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ON SYMMETRIC BI-GENERALIZED DERIVATIONS OF

LATTICE IMPLICATION ALGEBRAS

Kyung Ho Kim

Abstract. In this paper, we introduce the notion of symmetric
bi-generalized derivation of lattice implication algebra L and in-
vestigated some related properties. Also, we prove that a map
F : L× L → L is a symmetric bi-generalized derivation associated
with symmetric bi-derivation D on L if and only if F is a symmetric
map and it satisfies F (x→ y, z) = x→ F (y, z) for all x, y, z ∈ L.

1. Introduction

In order to research a logical system whose propositional value is given
in a lattice. Y. Xu [11] proposed the concept of lattice implication al-
gebras, and some researchers have studied their properties and the cor-
responding logic systems. Also, in [12], Y. Xu and K. Y. Qin discussed
the properties lattice H implication algebras, and gave some equivalent
conditions about lattice H implication algebras. Y. Xu and K. Y. Qin
[13] introduced the notion of filters in a lattice implication, and inves-
tigated their properties. In this paper, we introduced the notion of
derivation, and considered the properties of derivations of lattice impli-
cation algebras. In this paper, we introduce the notion of symmetric bi-
generalized derivation of lattice implication algebra L and investigated
some related properties. Also, we prove that A map F : L × L → L
is a symmetric bi-generalized derivation associated with symmetric bi-
derivation D on L if and only if F is a symmetric map and it satisfies
F (x→ y, z) = x→ F (y, z) for all x, y, z ∈ L.
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2. Preliminary

A lattice implication algebra is an algebra (L; ∧, ∨, ′, →, 0, 1) of
type (2, 2, 1, 2, 0, 0), where (L;∧,∨, 0, 1) is a bounded lattice, “ ′ ” is an
order-reversing involution and “ → ” is a binary operation, satisfying
the following axioms, for all x, y, z ∈ L,

(I1) x→ (y → z) = y → (x→ z),
(I2) x→ x = 1,
(I3) x→ y = y′ → x′,
(I4) x→ y = y → x = 1⇒ x = y,
(I5) (x→ y)→ y = (y → x)→ x,
(L1) (x ∨ y)→ z = (x→ z) ∧ (y → z),
(L2) (x ∧ y)→ z = (x→ z) ∨ (y → z).

If L satisfies conditions (I1) – (I5), we say that L is a quasi lattice
implication algebra. A lattice implication algebra L is called a lattice
H implication algebra if it satisfies x ∨ y ∨ ((x ∧ y) → z) = 1 for all
x, y, z ∈ L.

In the sequel the binary operation “ → ” will be denoted by juxtapo-
sition. We can define a partial ordering “ ≤ ” on a lattice implication
algebra L by x ≤ y if and only if x→ y = 1.

In a lattice implication algebra L, the following hold (see [11]), for all
x, y, z ∈ L,

(u1) 0→ x = 1, 1→ x = x and x→ 1 = 1.
(u2) x→ y ≤ (y → z)→ (x→ z).
(u3) x ≤ y implies y → z ≤ x→ z and z → x ≤ z → y.
(u4) x′ = x→ 0.
(u5) x ∨ y = (x→ y)→ y.
(u6) ((y → x)→ y′)′ = x ∧ y = ((x→ y)→ x′)′.
(u7) x ≤ (x→ y)→ y.

In a lattice H implication algebra L, the following hold, for all x, y, z ∈ L,

(u8) x→ (x→ y) = x→ y.
(u9) x→ (y → z) = (x→ y)→ (x→ z).

A subset F of a lattice implication algebra L is called a filter of L it
satisfies,

(F1) 1 ∈ F,
(F2) x ∈ F and x→ y ∈ F imply y ∈ F for all x, y ∈ L.
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Definition 2.1. Let L be a lattice implication algebra. A mapping
D(., .) : L×L→ L is called symmetric if D(x, y) = D(y, x) holds for all
x, y ∈ L.

