ON SYMMETRIC BI-DERIVATIONS OF B-ALGEBRAS

Síbel Altunbiçak Kayiş and Şule Ayar Özbal

Abstract

In this paper, we introduce the notion of symmetric bi-derivations of a B-algebra and investigate some related properties. We study the notion of symmetric bi-derivations of a 0 -commutative B-algebra and state some related properties.

1. Introduction

The notion of B-algebra was introduced by J. Neggers and H. S. Kim and some of its related properties in [10] were studied. This class of algebras is related to several classes of interest such as $B C H / B C I / B C K$-algebras. Later, the notion of a ranked trigroupoid as a natural followup on the idea of a ranked bigroupoid was given by N. O. Alshehri et al. in [2]. The notion of derivation in ring theory and near ring theory was applied to $B C I$-algebras by Y. B. Jun and Xin and some of its related properties were given by them [6]. Later, in [11] the notion of a regular derivation in BCI-algebras was applied to BCC-algebras by Prabpayak and Leerawat and also some of its related properties were investigated. In [1] the notion of derivation in B-algebra was given and some related properties were stated by N. O. Alshehri. Also, in [2] the notion of derivation on ranked bigroupoids was introduced and ($X, *, \omega$)-self-(co)derivations were discussed by N. O. Alshehri, H. S. Kim and J. Neggers. The concept of symmetric bi-derivation was introduced by G. Maksa in [8] (see also [9]). J. Vukman proved some results concerning symmetric bi-derivation on prime and semiprime rings in [12, 13]. Later, the notion of left-right (resp. right-left) symmetric bi-derivation of $B C I$-algebras was introduced by S. Ilbira, A. Firat and Y. B. Jun in [5].

In this paper, we apply the notion of symmetric bi-derivation in rings, near rings and lattices to B-algebras. We introduce the concept of symmetric biderivation of a B-algebra. Additionally, this definition in 0 -commutative B algebra is studied and related properties are given.

[^0]
2. Preliminaries

Definition 2.1 ([10]). A B-algebra is a non-empty set X with a constant 0 and with a binary operation $*$ satisfying the following axioms for all $x, y, z \in X$:
(I) $x * x=0$.
(II) $x * 0=x$.
(III) $(x * y) * z=x *(z *(0 * y))$.

Proposition $2.2([10])$. If $(X, *, 0)$ is a B-algebra, then for all $x, y, z \in X$:
(1) $(x * y) *(0 * y)=x$.
(2) $x *(y * z)=(x *(0 * z)) * y$.
(3) $x * y=0$ implies $x=y$.
(4) $0 *(0 * x)=x$.

Theorem 2.3 ([10]). $(X, *, 0)$ is a B-algebra if and only if it satisfies the following axioms for all for all $x, y, z \in X$:
(5) $(x * z) *(y * z)=x * y$.
(6) $0 *(x * y)=y * x$.

Theorem 2.4 ([4]). In any B-algebra, the left and right cancellation laws hold.
Definition 2.5 ([7]). A B-algebra $(X, *, 0)$ is said to be 0 -commutative if for all for all $x, y \in X$:

$$
x *(0 * y)=y *(0 * x) .
$$

Proposition 2.6 ([7]). If $(X, *, 0)$ is a 0 -commutative B-algebra, then for all $x, y, z \in X$:
(7) $(0 * x) *(0 * y)=y * x$.
(8) $(z * y) *(z * x)=x * y$.
(9) $(x * y) * z=(x * z) * y$.
(10) $[x *(x * y)] * y=0$.
(11) $(x * z) *(y * t)=(t * z) *(y * x)$.

From (11) and (3) we get that, if $(X, *, 0)$ is a 0 -commutative B-algebra, then:
(12) $x *(x * y)=y$ for all $x, y \in X$.

For a B-algebra X, we denote $x \wedge y=y *(y * x)$ for all $x, y \in X$.
Definition 2.7. Let X be a B-algebra. A mapping $D: X \times X \rightarrow X$ is called symmetric if $D(x, y)=D(y, x)$ holds for all $x, y \in X$.

