Note on Cellular Structure of Edge Colored Partition Algebras

A. Joseph Kennedy*
Department of Mathematics, Pondicherry University, Pondicherry, India
e-mail: kennedy.pondi@gmail.com
G. Muniasamy
Department of Mathematics, MIT, Anna University, Chennai, India
e-mail: gmuniasamy32@gmail.com

Abstract. In this paper, we study the cellular structure of the G-edge colored partition algebras, when G is a finite group. Further, we classified all the irreducible representations of these algebras using their cellular structure whenever G is a finite cyclic group. Also we prove that the $\mathbb{Z} / r \mathbb{Z}$-Edge colored partition algebras are quasi-hereditary over a field of characteristic zero which contains a primitive $r^{t h}$ root of unity.

1. Introduction

Cellular structure of algebras has been studied in the last few years, and a variety of algebras have been proved as cellular, which are like Ariki-Koike Hecke algebra, Brauer algebra, Partition algebra, etc. Cellular algebras, which were introduced by Graham and Lehrer in [5], were defined by the existence of a basis with some multiplicative properties. Later, König and Xi in [10], have given equivalent definition for cellular algebra in terms of cell ideals, but not in terms of basis. One of the main problem in the representation theory is to parameterize all irreducible modules for an algebra. But in cellular algebras, the structure provides a complete list of irreducible modules for the algebra over any field in a systematic way.

The partition algebras have been studied independently by Martin in [11] and Jones as generalizations of the Temperley-Lieb algebras and the Potts model in sta-

[^0]tistical mechanics．In 1993，Jones considered the algebra as the centralizer algebra of the symmetric group S_{n} on $V^{\otimes k}$（see［7］）．In［14］，Xi gave a sufficient condition for a given algebra to be cellular and proved that the partition algebras are cellular by using this condition．

In［2］，Matthew Bloss introduced a G－edge colored partition algebra（or G－ colored partition algebra）as the centralizer algebra of the wreath product G 2 S_{n} ， where G is any finite group．This algebra has an important subalgebra called Ramified partition algebra（or Class partition algebra）which has been introduced by P．P Martin and A．Elgamal in［12］and by A．J Kennedy in［9］in connection with some physical problem in Statistical Mechanics and as the centralizer of $S_{|G|}$ 乙 S_{n} respectively．Further，the G－edge colored partition algebra has been identified as subalgebra of the G－vertex colored partition algebra which was introduced and realized as the centralizer algebra of the subgroup $G \times S_{n}$ of G 亿 S_{n} in［13］．

We are interested in studying the cellular structure and the representations of this algebras．In this paper，we decompose G－edge colored partition algebra as a direct sum of vector spaces $\bigoplus_{l=0}^{k} V_{l} \otimes_{F} V_{l} \otimes_{F} F\left[G \backslash S_{l}\right]$ ．If G is a finite group and $F\left[G \imath S_{l}\right]$ are cellular for $0 \leq l \leq k$ ，we prove that the G－edge colored partition algebras are cellular by using cellular structure of $F\left[G \backslash S_{l}\right]$ ．

The Ariki－Koike Hecke algrbras $\mathcal{H}_{\zeta, F}$ were introduced by Ariki and Koike in ［1］，as deformation of $\mathbb{Z} / r \mathbb{Z} \imath S_{n}$ ．This algebras have been proved to have a cellular basis by Graham and Lehrer in［5］also by Dipper，James and Mathas in［4］．

Let F be a field with a primitive $r^{t h}$ root of unity．If $\zeta=1$ ，then the algebra $\mathcal{H}_{\zeta, F}$ is isomorphic to $F\left[(\mathbb{Z} / r \mathbb{Z})\right.$ ）$\left.S_{n}\right]$ ．By using a cellular structure of $F\left[(\mathbb{Z} / r \mathbb{Z})\right.$ 亿 $\left.S_{n}\right]$ ， we have parameterized the index set of all irreducible representations of $\mathbb{Z} / r \mathbb{Z}$－ edge colored partition algebra．Also we prove that the $\mathbb{Z} / r \mathbb{Z}$－edge colored partition algebras are quasi－hereditary if the characteristic of F is zero．

2．Cellular Algebra

The original definition of cellular algebra was introduced by Graham and Lehrer in［5］．Here，we restrict ourself to an arbitrary field instead of commutative ring in the following definition．

Definition 2．1（［5］）．An associative F－algebra A is called a cellular algebra with cell datum (I, M, C, i) if the following condition are satisfied．
（C1）The finite set I is partially ordered．Associated with each $\lambda \in I$ there is a finite set $M(\lambda)$ ．The algebra A has an F－basis $C_{S, T}^{\lambda}$ where (S, T) runs through all element of $M(\lambda) \times M(\lambda)$ for all $\lambda \in I$ ．
（C2）The map i is an F－linear anti－automorphism of A with $i^{2}=i d$ which sends $C_{S, T}^{\lambda}$ to $C_{S, T}^{\lambda}$ ．
（C3）For each $\lambda \in I$ and $S, T \in M(\lambda)$ and each $a \in A$ the product $a C_{S, T}^{\lambda}$ can be written as $\sum_{U \in M(\lambda)} r_{a}(U, S) C_{U, T}^{\lambda}+r^{\prime}$ where r^{\prime} is a linear combination
of basis elements with upper index μ strictly smaller than λ, and where the coefficient $r_{a}(U, S) \in F$ do not depend on T.

For each $\lambda \in I$, there is a cell module $W(\lambda)$ with F - basis $\left\{C_{S} \mid S \in M(\lambda)\right\}$, the action is given by $a C_{S}=\sum_{T \in M(\lambda)} r_{a}(T, S) C_{T}$, where $r_{a}(T, S)$ is in F as in the above definition(C3).

For a cell module $W(\lambda)$, we can associate a bilinear form $\Phi_{\lambda}: W(\lambda) \times W(\lambda) \rightarrow F$ by $C_{S, S}^{\lambda} C_{T, T}^{\lambda} \equiv \Phi\left(C_{S}, C_{T}\right) C_{S, T}^{\lambda}$ modulo the ideal generated by all basis elements $C_{U, V}^{\mu}$ with upper index $\mu<\lambda$. And the isomorphism class of simple modules is parameterized by the set $\left\{\lambda \in I \mid \Phi_{\lambda} \neq o\right\}$. Next we recall the equivalent definition of cellular algebra in terms of cell ideals which was introduced in [10] by Koing and Xi.