Definition 2.2. Let L be a lattice implication algebra and x ∈ L. A
mapping d(x) = D(x, x) is called trace of D(., .), where D(., .) : L×L→
L is a symmetric mapping on L.

Definition 2.3. Let L be a lattice implication algebra and D : L×
L → L be a symmetric mapping. We call D a symmetric bi-derivation
on L if it satisfies the following condition

D(x→ y, z) = (x→ D(y, z)) ∨ (D(x, z)→ y)

for all x, y, z ∈ L.

Lemma 2.4. Let D be a symmetric bi-derivation of L and let d be a
trace of D. Then the following identities hold:

(1) D(1, 1) = d(1) = 1.
(2) D(1, x) = D(x, 1) = 1 for every x ∈ L.
(3) x ≤ D(x, y) and y ≤ D(x, y) for every x, y ∈ L.
(4) x ≤ d(x) for every x ∈ L.

3. Symmetric bi-generalized derivations of lattice implica-
tion algebras

In what follows, let L denote a lattice implication algebra unless
otherwise specified.

Definition 3.1. Let L be a lattice implication algebra. A symmetric
map F : L × L → L is called a symmetric bi-generalized derivation of
L if there exists a symmetric bi-derivation D such that

F (x→ y, z) = (x→ F (y, z)) ∨ (D(x, z)→ y)

for all x, y, z ∈ L.

Example 3.2. Let L := {0, a, b, 1} be a set with the Cayley table.

x x′

0 1
a b
b a
1 0

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1
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For any x ∈ L, we have x′ = x → 0. The operations ∧ and ∨ on L are
defined as follows:

x ∨ y = (x→ y)→ y, x ∧ y = ((x′ → y′)→ y′)′.

Then (L,∨,∧, ′,→) is a lattice implication algebra. Define a map D :
L× L→ L by

D(x, y) =


a if (x, y) = (0, 0)

b if (x, y) = (0, a) or (x, y) = (a, 0)

1, otherwise

It is easy to check that D is a symmetric bi-derivation on L. Also, define
a map F : L× L→ L by

F (x, y) =


a if (x, y) = (0, 0)

b if (x, y) = (0, a) or (x, y) = (a, 0) or (x, y) = (b, b)

1, otherwise

Then F is a symmetric bi-generalized derivation associated with D of
L.

Proposition 3.3. Let D be a symmetric bi-derivation of L. If F
is a symmetric bi-generalized derivation associated with D of L, then
F (1, 1) = 1.

Proof. Let F be a symmetric bi-generalized derivation associated
with D of L. Then we have

F (1, 1) = F (1→ 1, 1)

= (1→ F (1, 1)) ∨ (D(1, 1)→ 1)

= F (1, 1) ∨ 1 = 1

Proposition 3.4. Let D be a symmetric bi-derivation of L and let F
be a symmetric bi-generalized derivation associated with D of L. Then
the followings hold:

(1) F (1, x) = F (x, 1) = 1 for all x ∈ L,
(2) d(1) = 1.

Proof. (1) Let F be a symmetric bi-generalized derivation associated
with D of L. Then we have

F (1, x) = F (1→ 1, x)

= (1→ F (1, x)) ∨ (D(1, x)→ 1)

= F (1, x) ∨ 1 = 1
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for every x ∈ L. Similarly, F (x, 1) = 1 for every x ∈ L.
(2) It is clear from (1).

Proposition 3.5. Let D be a symmetric bi-derivation of L and let F
be a symmetric bi-generalized derivation associated with D of L. Then
we have F (x, y) = F (x, y) ∨ x for all x, y ∈ L.

Proof. Let F be a symmetric bi-generalized derivation associated
with D of L. Then we have

F (x, y) = F (1→ x, y) = (1→ F (x, y)) ∨ (D(1, y)→ x)

= F (x, y) ∨ (1→ x) = F (x, y) ∨ x

for all x, y ∈ L.