Definition 2.8. Let X be a B algebra. A mapping $d: X \rightarrow X$ is said to be regular if $d(0)=0$.

3. The symmetric bi-derivations of B-algebras

The following definition introduces the notion of symmetric bi-derivation for a B-algebra.

Definition 3.1. Let X be a B-algebra. A map $D: X \times X \rightarrow X$ is said to be a left-right symmetric bi-derivation (briefly, an (l, r) symmetric bi-derivation) of X, if it satisfies the identity $D(x * y, z)=(D(x, z) * y) \wedge(x * D(y, z))$ for all $x, y, z \in X$.

If D satisfies the identity $D(x * y, z)=(x * D(y, z)) \wedge(D(x, z) * y)$ for all $x, y, z \in X$, then D is said to be a right-left derivation (briefly, an (r, l) symmetric bi-derivation) of X. Moreover, if D is both (l, r) and (r, l) symmetric bi-derivations, then it is said that D is a symmetric bi-derivation.

Example 3.1. Let $X=\{0,1,2\}$ be a 0 -commutative B-algebra with Cayley table as follows.

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Define a mapping $D: X \times X \rightarrow X$

$$
D(x, y)= \begin{cases}0, & (x, y)=(2,2) \text { and }(x, y)=(0,1) \text { and }(x, y)=(1,0) \\ 1, & (x, y)=(0,2) \text { and }(x, y)=(2,0) \text { and }(x, y)=(1,1) \\ 2, & (x, y)=(2,1) \text { and }(x, y)=(1,2) \text { and }(x, y)=(0,0)\end{cases}
$$

Then it can be checked that D is an (l, r) symmetric bi-derivation on X.
Example 3.2. Let $X=\{0,1,2,3\}$ be a B-algebra with Cayley table as follows.

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Define a mapping $D: X \times X \rightarrow X$
$D(x, y)= \begin{cases}0, & (x, y)=(0,0) \text { and }(x, y)=(1,1) \text { and }(x, y)=(2,2) \text { and }(x, y)=(3,3) \\ 1, & (x, y)=(3,2) \text { and }(x, y)=(2,3) \text { and }(x, y)=(0,1) \text { and }(x, y)=(1,0) \\ 2, & (x, y)=(2,0) \text { and }(x, y)=(0,2) \text { and }(x, y)=(1,3) \text { and }(x, y)=(3,1) \\ 3, & (x, y)=(3,0) \text { and }(x, y)=(0,3) \text { and }(x, y)=(1,2) \text { and }(x, y)=(2,1) .\end{cases}$
Then it can be checked that D is a symmetric bi-derivation on X.
Definition 3.2. Let X be a B-algebra. A mapping $d: X \rightarrow X$ defined by $d(x)=D(x, x)$ for all $x \in X$ is called a trace of D, where $D: X \times X \rightarrow X$ is a symmetric mapping.

Proposition 3.3. Let D be an (l, r) symmetric bi-derivation on a B-algebra X. Then the followings hold:
(i) $D(x, y)=D(x, y) \wedge(x * D(0, y))$ for all $x, y \in X$.
(ii) $D(0, y)=D(x, y) * x$ for all $x, y \in X$.
(iii) $D(0, x)=d(x) * x$ for all $x \in X$ where d is the trace of D.

Proof. (i) Let $x, y \in X$. By using (II) and the definition of an (l, r) symmetric bi-derivation we get $D(x, y)=D(x * 0, y)=(D(x, y) * 0) \wedge(x * D(0, y))=$ $D(x, y) \wedge(x * D(0, y))$. Hence we find that $D(x, y)=D(x, y) \wedge(x * D(0, y))$.
(ii) Let $x, y \in X$.