Definition 2.2([14]). Let A be an F-algebra. Assume that there is an involution i on A. A two sided ideal J in A is called a cell ideal if and only if $i(J)=J$ and there exists a left ideal $\Delta \subset J$ such that Δ is finitely generated and free over F and there is an isomorphism of A-module $\alpha: J \simeq \Delta \otimes_{F} i(\Delta)$ (where $i(\Delta) \subset J$ is the i-image of Δ) making the following diagram commutative:

The algebra A (with the involution i) is called cellular if and only if there is an F-module decomposition $A=J_{1}^{\prime} \oplus J_{2}^{\prime} \oplus \cdots \oplus J_{n}^{\prime}$ (for some n) with $i\left(J_{j}^{\prime}\right)=J_{j}^{\prime}$ for each j and such that setting $J_{j}=\oplus_{i=1}^{j} J_{j}^{\prime}$ gives a chain of two sided ideals of A : $0=J_{0} \subset J_{1} \subset \cdots \subset J_{n}=A($ each of them fixed by $i)$ and for each $j(j=1,2, \cdots n)$ the quotient $J_{j}^{\prime}=J_{j} / J_{j-1}$ is a cell ideal (with respect to the involution induced by i on the quotient) of A / J_{j-1}.

Note that, the modules $\Delta(j)$ for $1 \leq j \leq n$, are called the standard modules of the cellular algebra. These modules are called the cell modules in the sense of Graham and Lehrer in [5]. And the above chain of ideals in A is called cell chain of A.

Lemma 2.3([14]). Let A be an F-algebra with an involution i. Suppose there is a decomposition

$$
\begin{equation*}
A=\bigoplus_{j=1}^{m} V_{j} \otimes_{F} V_{j} \otimes_{F} B_{j} \quad \text { as direct sum of vector spaces } \tag{2.1}
\end{equation*}
$$

where V_{j} is a vector space and B_{j} is a cellular algebra with respect to an involution σ_{j} and a cell chain $J_{1}^{(j)} \subset \cdots \subset J_{s_{j}}^{(j)}=B_{j}$ for each j. Define $J_{t}=\bigoplus_{j=1}^{t} V_{j} \otimes_{F} V_{j} \otimes_{F} B_{j}$.

Assume that the restriction of i on $V_{j} \otimes_{F} V_{j} \otimes_{F} B_{j}$ is given by $w \otimes v \otimes b \mapsto$ $v \otimes w \otimes \sigma_{j}(b)$. If for each j there is a bilinear form $\phi_{j}: V_{j} \otimes_{F} V_{j} \rightarrow B_{j}$ such that $\sigma_{j}\left(\phi_{j}(w, v)\right)=\phi_{j}(v, w)$ for all $w, v \in V_{j}$ and that the multiplication of two elements in $V_{j} \otimes V_{j} \otimes B_{j}$ is governed ϕ_{j} modulo J_{j-1}, that is, for $x, y, u, v \in V_{j}$ and $b, c \in B_{j}$, we have $(x \otimes y \otimes b)(u \otimes v \otimes c)=x \otimes v \otimes b \phi_{j}(y, u) c$ modulo the ideal J_{j-1}, and if $V_{j} \otimes V_{j} \otimes J_{l}^{(j)}+J_{j-1}$ is an ideal in A for all l and j, then A is a cellular algebra.

In [14], Xi have given this Lemma 2.3 as a sufficient condition, especially for diagram algebras to be cellular. We are going to use this lemma to prove G-edge colored partition algebras are cellular.

3. Edge Colored Partition Algebra

Let N be a finite set. A partition x on N is a collection $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$ of pairwise disjoint non-empty subsets of N whose union is N. The sets $A_{1}, A_{2}, \cdots, A_{n}$ are called blocks of that partition. We say that a partition x is finer than a partition y if every block of x is contained in some block of y. In this case we write $x \leq y$.

Let k be a positive integer and denote $\mathbf{k}=\{1,2, \cdots, k\}$ with usual order. Let x be a partition on \mathbf{k}. Then the partition x can be represented as diagram on \mathbf{k} as follows, arrange vertices $1,2, \cdots, k$ in a row, and then two vertices are connected by a path if and only if they are in a same block of x. For if $x=\{\{1,3\},\{2\},\{4,5\}\}$ is a partition of $\{1,2,3,4,5\}$ then

Let us denote $P_{\mathbf{k}}$ be the set of all such partition diagram on \mathbf{k}. Suppose x, y are two partitions on \mathbf{k}, we define $x \cdot y$ is the smallest partition z on \mathbf{k} such that $x, y \leq z$. As diagrammatically,

Let $\mathbf{k}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \cdots, k^{\prime}\right\}$. Suppose d is a partition on $\mathbf{k} \cup \mathbf{k}^{\prime}$, then d can be represented as diagram on $\mathbf{k} \cup \mathbf{k}^{\prime}$ as follows, arrange vertices $1,2, \cdots, k$ in a row and vertices $1^{\prime}, 2^{\prime}, \cdots, k^{\prime}$ in parallel row directly below. Then two vertices are connected by a path if and only if they are in a same block in d. Such a partition diagram is called
k-partition diagram on $\mathbf{k} \cup \mathbf{k}^{\prime}$. Two partition diagrams are equivalent if and only if they determine the same partition on $\mathbf{k} \cup \mathbf{k}^{\prime}$.

A standard k-partition diagram is a k-partition diagram whose blocks partition \mathbf{k} into top blocks and partition \mathbf{k}^{\prime} into bottom blocks by restriction on \mathbf{k} and \mathbf{k}^{\prime} respectively and if a top block connects to a bottom block (such blocks are called through block) then it connects with a single edge joining the leftmost vertex in each block. Such edges are called propagating edges and the number of propagating edges is called the propagating number of the diagram and its denoted by $p n(d)$.

The set of all k-partition diagram under this relation on $\mathbf{k} \cup \mathbf{k}^{\prime}$ is denoted by $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}$.