Proposition 3.6. Let D be a symmetric bi-derivation of L and let
F be a symmetric bi-generalized derivation associated with D of L. If d
is a trace of F, then d(x) = d(x) ∨ x for all x ∈ L.

Proof. Let d be a trace of symmetric bi-generalized derivation F as-
sociated with D of L. Then we have

d(x) = F (x, x) = F (1→ x, x)

= (1→ F (x, x)) ∨ (D(1, x)→ x)

= F (x, x) ∨ (1→ x) = d(x) ∨ x

for all x ∈ L. This completes the proof.

Corollary 3.7. Let D be a symmetric bi-derivation of L and let F
be a symmetric bi-generalized derivation associated with D of L. If d is
a trace of F, then x ≤ d(x) for all x ∈ L.

Theorem 3.8. Let F : L × L → L be a symmetric map defined by
F (x→ y, z) = x→ F (y, z) on L. If D is a symmetric bi-derivation of L,
then F is a symmetric bi-generalized derivation of L.

Proof. For any y ∈ L, we have F (1, y) = F (F (1, y) → 1, y) =
F (1, y)→ F (1, y) = 1. Hence it follows that

x→ F (x, y) = F (x→ x, y) = F (1, y) = 1

for all x, y ∈ L. Hence x ≤ F (x, y) for all x, y ∈ L. Since x ≤ D(x, z),
we have

D(x, z)→ y ≤ x→ y ≤ x→ F (y, z)

for all x, y, z ∈ L. Hence F (x → y, z) = x → F (y, z) = (x → F (y, z)) ∨
(D(x, z) → y) for all x, y, z ∈ L, which implies that F is a symmetric
bi-generalized derivation associated with D on L.
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Theorem 3.9. Let D be a symmetric bi-derivation of L and let F :
L× L→ L be a symmetric bi-generalized derivation associated with D
on L. Then F satisfies F (x→ y, z) = x→ F (y, z) for all x, y, z ∈ L.

Proof. Let F be a symmetric bi-generalized derivation of L and x, y, z ∈
L. Since y ≤ F (y, z) and x ≤ D(x, z), we have

D(x, z)→ y ≤ x→ y ≤ x→ F (y, z)

for all x, y, z ∈ L. Hence F (x→ y, z) = (x→ F (y, z))∨ (D(x, z)→ y) =
x→ F (y, z) for all x, y, z ∈ L.

As a consequence of Proposition 3.8 and 3.9, we get the following
theorem.

Theorem 3.10. Let D be a symmetric bi-derivation of L. A map
F : L× L→ L is a symmetric bi-generalized derivation associated with
D on L if and only if F is a symmetric map and it satisfies F (x →
y, z) = x→ F (y, z) for all x, y, z ∈ L.

Proposition 3.11. Let D be a symmetric bi-derivation of L and let
F : L×L→ L be a symmetric bi-generalized derivation associated with
D on L. Then F satisfies F (x, y → z) = y → F (x, z) for all x, y, z ∈ L.

Proof. Since F is symmetric, by Theorem 3.9, we have

F (x, y → z) = F (y → z, x) = y → F (z, x)

= y → F (x, z)

for all x, y, z ∈ L. This completes the proof.

Proposition 3.12. Let D be a symmetric bi-derivation of L and let
F : L×L→ L be a symmetric bi-generalized derivation associated with
D on L. Then F satisfies F (x, y) = x′ → (y′ → F (0, 0)) for all x, y ∈ L.
That is, the value of F is determined by F (0, 0).

Proof. For every x, y ∈ L, we have

F (x, y) = F (x′′, y′′) = F (x′ → 0, y′ → 0)

= x′ → F (0, y′ → 0) = x′ → F (y′ → 0, 0)

= x′ → (y′ → F (0, 0)).

This completes the proof.