$$
\begin{aligned}
D(0, y) & =D(x * x, y) \\
& =(D(x, y) * x) \wedge(x * D(x, y)) \\
& =(x * D(x, y)) *[(x * D(x, y)) *(D(x, y) * x)] \\
& =[(x * D(x, y)) *(0 *(D(x, y) * x))] *(x * D(x, y)) \quad \text { by }(2) \\
& =[(x * D(x, y)) *(x * D(x, y))] *(x * D(x, y)) \quad \text { by (I) } \\
& =0 *(x * D(x, y)) \\
& =D(x, y) * x \quad \text { by }(6) .
\end{aligned}
$$

Therefore, $D(0, y)=D(x, y) * x$.
(iii) Let $x \in X$. By using (I) and the definition of an (l, r) symmetric bi-derivation we get

$$
\begin{aligned}
D(0, x) & =D(x * x, x)=(D(x, x) * x) \wedge(x * D(x, x)) \\
& =(d(x) * x) \wedge(x * d(x)) \\
& =(x * d(x)) *[(x * d(x)) *(d(x) * x)] .
\end{aligned}
$$

By using (3) and (6),

$$
\begin{aligned}
& =[(x * d(x)) *(0 *(d(x) * x))] *(x * d(x)) \\
& =[(x * d(x)) *(x * d(x))] *(x * d(x)) \\
& =0 *(x * d(x)) \\
& =d(x) * x .
\end{aligned}
$$

Hence $D(0, x)=d(x) * x$.
Proposition 3.4. Let d be the trace of the (l, r) symmetric bi-derivation D on a B-algebra X. Then the followings hold:
(i) $d(0)=D(x, 0) * x$ for all $x \in X$.
(ii) If $D(x, 0)=D(y, 0)$ for all $x, y \in X$, then d is $1-1$.
(iii) If d is regular, then $D(x, 0)=x$.
(iv) If there is an element $x \in X$ such that $D(x, 0)=x$, then d is regular.
(v) If there exists $x \in X$ such that $d(y) * x=0$ or $x * d(y)=0$ for all $y \in X$, then $d(y)=x$.

Proof. (i) Let x be an element in X. Since $x * x=0$ we have

$$
\begin{aligned}
d(0)=D(0,0) & =D(x * x, 0) \\
& =(D(x, 0) * x) \wedge(x * D(x, 0)) \\
& =(x * D(x, 0)) *[(x * D(x, 0)) *(D(x, 0) * x)]
\end{aligned}
$$

By using (I) and (6),

$$
\begin{aligned}
& =((x * D(x, 0)) *(0 *(D(x, 0) * x)) *(x * D(x, 0)) \\
& =((x * D(x, 0)) *(x * D(x, 0))) *(x * D(x, 0)) \\
& =0 *(x * D(x, 0)) \\
& =D(x, 0) * x
\end{aligned}
$$

Therefore, $d(0)=D(x, 0) * x$ for all $x \in X$.
(ii) Let $x, y \in X$ such that $d(x)=d(y)$. Then by (i), we have $d(0)=$ $D(x, 0) * x$ and $d(0)=D(y, 0) * y$. Thus $D(x, 0) * x=D(y, 0) * y$. Using Theorem 2.4 we have $x=y$. Hence we get d is $1-1$.
(iii) Let d be a regular. By part (i) we have $d(0)=D(x, 0) * x$. Since d is regular we have $d(0)=D(x, 0) * x=0$ and by (3) we get $D(x, 0)=x$.
(iv) Let $D(x, 0)=x$ for some $x \in X$. By (1) we have $D(x, 0) * x=0$ then we can write by part (i) $d(0)=D(x, 0) * x=0$ therefore $d(0)=0$.

Hence we get that d is regular.
(v) Let x be an element in X such that $d(y) * x=0$ or $x * d(y)=0$ for all $y \in X$ then by (3) we get $d(y)=x$.

Proposition 3.5. Let d be the trace of an (r, l) symmetric bi-derivation of a B-algebra X. Then the followings hold:
(i) $d(0)=x * D(x, 0)$ for all $x \in X$.
(ii) $d(x)=(x * D(0, x)) \wedge d(x)$ for all $x \in X$.
(iii) If $D(x, 0)=D(y, 0)$ for all $x, y \in X$, then d is $1-1$.
(iv) If d is regular, then $D(x, 0)=x$.
(v) If there is an element $x \in X$ such that $D(x, 0)=x$, then d is regular.
(vi) If there exists $x \in X$ such that $d(y) * x=0$ or $x * d(y)=0$ for all $y \in X$, then $d(y)=x$.

