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Abstract

In this paper, we consider �rst order generalized di�erence scheme for the two-

point boundary value problem and one-dimensional second order parabolic type

problem. The optimal error estimates in Lp and W 1;p (2 � p �1) as well as some

superconvergence estimates in W 1;p (2 � p � 1) are obtained. The main results

in this paper perfect the theory of GDM.

1 Introduction

We �rst consider the two-point boundary problem(
(a) Lu � �

d

dx
(pdu
dx

) = f; a < x < b;

(b) u(a) = 0; u(b) = 0;
(1.1)

where p = p(x) � pmin > 0; p 2 C
1(I); f 2 L

2(I); I = [a; b]. Secondly, we consider

one-dimentional second order parabolic type problem8><
>:

(a) @u

@t
�

@

@x
(p@u
@x

) = f(x; t); (x; t) 2 (a; b)� (0; T ];

(b) u(x; 0) = 0; x 2 [a; b];

(c) u(a; t) = 0; u(b; t) = 0; t 2 [0; T ];

(1.2)

where p = p(x) � pmin > 0; p 2 C
1(I); f 2 L

2(I); I = [a; b]. In the past several

decades, Li and other authors did extensive and deep research on the theory and appli-

cation of generalized di�erence methods (GDM for short), including constructing �rst

order or higher order di�erence schemes on elliptic, parabolic and hyperbolic equa-

tions, establishing the optimal Sobolev norm estimates of errors, and applying GDM

to underground uid, electromagnetic �eld and other �elds. Theoretical researches and

realistic computations show that GDM not only keep the computational simplicity of

AMS(MOS) Subject Classi�cation: 65L10, 65L12, 65L17, 65M06, 65M15.
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di�erence methods, but also enjoy the accuracy of �nite element methods. See [4] and

[7] for more details.

Since the time of studying GDM is only several decades and establishing the error

estimates is very di�cult, the theory of GDM is not perfect. For example, the optimal

order H1, L2 and maximum norm error estimates to problem (1.1) and (1.2) have been

obtained (See [4], [5], [6], [7]), but the W 1;p and Lp (2 < p <1) norm error estimates

as well as some superconvergence estimates have not been derived before. We shall

do this work in this paper. Moreover, by using Green functions, we will reduce the

demand of the smoothness of u in the error estimates of maximum norms, and get a

perfect statement combining the case of 2 � p � 1.

This paper is organized in the following way. In section 2 we do some preparations,

including introducing the partitions of the interval I, the trial and test function spaces,

Green functions and some lemmas which are essential in our analysis. We consider

problem (1.1) and establish optimal error estimates of u � uh in W
1;p(I) and Lp(I)

(2 � p � 1) as well as the superconvergence estimate of ~u � uh in W
1;p(I) (2 �

p � 1) in section 3. Section 4 deals with the problem (1.2) and we will obtain the

optimal error estimates of u� uh in W 1;p(I) and Lp(I) (2 � p � 1) in addition to the

superconvergence estimates of ~u� uh and R�
h
u� uh in W

1;p(I) (2 � p � 1).

2 Preparations

Let U = H
1
0 (I) � fv 2 H1(I); v(a) = v(b) = 0g. Then the weak form of (1.1) is to

�nd u 2 U such that

a(u; v) = (f; v); 8v 2 U; (2.1)

where

a(u; v) =

Z
b

a

pu
0
v
0
dx; (f; v) =

Z
b

a

fvdx:

We �rst de�ne the partition Th of the interval I = [a; b] with nodes xi, i = 1; 2; � � � ; n;

a = x0 < x1 < x2 < � � � < xn = b:

Let hi = xi� xi�1 denote the length of the element Ii = [xi�1; xi], h = max
1�i�n

hi and let

the partition Th of I be regular, that is, there exists a constant � > 0 such that

hi � �h; i = 1; 2; � � � ; n: (2.2)

Corresponding to the partition Th, we then introduce its dual partition T
�

h
with

nodes x
i+ 1

2

, i = 0; � � � ; n� 1,

a = x0 < x 1

2

< x 3

2

< � � � < x
n�

1

2

< xn = b:
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I
�
0 = [x0; x 1

2

], I�
j

= [x
j�

1

2

; x
j+ 1

2

] (j = 1; 2; � � � ; n� 1), and I�n = [x
n�

1

2

; xn] are said to be

dual elements, here

x
j�

1

2

=
1

2
(xj�1 + xj); 1 � j � n:

Corresponding to the partition Th, we choose the trial function space Uh be the

space of continuous piecewise linear functions, and Uh = spanf�i(x); 1 � i � n � 1g,

The basis function �i corresponding to the node xi is

�i(x) =

8<
:

1� h
�1
i
jx� xij; xi�1 � x � xi;

1� h
�1
i+1jx� xij; xi � x � xi+1; i = 1; 2; � � � ; n� 1;

0; otherwise;

so, any uh 2 Uh can be expressed uniquely in the following way:

uh(x) =

n�1X
i=1

ui�i(x);

where ui = uh(xi), and on each element Ii, i = 1; 2; � � � ; n,

u
0

h
(x) =

ui � ui�1

hi

; xi�1 � x � xi: (2.3)

Corresponding to the partition T
�

h
, let the test function space Vh be the space of

piecewise constant functions. Then the basis of Vh may be taken to be characteristic

functions of elements I�
j
,

 j(x) =

�
1; x 2 I�

j
;

0; otherwise;
j = 1; 2; � � � ; n� 1:

and each vh 2 Vh can be expressed uniquely in the following way:

vh(x) =

n�1X
j=1

vj j(x):

Obviously

Uh(x) � U \W
1;1(I); Vh � L2(I):

Let's de�ne, for any uh 2 Uh and vh 2 Vh; a bilinear form as follows

(a) a
�(uh; vh) =

n�1X
j=1

vja
�(uh;  j);

(b) a
�(uh;  j) = p

j�
1

2

u
0

h
(x

j�
1

2

)� p
j+ 1

2

u
0

h
(x

j+ 1

2

) (2.4)

� p
j�

1

2

uj � uj�1

hj

� p
j+ 1

2

uj+1 � uj

hj+1

;
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where uj = uh(xj), vj = vh(xj), pj� 1

2

= p(x
j+ 1

2

), and j = 1; 2; � � � ; n� 1.

For numerical analysis, we need to introduce the interpolation operators �h : U !

Uh, de�ned by

�hw =

n�1X
i=1

w(xi)�i(x); 8w 2 U;

and ��

h
: U ! Vh, de�ned by

��

h
w =

n�1X
j=1

w(xj) j(x); 8w 2 U:

Using the theory of Sobolev's interpolation, we have

jw ��hwjm;p � Ch
k�m

jwjk;p; m = 0; 1; k = 1; 2; 1 � p � 1; (2.5)

j�hwjm;p � Cjwjm;p; m = 0; 1; 2 � p � 1; (2.6)

where j�jm;p and k�km;p stand for the semi-norm and norm of the Sobolev space Wm;p(I)

respectively, j � jm and k � km stand for the semi-norm and norm of the Sobolev space

H
m(I) = W

m;2(I) respectively, and C is a positive constant independent of h.

Noting that for any uh 2 Uh, we have, by (2.4),

juhj1 = [

Z
b

a

ju
0

h
j
2
dx]

1

2 = [

nX
i=1

(ui � ui�1)
2

hi

]
1

2 : (2.7)

De�ne the discrete L2-norm

kuhk0;h = [

nX
i=1

hi(u
2
i�1 + u

2
i )]

1

2 ; uh 2 Uh: (2.8)

Then we can easily prove the following lemmas (See [4], [7]).

Lemma 2.1 There exist positive constants C1 and C2 such that

C1kuhk0;h � kuhk0 � C2kuhk0;h; 8uh 2 Uh: (2.9)

Lemma 2.2 For any uh 2 Uh, the norms k��

h
uhk and jjjuhjjj0 = (uh;�

�

h
uh)

1

2 are

equivalent to the L2 norm kuhk0.