Definition 3.1([11, 8]). Let F be any field and $q \in F$. The partition algebra $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q)$ is F-algebra with basis $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}$ with the following multiplication on diagrams. Let d_{1} and d_{2} be diagram. To obtain the product $d_{1} d_{2}$

- Place d_{1} above d_{2} so that the bottom row of d_{1} coincide with the top row of d_{2}. We now have a diagram with a top, middle and bottom row.
- Count the number of connected components that lie entirely in the middle row. Let this number be n.
- Make a new k-partition diagram d_{3} by eliminating that middle row of vertices, by keeping the top and bottom rows and maintaining the connection between them.
- We define $d_{1} d_{2}=q^{n} d_{3}$.

Let G be any group. We denote $P_{\mathbf{k}}(G)$ as the set of all elements of $P_{\mathbf{k}}$ whose edges are labeled by the elements of G, with orientation from left to right. For example, let $g_{1}, g_{2} \in G$. Then the following diagram is an element of $P_{\mathbf{6}}(G)$.

Let $x^{\prime}, y^{\prime} \in P_{\mathbf{k}}(G)$ with underlying partition diagrams $x, y \in P_{\mathbf{k}}$ respectively, we define $x^{\prime} \cdot y^{\prime} \in P_{\mathbf{k}}(G)$ as follows,

- $x^{\prime} \cdot y^{\prime}=0$ if and only if there exist an edge from some vertex i to j in x^{\prime} and in y^{\prime} with different colour.
- otherwise, $x^{\prime} \cdot y^{\prime}$ is the diagram whose underlying partition diagram is $x \cdot y \in P_{k}$ and with same labels.

where $\delta_{h_{1}}^{g_{1}}$ is a kroneker delta.
A (G, k)-partition diagram is a k-partition diagram with oriented edges, where each edge is colored(or labeled) by an element of the group G. When k is understood, we will call such diagrams as G diagrams. Two G-diagrams are equivalent if the underlying partitions are equivalent and the G-diagrams are equivalent up to vector addition, that is the following holds.

is equivalent to

Thus when we speak of a G-diagram, we are really speaking of its equivalence class. The set of all such G-partition diagrams is denoted by $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(G)$. If G is finite, then $\left|P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(G)\right|=\sum_{l=1}^{2 k}|G|^{2 k-l} S(2 k, l)$, where $S(2 k, l)$ is the Stirling number.

Definition 3.2([2]). The edge colored partition algebra $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q, G)$ is the F algebra $F\left[P_{k \cup k^{\prime}}(G)\right]$ with basis consisting of G-diagrams and the multiplication on G-diagrams is defined as follows:
Let d_{1}, d_{2} be two G-diagrams

- Multiply the underlying partition diagram of d_{1} and d_{2}. This will give the underlying partition diagram of the G-diagram $d_{1} d_{2}$.
- In carrying out the previous step, d_{1} is placed above d_{2}. If during the concatenation, a bottom edge of d_{1} coincide with a top edge of d_{2} with the same orientation but with different label, then $d_{1} d_{2}=0$.
- Perform vector addition of the labels along imposed connection between d_{1} and d_{2}. Start in d_{1} and follow a path into d_{2}, performing vector addition as you go. When doing this, the labels on the edges in the diagram d_{2} are multiplied on the right of the d_{1} edge labels.
- For each connected components of edges entirely in the middle row, a factor of q appears in the product.

where

$$
\delta_{\left(g_{1} g_{2}^{-1}, g_{7}\right)}^{\left(h_{1}, h_{5}\right)}= \begin{cases}1 & \text { if } h_{1}=g_{1} g_{2}^{-1} \text { and } h_{5}=g_{7} \\ 0 & \text { Otherwise }\end{cases}
$$

Standard form of a G-diagram

- The underlying partition diagram is in standard form
- The orientation of edges are either from left to right or from top to bottom.

For each equivalence class we can choose a standard G-diagram as representative, so hereafter a G-diagram means that it is a standard G-diagram.

Let $d \in P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(G)$, define $f l i p(d) \in P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(G)$ as follows: Rotate the diagram from top to bottom and change the orientation and colour of the propagating edges by their inverse. Clearly, $\operatorname{flip}(\operatorname{flip}(d))=d$ for all $d \in P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(G)$.

Let $\eta: P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q, G) \rightarrow P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q, G)$ be the linear extension of the map flip on $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(G)$.

Lemma 3.3. The map η is an anti-automorphism of $P_{k \cup k^{\prime}}(q, G)$ with $\eta^{2}=i d$.
Proof. Clearly, η is a linear. Since $\operatorname{flip}(\operatorname{flip}(d))=d, \quad \eta^{2}(d)=d$ for all $d \in$ $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(G)$. From the definition of the multiplication on G-diagrams, flip $\left(d_{1} d_{2}\right)=$ flip $\left(d_{2}\right)$ flip $\left(d_{1}\right)$ for every $d_{1}, d_{2} \in P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(G)$. Therefore, $\eta\left(d_{1} d_{2}\right)=\eta\left(d_{2}\right) \eta\left(d_{2}\right)$ for all $d_{1}, d_{2} \in P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(G)$.

4. Cellular Structure of $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q, G)$

Let us recall that $P_{\mathbf{k}}(G)$ be the set all partition diagrams on \mathbf{k} with G-labeled edges. For $l \in\{0,1, \cdots, k\}$, we define a vector space V_{l}, which has as a basis set

$$
s_{l}=\left\{(x, S)\left|x \in P_{\mathbf{k}}(G),|x| \geq l \text { and } S \text { is a collection of any } l \text {-blocks of } x\right\}\right.
$$

Note that, the dimension of V_{l} is $\sum_{i=l}^{k}|G|^{k-l} S(k, l)\binom{i}{l}$. Let $(x, S) \in V_{l}$. We denote $[i]$ for the block of x with the left most vertex i.