Proof. (i) Let x be an element in X. Since $x * x=0$ we have

$$
\begin{aligned}
d(0)=D(0,0) & =D(x * x, 0) \\
& =(x * D(x, 0)) \wedge(D(x, 0) * x) \\
& =(D(x, 0) * x) *[(D(x, 0) * x) *(x * D(x, 0))]
\end{aligned}
$$

By using (I) and (6),

$$
\begin{aligned}
& =[(D(x, 0) * x) *(0 *(x * D(x, 0))] *(D(x, 0) * x) \\
& =[(D(x, 0) * x) *(D(x, 0) * x)] *(D(x, 0) * x) \\
& =0 *(D(x, 0) * x))
\end{aligned}
$$

$$
=x * D(x, 0)
$$

Therefore, $d(0)=x * D(x, 0)$ for all $x \in X$.
(ii) Let x be an element in X then we have $x * 0=x$ and

$$
\begin{aligned}
d(x)=D(x, x) & =D(x * 0, x) \\
& =(x * D(0, x)) \wedge(D(x, x) * 0)
\end{aligned}
$$

By using (II) and (i),

$$
\begin{aligned}
& =(x * D(0, x)) \wedge D(x, x) \\
& =(x * D(0, x)) \wedge d(x) .
\end{aligned}
$$

Hence we get $d(x)=(x * D(0, x)) \wedge d(x)$.
(iii) Let $x, y \in X$ such that $d(x)=d(y)$. Then by (i), we have $d(0)=$ $x * D(x, 0)$ and $d(0)=y * D(y, 0)$. Thus $x * D(x, 0)=y * D(y, 0)$. Using Theorem 2.4 we have $x=y$. Hence we get d is $1-1$.
(iv) Let d be a regular. By part (i) we have $d(0)=x * D(x, 0)$. Since d is regular we have $d(0)=x * D(x, 0)=0$ and by (3) we get $D(x, 0)=x$.
(v) Let $D(x, 0)=x$ for some $x \in X$. By (1) we have $x * D(x, 0)=0$ then we can write by part (i) $d(0)=x * D(x, 0)=0$ therefore $d(0)=0$.

Hence we get that d is regular.
(vi) Let x be an element in X such that $d(y) * x=0$ or $x * d(y)=0$ for all $y \in X$ then by (3) we get $d(y)=x$.

Proposition 3.6. Let $(X, *, 0)$ be a 0 -commutative B-algebra and d be the trace of an (l, r) symmetric bi-derivation D of X. Then the followings hold for all $x, y \in X$:
(i) $d(x * y)=(d(x) * y) * y$.
(ii) $D(x, 0) * D(y, 0)=x * y$.

Proof. (i) Let $x, y \in X$, then we have

$$
\begin{aligned}
d(x * y) & =D(x * y, x * y) \\
& =(D(x, x * y) * y) \wedge(x * D(y, x * y)) \\
& =(x * D(y, x * y)) *((x * D(y, x * y)) *(D(x, x * y) * y))
\end{aligned}
$$

Then by (12) we have,

$$
\begin{aligned}
& =D(x, x * y) * y \\
& =[(D(x, x) * y) \wedge(x * D(x, y))] * y
\end{aligned}
$$

Then by (12) we have,

$$
=(D(x, x) * y) * y
$$

Hence we get $d(x * y)=(d(x) * y) * y$.
(ii) If $x, y \in X$, then from Proposition 3.4(i) we can write $d(0)=D(x, 0) * x$ and $d(0)=D(y, 0) * y$. From here we get $D(y, 0) * y=D(x, 0) * x$ and we have
$(D(y, 0) * y) *(D(x, 0) * x)=0$ and we can also write by (11) $(x * y) *(D(x, 0) *$ $D(y, 0))=0$. Hence, by (3) we have $D(x, 0) * D(y, 0)=x * y$.

