Browse > Article
http://dx.doi.org/10.14317/jami.2022.133

PACKING LATIN SQUARES BY BCL ALGEBRAS  

LIU, YONGHONG (School of Automation, Wuhan University of Technology)
Publication Information
Journal of applied mathematics & informatics / v.40, no.1_2, 2022 , pp. 133-139 More about this Journal
Abstract
We offered a new method for constructing Latin squares. We introduce the concept of a standard form via example for Latin squares of order n and we also call it symmetric BCL algebras matrix, and thereby become BCL algebra representations of the picture of Latin squares. Our research shows that some new properties of the Latin squares with BCL algebras are in ℤn.
Keywords
Latin squares; BCL algebras; matrix; BIBD; NP-complete;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Yonghong, Lie algebras with BCL algebras, Eur. J. Pure Appl. Math. 11 (2018), 444-448. https://doi.org/10.29020/nybg.ejpam.v11i2.3219   DOI
2 R.A. Brualdi, Introductory combinatorics (3th Edition), Upper Saddle River, NJ: Prentice-Hall, 1998.
3 R. Bejar, C. Fernandez, C. Mateu and M. Valls, The Sudoku completion problem with rectangular hole pattern is NP-complete, Discrete Math. 312 (2012), 3306-3315. http://doi : 10.1016/j.disc.2012.07.022   DOI
4 R.C. Bose, E.T. Parker and S.S. Shrikhande, Further results on the construction of mutually orthogonal Latin squares and the falsity of the Euler's conjecture, Canad. J. Math. 12 (1960), 189-203.   DOI
5 A. Hedayat and E. Seiden, On the theory and application of sum composition of Latin squares and orthogonal Latin squares, Pacif. J. Math. 54 (1974), 85-113.   DOI
6 M. Liang, A natural generalization of orthogonality of Latin squares, Discrete Math. 312 (2012), 3068-3075. https://doi:10.1016/j.disc.2012.05.021   DOI
7 R.M. Falcon, The set of autotopisms of partial Latin squares, Discrete Math. 313 (2013), 1150-1161. https://doi:10.1016/j.disc.2011.11.013   DOI
8 C.J. Casselgren and R. Haggkvist, Completing partial Latin squares with one filled row, column and symbol, Discrete Math. 313 (2013), 1011-1017. https://doi:10.1016/j.disc.2013.01.019   DOI
9 B. Smetaniuk, A new construction on Latin squares I: A proof of the Evans conjecture, Ars Combinatoria 11 (1981), 155-172.
10 A.P. Street and D.J. Street, Combinatorics of experimental design, Clarendon Press, 1987.
11 J. Denes and A.D. Keedwell, Latin squares: new developments in the theory and applications, North-Holland, Amsterdam, 1991.
12 T.P. Ryan and J.P. Morgan, Modern experimental Design, Journal of Statistical theory and Practice 1 (2007), 501-506. https://doi.org/10.1080/15598608.2007.10411855   DOI
13 B. Musto and J. Vicary, Quantum Latin squares and unitary error bases, arXiv preprint arXiv:1504.02715 (2016).
14 L. Yonghong, A new branch of the pure algebra: BCL-algebras, Advances in Pure Math. 1 (2011), 297-299. http://dx.doi.org/10.4236/apm.2011.15054   DOI
15 M.Y. Hsiao and D.C. Bossen, Orthogonal Latin square configuration for LSI memory yield and reliability enhancement, IEEE Trans. On Computers C-24 (1975), 512-516. https://doi.org/10.1109/T-C.1975.224254   DOI