We define an order on the blocks of x that $[i]<[j]$ if $i<j$, this gives an order on S. We denote $j_{[i]}$ for the $j^{\text {th }}$ element of S with the left most vertex i. So, we can always write S as $\left\{1_{\left[i_{1}\right]}, 2_{\left[i_{2}\right]}, \cdots, l_{\left[i_{l}\right]}\right\}$. Let us denote $d_{\mathbf{k}}$ is the partition on \mathbf{k} which is obtained from $d \in P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(G)$ by deleting all elements in \mathbf{k}^{\prime} of d (i.e., by restricting on \mathbf{k}).

Definition 4.1. The wreath product of a group G with the symmetric group S_{n} is a group

$$
G \imath S_{n}=\left\{\left(g_{1}, g_{2}, \cdots, g_{n} ; \pi\right) \mid g_{i} \in G \text { and } \pi \in S_{n}\right\}
$$

under the multiplication

$$
\left(g_{1}, g_{2}, \cdots, g_{n} ; \pi_{1}\right)\left(h_{1}, h_{2}, \cdots, h_{n} ; \pi_{2}\right)=\left(g_{1} h_{\pi_{1}(1)}, g_{2} h_{\pi_{1}(2)}, \cdots, g_{n} h_{\pi_{1}(n)} ; \pi_{1} \pi_{2}\right) .
$$

Lemma 4.2. There is a bijection from $P_{k \cup k^{\prime}}(G)$ to $\amalg_{l=0}^{k} s_{l} \times s_{l} \times G$ 亿 S_{l}
Proof. Let $d \in P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(G)$. Define $x:=d_{\mathbf{k}} \in P_{\mathbf{k}}(G)$ and $y:=d_{\mathbf{k}^{\prime}} \in P_{\mathbf{k}}(G)$ (by identifying \mathbf{k}^{\prime} with \mathbf{k} by sending j^{\prime} to j). Let S_{d} be the set of all through blocks of d, then $\left|S_{d}\right|=p n(d)=l$ (say). Now consider $S_{d}=\left\{C^{1}, C^{2}, \cdots, C^{l}\right\}$. Let us define $S=$ $\left\{C_{\mathbf{k}}^{1}, C_{\mathbf{k}}^{2}, \cdots, C_{\mathbf{k}}^{l}\right\}$ and $T=\left\{C_{\mathbf{k}^{\prime}}^{1}, C_{\mathbf{k}^{\prime}}^{2}, \cdots, C_{\mathbf{k}^{\prime}}^{l}\right\}$, where $C_{\mathbf{k}}^{i}\left(\operatorname{resp} C_{\mathbf{k}^{\prime}}^{i}\right)$ are the blocks of x (resp y) which are obtained from $C^{i} \in S_{d}$ by deleting the numbers contained in $\mathbf{k}^{\prime}($ resp $\mathbf{k})$. Then we can rewrite $S=\left\{1_{\left[i_{1}\right]}, 2_{\left[i_{2}\right]} \cdots l_{\left[i_{1}\right]}\right\}$ and $T=\left\{1_{\left[j_{1}^{\prime}\right]}, 2_{\left[j_{2}^{\prime}\right]} \cdots l_{\left[j_{l}^{\prime}\right]}\right\}$. Hence, $(x, S),(y, T) \in s_{l}$. Define $\left(g_{1}, g_{2} \cdots, g_{l} ; \pi\right) \in G 2 S_{l}$ corresponds to d by $\pi(t)=$ s if $t_{[i]}$ is connected to $s_{\left[j^{\prime}\right]}$ by an edge with colour g_{t} in d. Since the G-diagram d is in the standard form, x, y and $\left(g_{1}, g_{2} \cdots, g_{l} ; \pi\right)$ are unique. Thus, every G-diagram d can be uniquely represented as $(x, S) \times(y, T) \times\left(g_{1}, g_{2} \cdots, g_{l} ; \pi\right)$ in $s_{l} \times s_{l} \times\left(G \backslash S_{l}\right)$. Conversely, for every element $(x, S) \times(y, T) \times\left(g_{1}, g_{2} \cdots, g_{l} ; \pi\right) \in s_{l} \times s_{l} \times\left(G \imath S_{l}\right)$ we can associate unique partition G-diagram $d \in P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(G)$.

For every $l \in\{0,1, \cdots, k\}, V_{l}$ and $F\left[G \backslash S_{l}\right]$ are vector space with basis set s_{l} and $G \imath S_{l}$ respectively. So, $\bigoplus_{l=0}^{k} V_{l} \otimes_{F} V_{l} \otimes_{F} F\left[G \imath S_{l}\right]$ is a vector space with basis set $\amalg_{l=0}^{k} s_{l} \times s_{l} \times G \imath S_{l}$.
Remark 4.3. As vector space, $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q, G)$ is isomorphic to $\bigoplus_{l=0}^{k} V_{l} \otimes_{F} V_{l} \otimes_{F} F[G$ l S_{l}] (by above Lemma 4.2).

For $l \in\{0,1, \cdots, k\}$, define $\phi_{l}: V_{l} \otimes_{k} V_{l} \rightarrow K\left[G \imath S_{l}\right]$ as follows: Let (x, S) and (y, T) be two elements in s_{l}. Define
$\phi_{l}((x, S),(y, T))= \begin{cases}q^{|H|}(e ; \pi) \quad & \begin{array}{l}\text { if there exist a } \pi \in S_{l} \text { such that the block of } \\ \\ \\ \quad x \cdot y \text { (if } \neq 0 \text { and) containing the } i \text { th block of } S \\ \text { contains the unique } \pi(i) \text { th block of } T,(i=1,2, \cdots, l) \\ 0 \\ \text { otherwise }\end{array}\end{cases}$
where H be the set of all blocks on $\mathbf{k} \backslash S \cup T$ which are obtained from the blocks of $x \cdot y$ by deleting the elements of $S \cup T$. By Lemma 4.3 in [14], ϕ_{l} is a bilinear map.
Lemma 4.4. Let d, d^{\prime} be two G-diagrams. If $d=(u, R) \otimes(x, S) \otimes\left(g^{1} ; \pi_{1}\right)$, $d^{\prime}=(y, T) \otimes(v, Q) \otimes\left(g^{2} ; \pi_{2}\right) \in V_{l} \otimes_{F} V_{l} \otimes_{F} F\left[G \imath S_{l}\right]$, where $g^{i}=\left(g_{1}^{i}, g_{2}^{i}, \cdots, g_{l}^{i}\right), \quad(i=$ $1,2)$ then $d d^{\prime}=(u, R) \otimes(v, Q) \otimes\left(g^{1} ; \pi_{1}\right) \phi_{l}((x, S),(y, T))\left(g^{2} ; \pi_{2}\right)$ modulo $J_{l-1}=$ $\bigoplus_{j=0}^{l-1} V_{j} \otimes_{F} V_{j} \otimes_{F} F\left[G \imath S_{j}\right]$.
Proof. Let $d d^{\prime}=\delta q^{r} d^{\prime \prime}$. We claim that $(u, R) \otimes(v, Q) \otimes\left(g^{1} ; \pi_{1}\right) \phi_{l}((x, S),(y, T))\left(g^{2} ; \pi_{2}\right)$ is exactly equal to $\delta q^{r} d^{\prime \prime}$, in $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q, G)$ modulo J_{l-1}.
Case(1): Suppose $\phi_{l}((x, S),(y, T))=0$. Then by definition of $\phi_{l}, x \cdot y$ is zero or any one of the following is true:

1. there exits a block of $x \cdot y$ which contains either more than one element of $S($ or $T)$,
2. there exits a block of $x \cdot y$ which contains a single element of S (res. T) but no element of T (res. S),
which implies that $d d^{\prime}=0$ or $p n\left(d d^{\prime}\right)<l$. Therefore, $d d^{\prime} \in J_{l-1}$.
Case(2): Suppose $\phi((x, S)(y, T))=q^{|H|}(e ; \pi)$ where π is defined as in the definition of ϕ_{l}. Since $d_{\mathbf{k}^{\prime}}=x$ and $d_{\mathbf{k}}^{\prime}=y$, we have $|H|$ is equal to the number of middle components. So, it is sufficient to prove that $(u, R) \otimes(v, Q) \otimes\left(g^{1} ; \pi_{1}\right)(e ; \pi)\left(g^{2} ; \pi_{2}\right)=$ $d^{\prime \prime}$. That is,

$$
(u, R) \otimes(v, Q) \otimes\left(g_{1}^{1} g_{\left(\pi_{1} \pi\right)(1)}^{2}, \cdots, g_{l}^{1} g_{\left(\pi_{1} \pi\right)(l)}^{2} ; \pi_{1} \pi \pi_{2}\right)=d^{\prime \prime}
$$

Clearly, $d_{\mathbf{k}}^{\prime \prime}=u, d_{\mathbf{k}^{\prime}}^{\prime \prime}=v$. By the definition of ϕ_{l}, there are exactly l blocks $C_{1}, C_{2}, \cdots, C_{l}$ of $x \cdot y$ in which each block contains exactly one block in S and one block in T. Now consider a block C_{i} in $x \cdot y$, then there is a block $i_{[s]} \in S$ and $\pi(i)_{[t]} \in T$ which is contained in C_{i}. Moreover, the block $i_{[s]}$ is connected to $\pi(i)_{[t]}$ by an edge which is colored by e. Then, there is a block in d which contains $\pi_{1}^{-1}(i)_{[r]} \in R$ and $i_{[s]} \in S$ and that edge is colored by $g_{j}^{1}=g_{\pi_{1}^{-1}(i)}^{1}$ and there is a block in d^{\prime} which contains $\pi(i)_{[t]} \in T$ and $\pi_{2}(\pi(i))_{[p]} \in Q$ and that edge is colored by $\left.g_{\pi(i)}^{2}\right)$. Hence, there is a block in $d^{\prime \prime}$ which contains both $\pi_{1}^{-1}(i)_{[r]} \in R$ and $\pi_{2}(\pi(i))_{[p]} \in Q$ and the edge is colored by $g_{\pi_{1}^{-1}(i)}^{1} g_{\pi(i)}^{2}$. That is, there is a block in $d^{\prime \prime}$ which contains both $j_{[r]} \in R$ and $\pi_{2}\left(\pi\left(\pi_{1}(j)\right)\right)_{[p]} \in Q$ and the edge is colored by $g_{j}^{1} g_{\pi\left(\pi_{1}(j)\right)}^{2}$. Therefore, $(u, R) \otimes(v, Q) \otimes\left(g_{1}^{1} g_{\left(\pi_{1} \pi\right)(1)}^{2}, \cdots, g_{l}^{1} g_{\left(\pi_{1} \pi\right)(l)}^{2} ; \pi_{1} \pi \pi_{2}\right)=d^{\prime \prime}$.
Lemma 4.5. Let l and m be two non-negative integers such that $l<m$. Suppose $d=$ $(u, R) \otimes(x, S) \otimes\left(g^{1} ; \pi_{1}\right) \in V_{m} \otimes_{F} V_{m} \otimes_{F} F\left[G \imath S_{m}\right]$, and $d^{\prime}=(y, T) \otimes(v, Q) \otimes\left(g^{2} ; \pi_{2}\right) \in$ $V_{l} \otimes_{F} V_{l} \otimes_{F} F\left[G \imath S_{l}\right]$. Then $d d^{\prime}=q^{|H|}(w, E) \otimes(z, G) \otimes(g ; \tau)$ in $V_{l} \otimes_{F} V_{l} \otimes_{F} F\left[G \imath S_{l}\right]$ modulo J_{l-1}, where $(g ; \tau)=\left(g^{3} ; \pi_{1}^{\prime}\right)\left(g^{2} ; \pi_{2}\right)$ for some $\left(g^{3} ; \pi_{1}^{\prime}\right) \in G \imath S_{l}$.
Proof. By lemma 4.2, if we consider d and d^{\prime} as a diagrams, then $p n\left(d d^{\prime}\right) \leq l$. Suppose $p n\left(d d^{\prime}\right)=l$ that is, $|E|=l$. Then $|G|=l$. Since $|Q|=l$ and G is obtained from Q, which implies that $(z, G)=(v, Q)$. Hence, by Lemma 4.2 and Lemma 4.4 we have $(g ; \tau)=\left(g^{3} ; \pi_{1}^{\prime}\right)\left(g^{2} ; \pi_{2}\right)$ for some $\left(g^{3} ; \pi_{1}^{\prime}\right) \in G \imath S_{l}$. Therefore, $d d^{\prime} \in V_{l} \otimes_{F} V_{l} \otimes_{F} F\left[G \imath S_{l}\right]$ Suppose $p n\left(d d^{\prime}\right)<l$ that is, $|E|<l$, then obviously $d d^{\prime} \in J_{l-1}$.