Proposition 3.7. Let $(X, *, 0)$ be a 0 -commutative B-algebra and d be the trace of an (r, l) symmetric bi-derivation of X. Then the followings hold for all $x, y \in X$:
(i) $d(x * y)=d(y)$.
(ii) d is constant.
(iii) $D(y, 0) * D(x, 0)=y * x$.

Proof. (i)

$$
\begin{aligned}
d(x * y) & =D(x * y, x * y) \\
& =(x * D(y, x * y)) \wedge(D(x, x * y) * y) \\
& =(D(x, x * y) * y) *((D(x, x * y) * y) *(x * D(y, x * y))) \\
& =(x * D(y, x * y)) \\
& =x *[(x * D(y, y)) \wedge(D(y, x) * y)] \\
& =x *(x * D(y, y))=x *(x * d(y)) \\
& =d(y) \quad \text { by }(12) .
\end{aligned}
$$

Hence we get $d(x * y)=d(y)$.
(ii) Let $x \in X$. By using (II) and (ii) we have $d(x)=d(x * 0)=d(0)$. Hence d is constant.
(iii) Let $x, y \in X$, then from Proposition 3.5(i) we can write $d(0)=x * D(x, 0)$ and $d(0)=y * D(y, 0)$. From here we get $x * D(x, 0)=y * D(y, 0)$ and we have $(x * D(x, 0)) *(y * D(y, 0))=0$ and we can also write by $(13)(D(y, 0) * D(x, 0)) *$ $(y * x)=0$. Hence, by (3) we have $D(y, 0) * D(x, 0)=y * x$.

References

[1] N. O. Alshehri, Derivations of B-algebras, J. King Abdulaziz Univ. 22 (2010), no. 1, 71-83.
[2] N. O. Alshehri, H. S. Kim, and J. Neggers, Derivations on ranked bigroupoids, Appl. Math. Inf. Sci. 7 (2013), no. 1, 161-166.
[3] \qquad , ($n-1$)-Step derivations on n-groupoids: The Case $n=3$, Hindawi Publishing Corporation, The Scientific World Journal Volume 2014 (2014), Article ID 726470, 6 pages.
[4] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups Related Systems 8 (2001), 1-6.
[5] S. Ilbira, A. Firat, and Y. B. Jun, On symmetric bi-derivations of BCI-algebras, Appl. Math. Sci. 5 (2011), no. 60, 2957-2966.
[6] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), no. 3-4, 167-176.
[7] H. S. Kim and H. G. Park, On 0-commutative B-algebras, Sci. Math. Jpn. 62 (2005), no. $1,7-12$.
[8] G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat. Ser. III 15(35) (1980), no. 2, 279-282.
[9] , On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 6, 303-307.
[10] J. Neggers and H. S. Kim, On B-algebras, Mat. Vesnik 54 (2002), no. 1-2, 21-29.
[11] C. Prabpayak and U. Leerawat, On derivations of BCC-algebras, Kasetsart J. (Nat. Sci.) 43 (2009), 398-401.
[12] J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequations Math. 38 (1989), no. 2-3, 245-254.
[13] , Two result concerning symmetric bi-derivations on prime rings, Aequations Math. 40 (1990), no. 2-3, 181-189.

Síbel Altunbiçak Kayiş
Department of Mathematics
Faculty of Science
Yaşar University
35100-Izmir, Turkey
E-mail address: sibelakayis@hotmail.com
Şule Ayar Özbal
Department of Mathematics
Faculty of Science and Letter
Yaşar University
35100-Izmir, Turkey
E-mail address: sule.ayar@yasar.edu.tr

[^0]: Received March 30, 2015; Revised October 14, 2015.
 2010 Mathematics Subject Classification. 16B70, 16W25, 06F35.
 Key words and phrases. B-algebra, 0-commutative B-algebra, derivation, symmetric biderivation.

