• Title/Summary/Keyword: superconvergence

Search Result 28, Processing Time 0.02 seconds

SUPERCONVERGENT GRADIENT RECOVERY FOR THE PARABOLIC INITIAL BOUNDARY VALUE PROBLEM

  • LAKHANY, AM;WHITEMAN, JR
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • Gradient recovery techniques for the second order elliptic boundary value problem are well known. In particular, the Midpoint and the Vertex Recovery Operator have been studied by various authors and under suitable assumptions on the regularity of the unknown solution superconvergence property of these recovered gradients have been proved. In this paper we extend these results to the recovered gradient of the finite element approximation to a model initial-boundary value problem, and go on to prove superconvergence result for this recovered gradient in a discrete (in time) error norm.

  • PDF

FULLY DISCRETE MIXED FINITE ELEMENT METHOD FOR A QUASILINEAR STEFAN PROBLEM WITH A FORCING TERM IN NON-DIVERGENCE FORM

  • Lee, H.Y.;Ohm, M.R.;Shin, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.191-207
    • /
    • 2007
  • Based on a mixed Galerkin approximation, we construct the fully discrete approximations of $U_y$ as well as U to a single-phase quasilinear Stefan problem with a forcing term in non-divergence form. We prove the optimal convergence of approximation to the solution {U, S} and the superconvergence of approximation to $U_y$.

FINITE VOLUME ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS

  • LI, QIAN;LIU, ZHONGYAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.6 no.2
    • /
    • pp.85-97
    • /
    • 2002
  • In this paper, finite volume element methods for nonlinear parabolic problems are proposed and analyzed. Optimal order error estimates in $W^{1,p}$ and $L_p$ are derived for $2{\leq}p{\leq}{\infty}$. In addition, superconvergence for the error between the approximation solution and the generalized elliptic projection of the exact solution (or and the finite element solution) is also obtained.

  • PDF

FINITE VOLUME ELEMENT METHODS FOR NONLINEAR PARABOLIC INTEGRODIFFERENTIAL PROBLEMS

  • Li, Huanrong;Li, Qian
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.35-49
    • /
    • 2003
  • In this paper, finite volume element methods for nonlinear parabolic integrodifferential problems are proposed and analyzed. The optimal error estimates in $L^p\;and\;W^{1,p}\;(2\;{\leq}\;p\;{\leq}\;{\infty})$ as well as some superconvergence estimates in $W^{1,p}\;(2\;{\leq}\;p\;{\leq}\;{\infty})$ are obtained. The main results in this paper perfect the theory of FVE methods.

  • PDF

THE GRADIENT RECOVERY FOR FINITE VOLUME ELEMENT METHOD ON QUADRILATERAL MESHES

  • Song, Yingwei;Zhang, Tie
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1411-1429
    • /
    • 2016
  • We consider the nite volume element method for elliptic problems using isoparametric bilinear elements on quadrilateral meshes. A gradient recovery method is presented by using the patch interpolation technique. Based on some superclose estimates, we prove that the recovered gradient $R({\nabla}u_h)$ possesses the superconvergence: ${\parallel}{\nabla}u-R({\nabla}u_h){\parallel}=O(h^2){\parallel}u{\parallel}_3$. Finally, some numerical examples are provided to illustrate our theoretical analysis.

AN SDFEM FOR A CONVECTION-DIFFUSION PROBLEM WITH NEUMANN BOUNDARY CONDITION AND DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.31-48
    • /
    • 2010
  • In this article, we consider singularly perturbed Boundary Value Problems(BVPs) for second order Ordinary Differential Equations (ODEs) with Neumann boundary condition and discontinuous source term. A parameter-uniform error bound for the solution is established using the Streamline-Diffusion Finite Element Method (SDFEM) on a piecewise uniform meshes. We prove that the method is almost second order of convergence in the maximum norm, independently of the perturbation parameter. Further we derive superconvergence results for scaled derivatives of solution of the same problem. Numerical results are provided to substantiate the theoretical results.

Lp and W1,p Error Estimates for First Order GDM on One-Dimensional Elliptic and Parabolic Problems

  • Gong, Jing;Li, Qian
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.41-57
    • /
    • 2000
  • In this paper, we consider first order generalized difference scheme for the two-point boundary value problem and one-dimensional second order parabolic type problem. The optimal error estimates in $L_p$ and $W^{1,p}$ ($2{\leq}p{\leq}{\infty}$) as well as some superconvergence estimates in $W^{1,p}$ ($2{\leq}p{\leq}{\infty}$) are obtained. The main results in this paper perfect the theory of GDM.

  • PDF

MAX-NORM ERROR ESTIMATES FOR FINITE ELEMENT METHODS FOR NONLINEAR SOBOLEV EQUATIONS

  • CHOU, SO-HSIANG;LI, QIAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.25-37
    • /
    • 2001
  • We consider the finite element method applied to nonlinear Sobolev equation with smooth data and demonstrate for arbitrary order ($k{\geq}2$) finite element spaces the optimal rate of convergence in $L_{\infty}\;W^{1,{\infty}}({\Omega})$ and $L_{\infty}(L_{\infty}({\Omega}))$ (quasi-optimal for k = 1). In other words, the nonlinear Sobolev equation can be approximated equally well as its linear counterpart. Furthermore, we also obtain superconvergence results in $L_{\infty}(W^{1,{\infty}}({\Omega}))$ for the difference between the approximate solution and the generalized elliptic projection of the exact solution.

  • PDF

A Brief Review of Research and Development, Market Trends for Ultra-Small and High-Sensitivity Nano Biosensors (초소형 고감도 나노 바이오 센서의 연구개발 및 시장 동향)

  • Hyeong Gi Park;Jun-Won Kook;Kwon-Young Choi;Jae-Hyun Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.556-562
    • /
    • 2023
  • This paper presents the development and market trends of nano biosensors. These biosensors must possess high sensitivity and selectivity to effectively detect diseases. Presently, many research groups are focusing on the field-effect transistor aspect of nano biosensors, which can identify diseases such as Down syndrome, bladder cancer, breast cancer, and numerous other cancers, utilizing graphene and transition metal dichalcogenide materials. In the case of in-vitro diagnostics, the use of nano biosensors has been rapidly growing since the onset of the COVID-19 pandemic. This paper also discusses market trends and the outlook for both national and international enterprises engaged in the nano biosensor field. Nano biosensors are expected to play a beneficial and significant role soon, contributing to the early diagnosis of diseases and subsequently improving patient outcomes.

THE DISCRETE SLOAN ITERATE FOR CAUCHY SINGULAR INTEGRAL EQUATIONS

  • KIM, SEKI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.81-95
    • /
    • 1998
  • The superconvergence of the Sloan iterate obtained from a Galerkin method for the approximate solution of the singular integral equation based on the use of two sets of orthogonal polynomials is investigated. The discrete Sloan iterate using Gaussian quadrature to evaluate the integrals in the equation becomes the Nystr$\ddot{o}$m approximation obtained by the same rules. Consequently, it is impossible to expect the faster convergence of the Sloan iterate than the discrete Galerkin approximation in practice.

  • PDF