Lemma 4.6. If $d=(x, S) \otimes(y, T) \otimes\left(g_{1}, g_{2} \cdots g_{l} ; \pi\right) \in V_{l} \otimes_{F} V_{l} \otimes_{F} F\left[G \backslash S_{l}\right]$, then $\eta(d)=(y, T) \otimes(x, S) \otimes\left(\left(g_{\pi^{-1}(1)}^{-1}, \cdots, g_{\pi^{-1}(l)}^{-1}\right) ; \pi^{-1}\right)$.
Proof. For every $i \in\{1,2, \cdots, l\}$, there is a block $i_{[s]} \in S$ which is connected to $\pi(i)_{[t]}=j_{[t]} \in T$ by an edge colored by g_{i} in d. Which imply that the block $j_{[t]} \in T$ which is connected to $\pi^{-1}(j)_{[s]} \in S$ by an edge colored by $g_{\pi^{-1}(j)}^{-1}$ in $\eta(d)$ (since the orientation of edge is changed). Therefore, by definition of $\eta, \eta(d)=$ $(y, T) \otimes(x, S) \otimes\left(\left(g_{\pi^{-1}(1)}^{-1}, \cdots, g_{\pi^{-1}(l)}^{-1}\right) ; \pi^{-1}\right)$.
Lemma 4.7. Let $*: F\left[G \backslash S_{l}\right] \rightarrow F\left[G \backslash S_{l}\right]$ be the involution on $F\left[G \backslash S_{l}\right]$ which is defined by $\left(g_{1}, g_{2}, \cdots, g_{l} ; \pi\right) \mapsto\left(\left(g_{\pi^{-1}(1)}^{-1}, \cdots, g_{\pi^{-1}(l)}^{-1}\right) ; \pi^{-1}\right)$. for all $\left(g_{1}, g_{2}, \cdots, g_{l} ; \pi\right) \in$ $G \imath S_{l}$. Then $\left(\phi_{l}\left(v_{1}, v_{2}\right)\right)^{*}=\phi_{l}\left(v_{2}, v_{1}\right)$ for all $v_{1}, v_{2} \in V_{l}$.
Proof. Let $v_{1}=(x, S)$ and $v_{2}=(y, T)$. Suppose $\phi_{l}\left(v_{1}, v_{2}\right)=0$. Since $x \cdot y=y \cdot x$,
then by definition of $\phi_{l}, \phi_{l}\left(v_{2}, v_{1}\right)=0$. If $\phi_{l}\left(v_{1}, v_{2}\right) \neq 0$, then $\phi_{l}\left(v_{1}, v_{2}\right)=q^{|H|}(e ; \pi)$. So, there is a block C_{i} of $x \cdot y$ which contains both $i_{[s]} \in S$ and $\pi(i)_{[t]} \in T$ with edge colored by e. Since C_{i} is block of $y \cdot x$, then C_{i} contains both $\pi^{-1}(i)_{[s]} \in S$ and $i_{[t]} \in T$ with edge labeled by e. Therefore, $\phi_{l}\left(v_{2}, v_{1}\right)=q^{|H|}\left(e ; \pi^{-1}\right)$. By definition of involution $*$, the result follows.

Theorem 4.8. The G-Edge Colored Partition algebras $\left.P_{k \cup k^{\prime}}(q, G)\right)$ are cellular with involution η if $F\left[G \imath S_{l}\right]$ is cellular with involution $*$ for all $l \in\{0,1, \cdots, k\}$.
Proof. Put $j_{-1}=0$ and $G\left\{S_{0}=\{1\}\right.$. By Remark 4.3, the edge colored partition algebra $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q, G)$ has decomposition as direct sum of vector space

$$
P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q, G)=\bigoplus_{l=0}^{k} V_{l} \otimes_{F} V_{l} \otimes_{F} F\left[G \imath S_{l}\right] .
$$

Since $F\left[G \imath S_{l}\right]$ is cellular with involution $\left(g_{1}, g_{2}, \cdots, g_{l} ; \pi\right) \mapsto\left(\left(g_{\pi^{-1}(1)}^{-1}, \cdots, g_{\pi^{-1}(l)}^{-1}\right) ; \pi^{-1}\right)$, there is a cell chain $J_{1}^{(l)} \subset \cdots \subset J_{s_{l}}^{(l)}=F\left[G \imath S_{l}\right]$ for all l. By Lemma 4.2, Lemma 4.4 and Lemma 4.5, $V_{l} \otimes V_{l} \otimes J_{j}^{l}+J_{l-1}$ is an ideal of $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q, G)$, for every l. Moreover,

$$
\begin{aligned}
V_{1} \otimes V_{1} \otimes J_{1}^{(1)} & \subset \\
& \subset \cdots \subset V_{1} \otimes V_{1} \otimes J_{s_{1}}^{(1)} \subset V_{1} \otimes V_{1} \otimes F\left[G \imath S_{1}\right] \oplus V_{2} \otimes V_{2} \otimes J_{1}^{(2)} \\
& \subset \\
& \cdots \subset V_{1} \otimes V_{1} \otimes F\left[G \imath S_{1}\right] \oplus V_{2} \otimes V_{2} \otimes F\left[G \imath S_{2}\right] \\
&
\end{aligned}
$$

By Lemma 4.6 and Lemma 4.7, it satisfied all the condition of Lemma 2.3. Hence $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q, G)$ is cellular.

Cellular algebras are cyclic cellular if all the cell modules are cyclic. In [6], T.Geetha and F. M. Goodman have proved that if A is cyclic cellular then A 亿 S_{n} is cyclic cellular.

Corrollary $4.9([6])$. If $F[G]$ is cyclic cellular then G-Edge colored partition algebras are cellular.