Lemma 2.3 For any uh; wh 2 Uh, one has

a
�(uh;�

�

h
wh) = a

�(wh;�
�

h
uh); (2.10)

(uh;�
�

h
wh) = (wh;�

�

h
uh): (2.11)
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Lemma 2.4 The bilinear form a
�(�;��

h
�) is bounded over Uh�Uh, that is, there exists

a constant M > 0 such that

ja
�(uh;�

�

h
wh)j �Mkuhk1kwhk1; 8uh; wh 2 Uh: (2.12)

Lemma 2.5 The bilinear form a
�(�;��

h
�) : Uh � Uh ! R is positive de�nite, that is,

there exists a positive constant � such that, for h su�ciently small

a
�(uh;�

�

h
uh) � �kuhk

2
1; 8uh 2 Uh: (2.13)

We now present a very useful lemma with respect to the bilinear form a(�; �). For

simplicity, we write

d(u� uh; wh) = a(u� uh; wh) + a
�(u� uh;�

�

h
wh); 8uh; wh 2 Uh: (2.14)

Lemma 2.6 [4] Let u 2W 3;q(I), then, for uh; wh 2 Uh,

jd(u� uh; wh)j � Ch[ju� uhj1;pjwhj1;p0 + hjuj3;qjwhj1;q0 ]; (2.15)

with 1 � p; q � 1;
1
p

+ 1
p0

= 1, 1
q

+ 1
q0

= 1.

We prove another useful lemma similar to Lemma 2.6.

Lemma 2.7 Let u 2W 2;q(I), then, for uh; wh 2 Uh,

jd(u� uh; wh)j � Ch[ju� uhj1;pjwhj1;p0 + juj2;qjwhj1;q0 ]; (2.16)

with 1 � p; q � 1;
1
p

+ 1
p0

= 1, 1
q

+ 1
q0

= 1.

Proof. By making use of (2.3), we have, for uh; wh 2 Uh

a(u� uh; wh) =

Z
b

a

p(u� uh)0w0
h
dx

=

nX
j=1

[

Z
xj

xj�1

(p� p
j�

1

2

)(u� uh)0w0
h
dx

+

Z
xj

xj�1

p
j�

1

2

(u� uh)0dx
wj � wj�1

hj

]

=

nX
j=1

Z
xj

xj�1

(p� p
j�

1

2

)(u� uh)0w0
h
dx

+

nX
j=1

p
j�

1

2

[u(xj)� u(xj�1)� uj + uj�1]dx
wj � wj�1

hj

;

where uj = uh(xj); wj = wh(xj).
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On the other hand, by (2.4), (2.3) and noting w0 = wn = 0, we have,

a
�(u� uh;�

�

h
wh) =

n�1X
j=1

wja
�(u� uh;  j)

=

n�1X
j=1

[p
j�

1

2

(u� uh)0
j�

1

2

� p
j+ 1

2

(u� uh)0
j+ 1

2

]wj

=

n�1X
j=1

p
j�

1

2

(u� uh)0
j�

1

2

wj �

nX
j=2

p
j�

1

2

(u� uh)0
j�

1

2

wj�1

=

nX
j=1

p
j�

1

2

(u� uh)0
j�

1

2

(wj � wj�1)

=

nX
j=1

p
j�

1

2

[hju
0(x

j�
1

2

)� uj + uj�1]
wj � wj�1

hj

:

Substitute the above relations into (2.14) and express (2.14) by the following

d(u� uh; wh) =

2X
j=1

Ei(u� uh; wh);

where

E1(u� uh; wh) =

nX
j=1

Z
xj

xj�1

(p� p
j�

1

2

)(u� uh)0w0
h
dx;

E2(u� uh; wh) =

nX
j=1

p
j�

1

2

[u(xj)� u(xj�1)� hju
0(x

j�
1

2

)]
wj � wj�1

hj

:

Thus

jE1(u� uh; wh)j � Chju� uhj1;pjwhj1;p0 :

Applying Taylor's formula with integral type remainder

g(xj)� g(xj�1) = g
0(x

j�
1

2

)hj +

Z
xj

x
j�

1

2

g
00(x)(xj � x)dx

�

Z
xj�1

x
j�

1
2

g
00(x)(xj�1 � x)dx;

we have

jE2(u� uh; wh)j � Ch

Z
b

a

ju
00
w
0

h
jdx � Chjuj2;qjwhj1;q0 :
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Hence the conclusion (2.16) is a consequence of combination of estimates for E1 and

E2. This completes the proof.