Proposition 3.13. Let D be a symmetric bi-derivation of L and let
d be a trace of a symmetric bi-generalized derivation F associated with
D of L. Then d(x→ y) = x→ (x→ d(y)) for all x, y ∈ L.
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Proof. Let d be a trace of symmetric bi-generalized derivation F as-
sociated with D on L. Then, by Theorem 3.9, we have

d(x→ y) = F (x→ y, x→ y) = x→ F (y, x→ y)

= x→ F (x→ y, y) = x→ (x→ F (y, y))

= x→ (x→ d(y))

for all x, y ∈ L. This completes the proof.

Corollary 3.14. Let L be a lattice H implication algebra and let
D be a symmetric bi-derivation of L. If d is a trace of a symmetric bi-
generalized derivation F associated with D of L, then d(x→ y) = x→
d(y) for all x, y ∈ L.

Proposition 3.15. Let d be a trace of a symmetric bi-generalized
derivation F associated with D of L. Then d(x∨ y) = (x→ y)→ ((x→
y)→ d(y)) for all x, y ∈ L.

Proof. Let x, y ∈ L. Then we obtain

d(x ∨ y) = F (x ∨ y, x ∨ y) = F ((x→ y)→ y, (x→ y)→ y)

= (x→ y)→ F (y, (x→ y)→ y) = (x→ y)→ ((x→ y)→ F (y, y))

= (x→ y)→ ((x→ y)→ d(y)).

This completes the proof.

Corollary 3.16. Let let L be a lattice H implication algebra and
let D be a symmetric bi-derivation of L. If d is a trace of a symmetric
bi-generalized derivation F associated with D of L, then d(x∨y) = (x→
y)→ d(y) for all x, y ∈ L.

Let D be a symmetric bi-derivation of L and let F be a symmetric
bi-generalized derivation associated with symmetric bi-derivation D of
L. For a fixed element a ∈ L, let us define a map da : L→ L such that
da(x) = F (x, a) for every x ∈ L.

Proposition 3.17. Let F be a symmetric bi-generalized derivation
associated with D of L. Then da(x→ y) = x→ da(y) for all x, y ∈ L.

Proof. Let x, y ∈ L. Then we obtain

da(x→ y) = F (x→ y, a) = x→ F (y, a)

= x→ da(y).

This completes the proof.
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Corollary 3.18. Let D be a symmetric bi-derivation of L and let F
be a symmetric bi-generalized derivation associated with D of L. Then
da(x ∨ y) = (x→ y)→ da(y) for all x, y ∈ L.

Let D be a symmetric bi-derivation of L and let F be a symmetric
bi-generalized derivation associated with D of L and let d be a trace of
F. Define a set Fixd(L) by

Fixd(L) = {x ∈ L | d(x) = x}.

Proposition 3.19. Let D be a symmetric bi-derivation of L and
let L be a lattice H implication algebra and let F be a symmetric bi-
generalized derivation associated with D of L. If x ∈ L and y ∈ Fixd(L),
then x→ y ∈ Fixd(L).

Proof. Let x ∈ L and y ∈ Fixd(L). Then we obtain

d(x→ y) = x→ d(y) = x→ y

by Corollary 3.14. This completes the proof.

Proposition 3.20. Let L be a lattice H implication algebra and
let D be a symmetric bi-derivation of L and let F be a symmetric bi-
generalized derivation associated with D of L. If x ∈ L and y ∈ Fixd(L),
then x ∨ y ∈ Fixd(L).

Proof. Let x ∈ L and y ∈ Fixd(L). Then we obtain

d(x ∨ y) = (x→ y)→ d(y) = (x→ y)→ y = x ∨ y

by Corollary 3.16. This completes the proof.

Proposition 3.21. Let L be a lattice H implication algebra and
let D be a symmetric bi-derivation of L and let F be a symmetric bi-
generalized derivation associated with D of L. If x ≤ y and x ∈ Fixd(L),
then y ∈ Fixd(L).