Corrollary 4.10. The partition algebra is cellular.
Proof. Take G is trivial group.
In general, $F\left[G \imath S_{n}\right]$ is not cellular for any arbitrary group G. And even the group algebra $F[G]$ is not a cellular, since cellular algebra is always split but general field are not splitting field for arbitrary group. Moreover $F\left[G \imath S_{n}\right]=(F[G]) \imath S_{n}$ and if $F[G]$ is quasi hereditary then $F\left[G \backslash S_{n}\right]$ is also quasi hereditary whenever $n!\in F$. Since cellular algebras are more close to quasi-hereditary, so in a similar way we can ask that if $F[G]$ is cellular, whether $F\left[G \imath S_{n}\right]$ is cellular ?. Suppose if G is cyclic group of order r and F is a field which contains primitive $r^{t h}$ roots of unity, then by Theorem 4.15, $F\left[(Z / r Z)\right.$ 乙 $\left.S_{n}\right]$ have a cellular structure.

Cellular basis for $F\left[(\mathbb{Z} / r \mathbb{Z})\right.$ \ $\left.S_{n}\right]$

The Ariki-Koike Hecke algrbras \mathcal{H} were introduced by Ariki and Koike in [1], as deformation of $\mathbb{Z} / r \mathbb{Z} \imath S_{n}$. Moreover, these algebras are a generalization of IwahoriHecke algebras of type A and B. For Hecke algebra of Symmetric group $\mathcal{H}\left(S_{n}\right)$ (deformation of S_{n}), the Kazhdan-Lusztig basis became a cellular basis. Graham and Lehrer in [5] constructed a cellular basis for \mathcal{H} through the Kazhdan-Lusztig basis of $\mathcal{H}\left(S_{n}\right)$. Dipper, James and Mathas in [4], have described a different cellular basis for the Ariki-Koike Hecke algrbras \mathcal{H}. We prefer this basis because it has many combinatorial and representation theoretic properties and it is more natural generalization from the cellular basis of group algebra of symmetric group. Let ζ be an invertible element of the field F, and $Q_{1}, Q_{2}, \cdots, Q_{r}$ arbitrary elements of F.

Definition 4.11([1]). The Ariki-Koike algebra $\mathscr{H}=\mathcal{H}_{\zeta, \mathcal{F}}$ is the unital associative F-algebra with generator $T_{0}, T_{1}, \cdots, T_{n-1}$ and relations

$$
\begin{aligned}
\left(T_{0}-Q_{1}\right) \cdots\left(T_{0}-Q_{r}\right) & =0 & & \\
\left(T_{i}-\zeta\right)\left(T_{i}+1\right) & =0 & & \text { for } 1 \leq i<n \\
T_{0} T_{1} T_{0} T_{1} & =T_{1} T_{0} T_{1} T_{0}, & & \\
T_{i} T_{j} & =T_{j} T_{i} & & \text { for } 0 \leq i<j-1<n-1, \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1} & & \text { for } 1 \leq i<n-1 .
\end{aligned}
$$

Remark 4.12([1]). Suppose a field F contains a primitive $r^{t h}$ root of unity ω and if $\zeta=1, Q_{s}=\omega^{s}$ for $1 \leq s \leq r$, then $\mathscr{H} \cong F\left[(\mathbb{Z} / r \mathbb{Z}) 乙 S_{n}\right]$

Definition 4.13.

(i) A partition of n is a sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots\right)$ of non-negative integers such that $\lambda_{1} \geq \lambda_{2} \geq \cdots$ and $|\lambda|=\sum_{i \leq 1} \lambda_{i}=n$.
(ii) A multi-partition of n is an ordered r-tuple of partitions $\lambda=\left(\lambda^{(1)}, \lambda^{(2)}, \cdots, \lambda^{(r)}\right)$ with $\left|\lambda^{(1)}\right|+\cdots+\left|\lambda^{(r)}\right|=n$. We denote $\lambda \vdash n$ if λ is a multi-partition of n. Denote $I(n)$ be the set of all multi-partitions of n. and $M(\lambda)$ be the set of all standard tableau of shape λ.

Define e be the smallest positive integer such that $1+\zeta+\zeta^{2}+\cdots+\zeta^{(e-1)}=0$ if no such positive integer exists we set $e=0$.

Definition 4.14. A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots\right)$ is e-restricted if $\lambda_{i}-\lambda_{(i+1)}<e$ for $i \geq 1$, unless $e=0$ in which case we stipulate that all partition are 0 -restricted. A multipartiton $\lambda=\left(\lambda^{(1)}, \lambda^{(2)}, \cdots, \lambda^{(r)}\right) \vdash n$ is e-restricted if each partition $\lambda^{(s)}$ is e-restricted for $1 \leq s \leq r$.

Note that, if $\zeta=1$, then e must be characteristic of underlying field F. Otherwise q is a primitive $e^{t h}$ root of unity.

Theorem 4.15([4]). Let F is a any field which contains $r^{\text {th }}$ root of unity ω and * be the involution on $F\left[(\mathbb{Z} / r \mathbb{Z})\right.$ 亿 $\left.S_{n}\right]$ which is defined by $\left(g_{1}, g_{2}, \cdots, g_{l} ; \pi\right) \mapsto$ $\left(\left(g_{\pi^{-1}(1)}^{-1}, \cdots, g_{\pi^{-1}(l)}^{-1}\right) ; \pi^{-1}\right)$. for all $\left(g_{1}, g_{2}, \cdots, g_{l} ; \pi\right) \in G \imath S_{l}$. If $\zeta=1$ and $Q_{k}=\omega^{k}$ for $k=1,2, \cdots, r$. Then
i) $\left\{C_{\mathfrak{s}, \mathfrak{t}}^{\lambda} \mid \mathfrak{s}, \mathfrak{t} \in M(\lambda), \lambda \in I(n)\right\}$ is a cellular basis for $F\left[(\mathbb{Z} / r \mathbb{Z}) \backslash S_{n}\right]$.
ii) Suppose for each $\lambda \vdash n, \Delta(\lambda)$ is the cell module of $F\left[(\mathbb{Z} / r \mathbb{Z})\right.$ 亿 $\left.S_{n}\right]$, then $\{\Delta(\lambda) \mid \lambda \in I(n)$ and λ is e-restricted $\}$ is a complete set of pairwise nonisomorphic irreducible $F\left[(\mathbb{Z} / r \mathbb{Z})\right.$ \ $\left.S_{n}\right]$-modules.