In order to derive maximum norm error estimates, we need to de�ne the Green

functions associated with the bilinear form a(�; �) (See [9]). Let Gh
z 2 Uh andG�z 2 H

1
0 (I)

be the discrete Green function and pre-Green function respectively, @zG
�
z

the directional

derivative of G�z along some direction with respect to z. Then G
h
z and @zG

h
z are the

�nite element approximations to G�
z

and @zG
�
z
, respectively. From [9], we know that

kG
�

z
k2;1 + k@zG

h

z
k1;1 � C: (2.17)

Lemma 2.8 The discrete Green's function G
h

z
possess the following property.

kG
h

zk1;1 � C: (2.18)

Proof. By using of inverse property, (2.5) and noting that W 2;1(I) ,! w
1;1(I), we

obtain

kGh

z
k1;1 � kG�

z
k1;1 + kG�

z
��hG

�
z
k1;1 + k�hG

�
z
�G

h

z
k1;1

� CkG�
z
k1;1 + Ch

�
1

2 k�hG
�
z
�G

h

z
k1

� CkG�
z
k1;1 + Ch

�
1

2 (k�hG
�
z
�G

�
z
k1 + kG�

z
�G

h

z
k1)

� CkG�
z
k2;1 + Ch

1

2 kG�
z
k2:

(2.19)

Let �h
z
2 Uh be the discrete Delta function de�ned by

(v; �hz ) = v(z); 8v 2 Uh;

Then the above de�nation and the inverse property imply that

k�h
z
k20 = (�h

z
; �

h

z
) = j�h

z
(z)j

� k�h
z
k1;1 � Ch

�
1

2 k�h
z
k0;

So also from [9], we have

kG
�

zk2 � Ck�
h

z k0 � Ch
�

1

2 ;

which together with (2.17) and (2.19) completes the proof.

3 Two-boundary Value problem

In this section, we consider the problem (1.1).

The �rst order generalized di�erence scheme for problem (1.1) is to �nd uh 2 Uh

such that

a
�(uh; vh) = (f; vh); 8vh 2 Vh: (3.1)
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Using the de�nation of the operator ��

h
in section 2, we can obtain that the gener-

alized di�erence scheme (3.1) is equivalent to �nding uh 2 Uh, such that

a
�(uh;�

�

h
wh) = (f;��

h
wh); 8wh 2 Uh: (3.2)

Combining the results of Lax-Milgram's Lemma, Lemmas 2.4 and 2.5, we have the

solvability theorem.

Theorem 3.1 The �rst order generalized di�erence scheme (3.1) has exactly one so-

lution for h su�ciently small.

In this section, we denote u 2 H1
0 (I) the weak solution of problem (1.1) and uh 2 Uh

the solution of (3.1).

In view of the generalized Galerkin variational principle (See [7]), we have

a
�(u; vh) = (f; vh); 8vh 2 Vh:

So that, by (3.1),

a
�(u� uh; vh) = 0; 8vh 2 Vh: (3.3)

Now, we show the error estimate of u� uh in W 1;p(I) (2 � p � 1).

Theorem 3.2 If u 2W 2;p(I) (2 � p <1) and h su�ciently small, then the following

error estimate holds:

ku� uhk1;p � Chkuk2;p; 2 � p <1: (3.4)

Proof. We �rst introduce an auxiliary problem. Denote �x to be the derivative of

� and let � 2 H1
0 (I) be the solution of

a(v;�) = �(v; �x); 8v 2 H
1
0 (I); (3.5)

and there is a priori estimate

k�k1;p0 � Ck�k0;p0 ; p
0 =

p

p� 1
: (3.6)

Let ~� and ~u denote the standard �nite element solutions of the problem (3.5) and

(1.1) respectively. Then we have[2]

a(vh;�� ~�) = 0; 8vh 2 Uh; (3.7)

a(u� ~u; vh) = 0; 8vh 2 Uh; (3.8)

ku� ~uks;q � Ch
2�s

kuk2;q; s = 0; 1; 2 � q � 1: (3.9)
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By virtue of Green formula, (3.5), (3.7), (3.8), (3.3), Lemma 2.7, (3.9) and (3.6),

we obtain that

((u� uh)x; �) = �(u� uh; �x)

= a(u� uh;�)

= a(u� uh;�� ~�) + a(u� uh;
~�)

= a(u� ~u;�) + d(u� uh;
~�)

� C[ku� ~uk1;pk�k1;p0 + h(ju� uhj1;p + juj2;p)j~�j1;p0 ]

� Ch(ku� uhk1;p + kuk2;p)k�k1;p0

� Ch(ku� uhk1;p + kuk2;p)k�k0;p0 :

Thus

k(u� uh)xk0;p = sup
�2L

p0
(I)

((u� uh)x; �)

k�k0;p0
� Ch(ku� uhk1;p + kuk2;p):

Therefore

ku� uhk1;p � Ch(ku� uhk1;p + kuk2;p); (3.10)

where we have used the equivalence of the norms k � k1;p and j � j1;p. Let h su�ciently

small, such that Ch � 1
2
, then the theorem follows at once from (3.10).

