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FINITE VOLUME ELEMENT METHODS FOR NONLINEAR
PARABOLIC INTEGRODIFFERENTIAL PROBLEMS

HUANRONG LI AND QIAN LI

ABSTRACT. In this paper, finite volume element methods for nonlinear parabolic
integrodifferential problems are proposed and analyzed. The optimal error estimates
in L? and W'?(2 < p < o0) as well as some superconvergence estimates in W?(2 <
p < o0) are obtained. The main results in this paper perfect the theory of FVE
methods.

1. INTRODUCTION

Consider the following initial boundary value problem for the nonlinear parabolic
integrodifferential equation:

U t (2
(a’) % = (,%{a(:z:,t,u)g; +/O b(.’E,t, T,U(.’E,T))g—x(I,T)dT} + f($7u)7 (.’L’,t) € (a’ab) X (OaT]a
(b) w(z,0) = uo(z), ze€l=]ab),
(c) u(a,t) =0, wu(b,t)=0, tel0,T],
(1.1)

where the functions a, b, f and ug are smooth enough to ensure the analysis validity
and a(z,u) is bounded from above and below:

0<ap<a(z,u) <M, (z,u)€[a,b] xR. (1.2)

Since we shall show that the approximate solution is uniformly convergent to the exact
solution of (1.1}, the above assumptions only need to hold in a neighborhood of the
exact solution. Here and in what follows, we will not write the independent variables
z, t, 7 for any function unless it is necessary.

It can be proved that (1.1) has a unique solution for any f € L%(I) and uo € H*(I)
(See[4], [11-12)).
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In the past several decades, Q.Li and other authors did extensive and deep research
on the theory and application of finite volume element(FVE) methods, including con-
structing FVE schemes on elliptic, parabolic and hyperbolic equations(See[2-3], [6-9]),
establishing the optimal Sobolev norm estimates of error, and applying FVE methods
to underground fluid, electromagnetic field and other fields. Theoretical researches and
realistic computations show that FVE not only keep the computational simplicity of
finite difference methods(FDM), but also enjoy the accuracy of finite element meth-
ods(FEM). More importantly, numerical solution generated by FVE methods usually
maintains mass conservation features, which are desirable in many applications. How-
ever, the analysis for FVE methods is far behind that for FDM and FEM, and the
theory of FVE methods is not perfect.

Our main goal is to discuss FVE methods of one-dimensional nonlinear parabolic
integrodifferential problems. We derive the optimal error estimates in L? and W1? for
2 < p < 0o. Moreover, some superconvergence is also obtained.

The rest of this paper is organized. In section 2, we do some preparations, including
formulating FVE approximation schemes in piecewise linear finite element spaces, and
introducing some important lemmas which are essential in our analysis. Some proper-
ties of the generalized Ritz-Volterra projection are established in section 3. Main results
of this paper are given in section 4.

2. PREPARATIONS

In this paper we will follow the notations and symbols in [3]. For examples, Tj =
{Li; I; :
= [zi_1,23],1 <4 < n}, and T = {I5 I = [xi_%,xH%],l <i<n=-1, I} =

[mo,x%], I =[x

. 1 ,Zn)|}denote the primal partition and its dual partition, respec-

n
tively. Let h; = z; — 2,1, h = maxz{h;;1 < i < n}. The partitions are assumed to
be regular, that is, there exists a constant y > 0 such that h; > ph, ¢ = 1,2,---n.
The trial function space U, C Hi(I) = {u € H*(I);u(a) = u(b) = 0} is defined as
a piecewise linear function space over Tj, and U;, = span{p;(z),1 < i < n —1}. The
test function space Vj, = span{;(z),1 < i <n — 1} C L*(I) is defined as a piecewise
constant function space over Tj.

For numerical analysis, we need to introduce the interpolation operators IT;, : H (I) (N C(I)
—— Up, defined by

n—1
Myw = Zw(mi)goi(a:),w € Hy(I),
i=1
and IT} : Hy(I) N C(I) — Vj, defined by
n—1

Mhw =Y w(z:)thi(z),w € H(I).

=1
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Using the interpolation theory, we have

(a’) |'LU - thlm,p S Ch’k_mlwlk,p , M= Oa 17 k= 1725 1 S b S o0,
() v —Mwllop < Chlw|ip , 1<p<oco

where |- | p and ||+ ||m p stand for the semi-norm and norm of the Sobolev space W™?(I)
respectively, | - |, and || - |l;;stand for the semi-norm and norm of the Sobolev space
H™(I) = W™2(I) respectively, and C is a positive constant independent of h.