Proof. Let x ≤ y and x ∈ Fixd(L). Then we obtain

d(y) = d(1→ y) = d((x→ y)→ y)

= d((y → x)→ x) = d(y ∨ x)

= y ∨ x

by Proposition 3.16. Hence

d(y) = y ∨ x = (y → x)→ x = (x→ y)→ y = 1→ y = y,

which implies that y ∈ Fixd(L). This completes the proof.
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Proposition 3.22. Let D be a symmetric bi-derivation of L and
let F be a symmetric bi-generalized derivation associated with D of L.
Then F (x∨ y, z) = F (x, z)∨F (y, z) and F (x∧ y, z) = F (x, z)∧F (y, z)
for all x, y, z ∈ L.

Proof. Let x, y, z ∈ L. Then we have

F (x ∨ y, z) = F (x′′ ∨ y′′, z) = F ((x′ ∧ y′)′, z))

= F ((x′ ∧ y′)→ 0, z) = (x′ ∧ y′)→ F (0, z)

= (x′ → F (0, z)) ∨ (y′ → F (0, z)) = F (x′′, z) ∨ F (y′′, z)

= F (x, z) ∨ F (y, z).

Similarly, we can prove that F (x∧y, z) = F (x, z)∧F (y, z) for all x, y, z ∈
L. This completes the proof.

Proposition 3.23. Let D be a symmetric bi-derivation of L and
let F be a symmetric bi-generalized derivation associated with D of L.
Then F (x′, x) = F (x, x′) = 1 for all x ∈ L.

Proof. For every x ∈ L. Then we have

F (x′, x) = F (x→ 0, x) = x→ F (0, x)

= x→ F (x, 0) = F (x→ x, 0)

= F (1, 0) = 1.

by Proposition 3.4.

Proposition 3.24. Let D be a symmetric bi-derivation of L and let
F be a symmetric bi-generalized derivation associated with D of L. If
x′ ≤ y for every x, y ∈ L, then F (y, x) = 1.

Proof. For every x, y ∈ L, we know that x′ ≤ y implies x′ ∨ y = y.
Hence

F (y, x) = F (x′ ∨ y, x) = F (x′, x) ∨ F (y, x)

= F (x→ 0, x) ∨ F (y, x) = x→ F (0, x) ∨ F (y, x)

= x→ F (x, 0) ∨ F (y, x) = F (x→ x, 0) ∨ F (y, x)

= F (1, 0) ∨ F (y, x) = 1 ∨ F (y, x) = 1.

This completes the proof.

Let D be a symmetric bi-derivation of L and let F be a symmetric
bi-generalized derivation associated with D of L and let d be a trace of
F. Define a set Kerd by

Kerd = {x ∈ L | F (x, x) = d(x) = 1}.
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Proposition 3.25. Let L be a lattice H implication algebra and D be
a symmetric bi-derivation of L and let F be a symmetric bi-generalized
derivation associated with D of L. If x ∈ L and y ∈ Kerd, then x →
y ∈ Kerd.

Proof. Let x ∈ L and y ∈ Kerd. Then we obtain

d(x→ y) = x→ d(y) = x→ 1 = 1

by Corollary 3.14. This implies that x→ y ∈ Kerd.

Proposition 3.26. Let D be a symmetric bi-derivation of L and let
F be a symmetric bi-generalized derivation associated with D of L If
x ∈ L and y ∈ Fixd(L), then x ∨ y ∈ Fixd(L).

Proof. Let x ∈ L and y ∈ Kerd. Then we have

F (y, x ∨ y) = F (x ∨ y, y)

= F (((x→ y)→ y, y))

= (x→ y)→ F (y, y) = (x→ y)→ 1)

= 1,

which implies that F (y, x ∨ y) = 1. Hence we have

d(x ∨ y) = F (x ∨ y, x ∨ y)

= F (((x→ y)→ y, x ∨ y))

= (x→ y)→ F (y, x ∨ y) = (x→ y)→ 1

= 1,

This implies that x ∨ y ∈ Kerd for all x ∈ L.
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