Theorem 3.3 If u 2 W
2;1(I) and h su�ciently small, then we have the following

error estimate:

ku� uhk1;1 � Chkuk2;1: (3.11)

Proof. The de�nition of @zG
h

z , (3.8), (3.3), Lemma 2.7, (3.9), and (2.17) imply that

@z(~u� uh)(z) = a(~u� uh; @zG
h

z )

= a(u� uh; @zG
h

z )

= d(u� uh; @zG
h

z )

� Ch(ju� uhj1;1 + juj2;1)j@zG
h

z j1;1

� Ch(ju� ~uj1;1 + j~u� uhj1;1 + juj2;1)

� C(h2kuk2;1 + hj~u� uhj1;1):

(3.12)

Hence

k~u� uhk1;1 � C(hj~u� uhj1;1 + h
2
kuk2;1): (3.13)

By letting h su�ciently small in the above inequality and using the triangle inequality

ku� uhk1;1 � ku� ~uk1;1 + k~u� uhk1;1;

we complete the proof also from (3.9).

Combining Theorems 3.2 and 3.3, we immediately derive the following.
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Theorem 3.4 If u 2 W 2;p(I) (2 � p � 1) and h su�ciently small, then we have the

following error estimate:

ku� uhk1;p � Chkuk2;p; 2 � p � 1: (3.14)

We then demonstrate the estimates of u� uh in Lp(I) (2 � p � 1). From [4] and

[5], we know that

ku� uhk0 � Ch
2
kuk3;1;

ku� uhk0;1 � Ch
2
kuk3:

The result is not perfect. We will modify the proof of the case of p = 1 to reduce

the demand of the smoothness of the function u. Then the case of 2 � p < 1 is the

straight result of the case of p = 1.

Theorem 3.5 If u 2 W
3;1(I) and h su�ciently small, the following error estimate

holds:

ku� uhk0;1 � Ch
2
kuk3;1: (3.15)

Proof. Noting that the de�nition of Gh

z
, (3.12), Lemma 2.6, (3.14), (2.18) and

Sobolev imbedding inequality, we deduce that

(~u� uh)(z) = a(~u� uh; G
h

z
)

= d(u� uh; G
h

z
)

� Ch(ju� uhj1 + hjuj3:1)jG
h

z
j1;1

� Ch
2(juj2 + juj3:1)

� Ch
2kuk3:1;

which together with (3.9), Sobolev imbedding inequality and triangle inequality com-

pletes the proof.

An application of the above theorem and the inequality

ku� uhk0;p � Cku� uhk0;1; 2 � p <1:

immediately yields the following result.

Corollary 3.1 Under the hypotheses of Theorem 3.5, we have the following error

estimate:

ku� uhk0;p � Ch
2
kuk3;1; 2 � p � 1: (3.16)

We now turn to the superconvergence estimate of ~u� uh in W
1;p(I) (2 � p � 1):

Theorem 3.6 If u 2W 3;p(I) (2 � p � 1) and h su�ciently small, then we have

k~u� uhk1;p � Ch
2
kuk3;p; 2 � p � 1: (3.17)
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Proof. We �rst consider the case of 2 � p <1:

By Lemma 2.6, Theorem 3.2, and a similar analysis to that in Theorem 3.2, we

obtain that
((~u� uh)x; �) = �(~u� uh; �x)

= a(~u� uh;�)

= a(~u� uh;
~�)

= d(u� uh;
~�)

� Ch(ju� uhj1;p + hjuj3;p)j�j1;p0

� Ch
2(kuk2;p + juj3;p)k�k1;p0 :

accordingly, (3.17) is derived from the above inequality and (3.6), for 2 � p <1.

As far as the case of p = 1 is concerned, it su�ces to see the proof of Theorem 3.3

and the di�erence is that we use Lemma 2.6 instead of Lemma 2.7.

