) = Dz —y) = v,y)

=fl@—=y) = (flz > y) = D(y,y) = flz = y) = (flz = y) = dy))
=flz=y) = (fl@—=y) = fW)=fl—=y) = f((z—=>y) =)
=fllz—=y) =@y —y)=f((z—y) = (@—=y) > (@—=>y) =y
=fl=(z—=y) =y =fz—=y) —y)
= f(zVy)

This implies 2 V y € Fizq(L). This completes the proof. d

Proposition 3.20. Let L be a lattice H implication algebra and let d be a
trace of symmetric bi-f-derivation D of L. If x € L and y € Fixq(L), then
xr —y € Fizg(L).

Proof. Let d be a symmetric bi- f-derivation of L. By Theorem 3.9 and by (u9),
we obtain

dx —y) =D —yx—y)=f(z) > D —yy)
=f(@) = (f(z) = d(y) = f(z) = (f(z) = f(y))
=(f(@) = f(@)) = (f(z) = f(y) =1 = f(z = y)
=flz—=y).
This completes the proof. U
Definition 8. Let L be a lattice implication algebra. A non-empty set F' of L
is called a normal filter if it satisfies the following conditions:
(1)1 e F,
(2)zxe Landy € F imply z —» y € F.

Theorem 3.21. Let L be a lattice H tmplication algebra and let D be a sym-
metric bi-f-derivation of L. Then Fixy(L) is a normal filter of L.

Proof. Clearly, 1 € Fixg(L). Let € L and y € Fixy(L). Then we have
dx = y)=D(x —y,x—y) = f(z) > D —yy)
=f(@) = (f(z) = d(y)) = f(z) = (f(z) = f(y))
= (&) = ) = (@) > [() = 1= fz > y)
= flz = y).

Therefore, this implies that Fixg(L) is normal filter of L. This completes the
proof. O

Let D be a symmetric bi- f-derivation of L and let d be a trace of D. Define
a set Kerd by
Kerd={x € L | D(z,z) =d(z) =1}.
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Proposition 3.22. Let L be a lattice implication algebra and let D be a sym-
metric bi-f-derivation of L. If x € L and y € Kerd, then x — y € Kerd.

Proof. Let x € L and y € Fizy(L). Then
dx —y) =D —yz—y)=f(z) > Dy,z—y)
= f(z) = D(z = y,y) = f(z) = (f(z) = D(y,y))
=f(@) = (f(z) = d(y)) = f(z) = (f(z) = 1)
=f(z)=>1=1.
Hence © — y € Kerd. This completes the proof. O

Proposition 3.23. Let L be a lattice implication algebra and let D be a sym-
metric bi-f-derivation of L. If x € L and y € Kerd, then x Vy € Kerd.

Proof. Let x € L and y € Kerd. Then we obtain d(y) = 1. Hence

d(zVy)=D(xVyxzVy) =Dz —=y) =y (z =y =y
=(fz=y) =Dy, (z=y) =2y =(flz =y = (D= —=y) = yy)
=(f(@=y) = (f(e =y) = Dy,y) = (flz = y) = (flz = y) = dy))
=(fa=y) > (f@oy) =) =fle-y —1=1L

Therefore, x Vy € Kerd. This completes the proof. O

Proposition 3.24. Let L be a lattice implication algebra and let D be a sym-
metric bi-f-derivation of L. If xt <y and x € Kerd, then y € Kerd.

Proof. Let x € Kerd and x < y. Then

d(y) = D(y,y) = D((x = y) =y, (r = y) = y)) =Dy =) = 2,y > x) > )
=fly—z) = D, (y—z)—>2)=fly—>2)—> Dy —>z) > 1)
=fly—2z) = (fly > 2) = D(@,2)=fly > 2) = (fly > 2) = 1)
=fly—az)=(fly—2)=>1)=fly—z)>1=1

Therefore, this implies that y € Kerd. This completes the proof. O

Proposition 3.25. Let L be a lattice implication algebra and let D be a sym-
metric bi-f-derivation on L If d is isotone, then Kerd is a down closed set, that
is, z <y andy € Kerd(L) implies x € Kerd.

Proof. Let x,y be such that < y and € Kerd. Then we have d(z) < d(y) = 1,
which implies d(x) = 1, that is, x € Kerd. Hence x € Fixq(L). This completes
the proof. O

Theorem 3.26. Let L be a lattice tmplication algebra and let D be a symmetric
bi-f -derivation of L. Then Kerd is a normal filter of L.
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Proof. Clearly, 1 € Kerd. Let x € L and y € Kerd. Then we have

d(x —y)=D(x —y,x—y)=f(x) > D —y,y)
f(x) = (f(z) = d(y)) = f(z) = (f(z) = 1)
1

Therefore, this implies that Kerd is a normal filter of L. This completes the
proof. O

Theorem 3.27. Let L be a lattice implication algebra, D be a symmetric bi-
f-derivation on L and f be a lattice implication homomorphism on L. Then

D(zVy,z) = D(f(x),2) vV D(f(y),2) and D(x Ny, z) = D(f(x),z) AD(f(y), 2)
for all x,y,z € L.

Proof. Let x,y,z € L. Then we have
D(xVy,z)=D@E"Vvy' 2)=D((2' Ny') = 0,2)
=f@@' Ay') = D(0,2) = (f(z) = D(0,2)) vV ((y') = D(0,2))
= D(f(.’tl) — 0, Z) \ D(f(y/) — 0, Z) = D(f(ﬂfl)/, Z) \ D(f(y/)/v Z)
= D(f(z),z) vV D(f(y),2).

We can prove the case of meet operation in the similar way. O

Proposition 3.28. Let L be a lattice implication algebra and let D be a sym-
metric bi-f-derivation on L. If f(x) = x, then D(z',xz) = D(z,2') = 1 for every
z € L.

Proof. For every x € L, we have

D(2',z) = D(x — 0,z) = f(x) — D(0,x)
= f(z) - D(z,0) =2 — D(z,0) = D(x — z,0) = D(1,0) = 1.

O

Proposition 3.29. Let L be a lattice implication algebra and let D be a sym-
metric bi-f-derivation on L. If ' <y for every x,y € L and f(x) = x for all
x € L, we have D(y,z) = 1.

Proof. For every x,y € L, we know that 2’ <y implies ' V y = y. Hence

D(y,x) = D(a' Vy,x) = D(f(),z) V D(f(y), )
= D(z',2)V D(y,z) =1V D(y,z) = 1.
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