Next we are going to classify the representation of $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q,(\mathbb{Z} / r \mathbb{Z}))$ by using cellularity of $F\left[(\mathbb{Z} / r \mathbb{Z})\right.$) $\left.S_{n}\right]$.
Theorem 4.16. Let F be field of characteristic p (or 0) which contains a primitive $r^{t h}$ roots of unity. Then the standard modules of $P_{k \cup k^{\prime}}(q,(\mathbb{Z} / r \mathbb{Z}))$ are $W(l, \lambda)=$ $V_{l} \otimes v_{l} \otimes \Delta(\lambda)$ where $l \in \mathbf{k} \cup\{0\}, \lambda \in I(l)$, v_{l} is fixed non zero vector of V_{l} and $\Delta(\lambda)$ is standard modules of $F\left[(\mathbb{Z} / r \mathbb{Z})\right.$ 2 $\left.S_{l}\right]$.
Theorem 4.17. Let F be field of characteristic p (or 0) which contains a primitive $r^{t h}$ roots of unity. If $q \neq 0$, then the non isomorphic simple $P_{k \cup k^{\prime}}(q,(\mathbb{Z} / r \mathbb{Z}))$ modules are parameterized by $\{(m, \lambda) \mid 0 \leq m \leq k, \lambda \in I(m)$ and λ is p-restricted \}.
Proof. From the above corollary and general theory of cellularity, the irreducible $P_{\mathbf{k} \cup \mathbf{k}^{\prime}}(q,(\mathbb{Z} / r \mathbb{Z}))$-module are parameterized by $\left\{(l, \lambda) \mid \Phi_{(l, \lambda)} \neq 0\right\}$, where $\Phi_{(l, \lambda)}$ is a bilinear form on $W(l, \lambda) \times W(l, \lambda)$ to $F\left[\mathbb{Z} / r \mathbb{Z} \imath S_{l}\right]$. Suppose $l \neq 0$. Then the bilinear form $\Phi_{(l, \lambda)} \neq 0$ if and only if the corresponding linear form Φ_{λ} for the cellular algebra $F\left[(\mathbb{Z} / r \mathbb{Z}) \backslash S_{n}\right]$ is not zero. By the corollary, $\Phi_{\lambda} \neq 0$ if and only if λ is p restricted. If $l=0$, then $\Phi_{(l, \lambda)} \neq 0$ if and only if $q \neq 0$. Hence proved the corollary.

The quasi-hereditary algebras are typically cellular algebras. This algebra were introduced by Cline, Parshall and Scott in [3] to study the highest-weight categories in the representation theory of Lie algebra.

Definition 4.18. Let A be an F-algebra. An ideal J in A is called a hereditary ideal if J is idempotents, $J(\operatorname{rad}(A)) J=0$ and J is a projective left(or right) A module. The algebra A is called quasi-hereditary provided there is a finite chain $0=J_{0} \subset \cdots \subset J_{t} \subset \cdots \subset J_{m}=A$ of ideal in A such that J_{i} / J_{j-1} is a hereditary ideal in A / J_{j-1} for all j.
Theorem 4.19. Suppose F is field of characteristic zero which contains primitive $r^{\text {th }}$ roots of unity. If $q \neq 0$, then $P_{k \cup k^{\prime}}(q,(Z / r Z))$ is quasi-hereditary.
Proof. Since F is field of characteristic zero which contains primitive $r^{t h}$ roots of unity. And by Theorem 4.17, for $0 \leq m \leq k, \lambda \in I(m)$ if and only if $\Phi_{(m, \lambda)} \neq 0$. The result follows from the Remark 3.10 of [5].

References

[1] S. Ariki and K. Koike, A Hecke algebra of $(\mathbb{Z} / r \mathbb{Z})\left\{\mathcal{S}_{n}\right.$ and construction of its irreducible representation, Adv. Math., 106(1994), 216-243.
[2] M. Bloss, G-colored partition algebra as centralizer algebra of wreath products, J. Algebra, 265(2003), 690-710.
[3] E. Cline and B. Parashall and L. Scott, Finite dimesional algebra and highest weight cateogories, J. reine angew, Math., 391(1988), 85-99.
[4] R. Dipper, G. James, and A. Mathas, Cyclotomic q-schur algebra, Math. Z., 229(1999), 385-416.
[5] J. J. Graham, and G. I. Lehrer, Cellular Algebra, Invent. Math., 123(1996), 1-34.
[6] T. Geetha and F. M. Goodman, Cellularity of Wreath Product Algebras and A-Brauer algebras, J. Algebra, 389 (2013), 151-190.
[7] V. F. R Jones, The Potts model and the symmetric group, Subfactors: Proceedings of the Taniguchi Symposium on Operater Algebra, Kyuzeso, 1993, 259-267, World Scientific, River edge, NJ,1994.
[8] T. Halverson and A. Ram, Partition algebra, European J. Combin., (26), 6(2005), 869-921.
[9] A. J. Kennedy, Class partition algebras as centralizer algebras, Communications in Algebra, 35(2007), 145-170.
[10] S. Köing and C.C. Xi, On the structure of cellular algebras, Canadian Math. Soc. Conference proceedings, 24(1998), 365-385.
[11] P. P. Martin, Potts Models and Related Problems in statistical mechanics, World Scientific, Singapore, 1991.
[12] P. P. Martin and A. Elgamal, Ramified partition algebras, Math. Z., 246(2004), 473500, (math.RT/0206148).
[13] M. Parvathi and A. J. Kennedy, G-vertex colored partition algebra as centralizer algebra of direct products, Communication in algebra, 32(11), (2004), 4337-4361.
[14] C. C. Xi, Partition algebras are cellular, Compos. Math., 119(1999), 99-109.

[^0]: * Corresponding Author.

 Received March 24, 2014; revised February 21, 2015; accepted February 21, 2015. 2010 Mathematics Subject Classification: 16S20,16S50 and 16S99.
 Key words and phrases: Partition algebra, centralizer algebra, direct product, wreath product, symmetric group.
 The first named author was supported by NBHM research Project and UGC-SAP.