4 One-Dimensional Parabolic Problem

In this section, we consider the problem (1.2) on the base of the results derived in

section 3.

De�ne the semi-discrete generalized di�erence scheme for problem (1.2): Find uh(t) :

[0; T ] ! Uh such that�
(a) (uh;t; vh) + a

�(uh; vh) = (f; vh); 8vh 2 Vh; 0 < t � T;

(a) uh(0) = u0;h;
(4.1)

where uh;t = @uh

@t
, u0;h 2 Uh is taken the generalized elliptic projection R

�

h
u0 of u0

de�ned in (4.2) below.

It can been proved that (4.1) has a unique solution for any f 2 L2(I) (See [4], [7]).

For later use, we introduce the generalized elliptic projection operator R�
h

: H2(I)\

H
1
0 (I) ! Uh de�ned by

a
�(R�

h
w; vh) = a

�(w; vh); 8vh 2 Vh: (4.2)

It is easily seen that, from Lemmas 2.4 and 2.5, R�
h
w is uniquely determined by

(4.2) for any given w 2 H1(I) \H1
0 (I).

Applying Theorems 3.4 and 3.6, we have the following error estimates.

Lemma 4.1 Let R�
h

be de�ned by (4.2), then

(a) kw �R
�

h
wk1;p � Chkwk2;p; 2 � p � 1;

(b) kw �R
�

h
wk0;p � Ch

2kwk3;1; 2 � p � 1:
(4.3)

Throughout this section, we denote u 2 H1
0 (I) the weak solution of problem (1.2),

uh 2 Uh the solution of problem (4.1) and write

u� uh = (u�R
�

h
u) + (R�

h
u� uh) = � + �:
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Let ~u be the �nite element solution of problem (1.2), that is, ~u 2 Uh satisfy[8]�
(~ut; vh) + a(~u; vh) = (f; vh); 8vh 2 Uh;

~u(0) = ~u0;

where ~ut = @~u
@t

, ~u0 2 Uh is taken the elliptic projection Rhu0 of u0 de�ned as follows:

Find Rhu 2 Uh such that

a(u�Rhu; vh) = 0; 8vh 2 Uh: (4.4)

First, we give the superconvergence estimate of � in W 1;p(I) (2 � p � 1). In order

to get that we need to deduce the error estimate of �t in  L2(I).

Lemma 4.2 If ut(0) 2W 3;1(I), utt 2 L2(0; t;w
3;1(I)), then we have the following error

estimate:

k�tk0 � Ch
2
fkut(0)k3;1 + (

Z
t

0

kuttk
2
3;1d�)

1

2 g: (4.5)

proof. Mutiplying (1.2) by vh and integrating by parts, we have

(ut; vh) + a
�(u; vh) = (f; vh); 8vh 2 Vh: (4.6)

Substracting (4.6) from (4.1) and applying (4.2), we obtain

(�t; vh) + a
�(�; vh) = �(�t; vh); 8vh 2 Vh: (4.7)

Taking t = 0 in (4.7) and noting that uh(0) = R
�

h
uh implies �(0) = 0, then taking

vh(0) = ��

h
�t(0); we have, also by Lemma 2.2 and "-inequality, that

jjj�t(0)jjj20 = �(�t(0);��

h
�t(0))

� Ck�t(0)k0k�
�

h
�t(0)k0

� Ck�t(0)k20 + 1
2
jjj�t(0)jjj20;

where jjj � jjj is de�ned in Lemma 2.2. Then by (4.3b)

jjj�t(0)jjj0 � Ck�t(0)k0 � Ch
2
kut(0)k3;1: (4.8)

Di�erentiate (4.7) with respect to t and take vh = ��

h
�t to get

(�tt;�
�

h
�t) + a

�(�t;�
�

h
�t) = �(�tt;�

�

h
�t): (4.9)

Lemmas 2.3, 2.5 and 2.2 now imply that

1
2
d

dt
(�t;�

�

h
�t) + C�k�tk

2
1 � (�tt;�

�

h
�t) + a

�(�t;�
�

h
�t)

� C(k�ttk
2
0 + jjj�tjjj

2
0):

(4.10)
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Integrating (4.10) with respect to t, we have

jjj�tjjj
2
0 +

Z
t

0

k�tk
2
1d� � C(jjj�t(0)jjj20 +

Z
t

0

k�ttk
2
0d� +

Z
t

0

jjj�tjjj
2
0d�):

By Gronwall Lemma, (4.8) and (4.3b), we have

jjj�tjjj
2
0 � C(jjj�t(0)jjj20 +

Z
t

0

k�ttk
2
0d�)

� Ch
4(kut(0)k23;1 +

Z
t

0

kuttk
2
3;1d�): (4.11)

(4.11) and Lemma 2.2 imply (4.5).

Theorem 4.1 If ut(0), utt 2 W
3;1(I), u 2 W

3;p(I) and h su�ciently small, then the

following superconvergence estimate of � in W
1;p(I) (2 � p � 1) holds:

k�k1;p � Ch
2
fkuk3;p + kut(0)k3;1 + (

Z
t

0

kuttk
2
3;1d�)

1

2 g; 2 � p � 1: (4.12)

Proof. (i) Let us �rst consider the case of 2 � p <1.

Using Green formula, (3.5), (3.7), (4.2) and (4.7), we write

(�x; �) = �(�; �x) = a(�;�) = a(�;Rh�)

= a(R�
h
u� u;Rh�) + a(u� uh; Rh�)

= a(R�
h
u� u;Rh�)� a

�(R�
h
u� u;��

h
Rh�)

+a(u� uh; Rh�)� a
�(u� uh;�

�

h
Rh�) + a

�(�;��

h
Rh�)

= d(R�
h
u� u;Rh�) + d(u� uh; Rh�)� (�t + �t;�

�

h
Rh�)

= E1 +E2 +E3:

(4.13)

Applying Lemma 2.6 and (4.3a), we get

E1 � Ch(jR�
h
u� uj1;p + hjuj3;p)jRh�j1;p0

� Ch
2
kuk3;pj�j1;p0 ;

and
E2 � Ch(ju� uhj1;p + hjuj3;p)jRh�j1;p0

� Ch(ju�R
�

h
uj1;p + j�j1;p + hjuj3;p)j�j1;p0

� C(hj�j1;p + h
2kuk3;p)k�k1;p0 :

Also we know, from (4.3b),that

k�tk0 � k�t(0)k0 +

Z
t

0

k�ttk0d�

� Ch
2
fkut(0)k3;1 +

Z
t

0

kuttk3;1d�g

� Ch
2
fkut(0)k3;1 + (

Z
t

0

kuttk
2
3;1d�)

1

2 g;



54 JING GONG AND QIAN LI

which together with (4.5) and Sobolev imbedding inequality implies that

E3 � (k�tk0 + k�tk0)k�
�

h
Rh�k0

� Ch
2
f(kut(0)k3;1 + (

Z
t

0

kuttk
2
3;1d�)

1

2 gk�k1;p0 :

Combining the estimates of E1 �E3, we obtain also by (3.6) and (4.13) that

k�k1;p � C sup
�2L

p0
(I)

(�x; �)

k�k0;p0

� Cfhk�k1;p + h
2[kuk3;p + kut(0)k3;1 + (

Z
t

0

kuttk
2
3;1d�)

1

2 ]g:

By letting h su�ciently small such that Ch � 1
2
, we can complete the proof of the case

of 2 � p <1.

(ii) Let us next consider the case of p = 1. By virtue of the de�nition of @zG
h

z
, we

have

@z�(z) = a(�; @zG
h

z );

consequently, upon replacing Rh� by @zG
h

z
, p by 1, p0 by 1 in part (i), likewise, we

obtain the conclusion.

Arguing as in the proof of Lemma 4.2, we �nd that if we use (4.3a) instead of (4.3b)

in (4.8) and (4.11), we can get the following lemma.

Lemma 4.3 If ut(0) 2 W
2;p(I); utt 2 L2(0; t;W

2;p(I)), then the following error esti-

mate holds:

k�tk0 � Chfkut(0)k2;p + (

Z
t

0

kuttk
2
2;pd�)

1

2 g; 2 � p � 1: (4.14)

As to the error estimate of u � uh in W
1;p(I), we obtain it by the similar way to

getting Theorem 4.1. In the proof of Theorem 4.1, we use Lemma 2.7 instead of Lemma

2.6 and (4.14) instead of (4.5) for the error estimates of E1 �E3 to derive

k�k1;p � Chfkut(0)k2;p + kuk2;p + (

Z
t

0

kuttk
2
2;pd�)

1

2 g; 2 � p � 1; (4.15)

which together with (4.3a), by using triangle inequality leads to the following theorem.

Theorem 4.2 If ut(0); u 2 W
2;p(I), utt 2 L2(0; t;w

2;p(I)) and h su�ciently small,

then we have the following error estimate, for 2 � p � 1

ku� uhk1;p � Chfkut(0)k2;p + kuk2;p + (

Z
t

0

kuttk
2
2;pd�)

1

2 g: (4.16)
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Now we turn to the error estimates of u � uh in Lp(I) (2 � p � 1). We only

demonstrate the case of p = 1 and the case of 2 � p <1 is a immediate result.

Theorem 4.3 If ut(0); u 2 W
3;1(I), utt 2 L2(0; t;w

3;1(I)) and h su�ciently small,

then the following error estimate holds:

ku� uhk0;1 � Ch
2
fkut(0)k3;1 + kuk3;1 + (

Z
t

0

kuttk
2
3;1d�)

1

2 g: (4.17)

Proof. In view of the de�nition of Gh

z
and (4.13), we obtain that

�(z) = a(�;Gh

z
)

= d(R�
h
u� u;G

h

z
) + d(u� uh; G

h

z
)� (�t + �t;�

�

h
G

h

z
)

= Q1 +Q2 +Q3:

Lemma 2.6, (4.3a), (2.18) and Sobolev imbedding inequality imply that

Q1 � Ch(jR�
h
u� uj1 + hjuj3;1)jGh

z
j1;1

� Ch
2kuk3;1;

and that, also from (4.16)

Q2 � Ch(ju� uhj1 + hjuj3;1)jG
h

z
j1;1

� Ch
2
fkut(0)k2 + kuk2 + (

Z
t

0

kuttk
2
2d�)

1

2 + juj3;1g

� Ch
2
fkut(0)k3;1 + kuk3;1 + (

Z
t

0

kuttk
2
3;1d�)

1

2 g:

Taking into account (4.3b), (4.5) and Sobolev imbedding inequality, we �nd that

Q3 � (k�tk0 + k�tk0)jG
h

z
j1;1

� Ch
2
fkut(0)k3;1 + (

Z
t

0

kuttk
2
3;1d�)

1

2 g:

The inequality (4.17) follows by combining the error estimates of Q1 � Q3, (4.3b)

and triangle inequality.

Corollary 4.1 Under the hypotheses of Theorem 4.3, we have the following error

estimate, for 2 � p � 1

ku� uhk0;p � Ch
2
fkut(0)k3;1 + kuk3;1 + (

Z
t

0

kuttk
2
3;1d�)

1

2 g: (4.18)
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Finally, we deduce the superconvergence estimates of ~u�uh and R�
h
u� ~u in W 1;p(I)

(2 � p � 1).

From [3], we know that

k~u�Rhuk1;p � Ch
2(

Z
t

0

kutk
2
2;pd�)

1

2 ; 2 � p � 1: (4.19)

Theorem 4.4 The following superconvergence estimate holds, for 2 � p � 1

k~u� uhk1;p � Ch
2
fku(0)k3;p + kut(0)k3;1

+(

Z
t

0

kutk
2
3;pd�)

1

2 + (

Z
t

0

kuttk
2
3;1d�)

1

2 g: (4.20)

Proof. Using (3.5) and (4.4), we have

((~u� uh)x; �) = �(~u� uh; �x)

= a(~u� uh;�) = a(~u� uh; Rh�)

= a(~u�Rhu;Rh�) + a(u� uh; Rh�)

� Ck~u�Rhuk1;pkRh�k1;p0

+d(u� uh; Rh�) + a
�(u� uh; Rh�):

Therefore, similar to Theorem 4.1, the proof is easily complete also by (4.19).

Theorems 4.1 and 4.4 together with

kR
�

h
u� ~uk1;p � k�k1;p + k~u� uhk1;p;

yield the following

Corollary 4.2 The following superconvergence estimate holds, for 2 � p � 1

kR
�

h
u� ~uk1;p � Ch

2
fku(0)k3;p + kut(0)k3;1

+(

Z
t

0

kutk
2
3;pd�)

1

2 + (

Z
t

0

kuttk
2
3;1d�)

1

2 g: (4.21)
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