Let’s define, for any u, v € H}(I), up € Uy and vy € Vi, some bilinear forms as
follows:

(2.1)

b b
(@) a(z;u,v) =/ a(z, z)u'v'dz, b(z;u,v) :/ b(:p t,7, z(z, 7)) (z, 7)v' dz,
a n—1 a
(b) (z; up, vp) Zv]a Zup,¥i), 0% (2 up, vh) Zvj 2 uh, ¥5),
Jj=1
(2.2)
where a*(2; up, ;) = a(z)j__%u'h(mj_%)—a(z)ﬁ%u’h(:cj_g%), b*(z;gh?%) = b(z)j_%u%(xj_%)——
. Uj — Uj—1 U . () o ‘ o
b(z)j+§“,h($j+§)a with 'U’Ih(xj—%) = _]—Ej__’ u = oz’ v = oz uj = un(zj), v; =
1
vh(25), 251 = 5(@j-142;5), alz);
0, u, =0.
The weak form of (1.1) is obtained by seeking a solution u(z,t) € Hg(I), 0 <t < T,
such that

= (J,(Z((Ej__lz_)), b(z)j—% = b(mj—%vt’z(wj—%77-))a Uy =

(M

t
(@) (us,v) +afu;u,v) + / b(u(r); u(r), v)dr = (f(u),v), v € H(I),
(5 u(0) = uo, ’ cel

For error estimates, we next introduce the Ritz projection operator Ry = Ry(t) :
H}(I) —> Uy, 0 <t < T, defined by

a(u;w — Ryw,vp) =0, vy € Uy, (2.4)

the Ritz-Volterra projection operator Vi, = Vj(t) : H}(I) — Up, 0 < t < T, defined
by

(2.3)

¢
a(u; w — Vaw, vp) +/ b(u; (w — Vyw)(7),vp)dr =0, vp € Up, (2.5)
0

the generalized Ritz projection operator R} = Ri(t) : Hy(I) — Un, 0 <t < T,
defined by
a*(u;w — Rjw,vp) =0, v €V, (2.6)

and the generalized Ritz-Volterra projection operator V¥ = V;*(¢) : Hj(I) — Up, 0 <
t < T, defined by

t
a*(u; w— V,:’UI, Uh) + / b*(u; (w - Vfrw)(T)v Uh)dT =0, vp €V, (27)
0
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where u is the solution of (1.1). Obviously, V4(0) = Rx(0), V;7(0) = R} (0).

Then, the semi-discrete FVE approximation scheme is to find a map up(t) : Hy(I) —

Up, such that

t
(a) (Uh,t>vh)+a*(uh3uh>”h)+/() b* (up(T);un(T), vn)dr = (f(t,un),vn)s  Vh € Vh,

(®)  un(0) = uop,
where ugy, € Uy, is determined by

A(E0),vn) = a*(uo;£(0),vn) + c*(£(0); Rpuo, vp) + A(§(0), v)
= —c*(n(0); Rjuo,vr), vh € Va,

(2.8)

here ) is a constant which will be determined by Lemma 2.9, £ = up—Vyu,n = Vju—u,

and
n

Hzu,on) = 3 (au(u0)2);_ (uj — uj—1)(vj — vj-1)

h.
j=1 I

(S L

Noting that for any up, € Uy, we have, by (2.2)

n

1 — Uj-1 1

lunl1p = E / |uj [Pdz)? = E Ui Yinl ey,
z :

Define some discrete norms in Up:

n
L
lunllop = > hi(uf +uf_1)}2,

=1
junlip = lunls = {Z((—L-Mm,

llurllin = (Huh||0h+|uh| B)?
unlll = (un, Thup) 2.

= s.

Then we can easily prove the following lemma.

(2.9)

Lemma 2.1(See[5, 9]) There exist two positive constants C1 and C2, independent of h,

such that for any uy, € Uy,

Cillunllon < llunll < Callunllo,n,
Cill|lunlll < llunll < Colllunlll;

Ci|TGupll < lupll < Gl uall,
Cillunllin < llunllt < Callunllin-

(2.10)
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Noting wy = wy, = 0, for any uy, wy € Uy, we have,
n

* (e T = (uj — uj—1)(wj — wj—1)
a* (7 un, Mywn) = Y a(2);_1

; h; ’
J=1
- () — uj—1)(w; — wj—1)
b*(z; up, I wp) = Zb(z)j_% J - .
=1 I

According to technique given in [5, 9], we easily derive the following conclusions.
Lemma 2.2 For any up, wp, € Uy, we have,

(a’) (Uh, szh) = (wh7 quh)v

. 2.11
(6) a* (% un, [Cwn) = a*(z; wn, ). 211)

Lemma 2.3 There exist two positive constants M and «q, independent of A, and
ho > 0, such that, for all 0 < h < hg, and any us, ws € Up,

(@) |a* (2 un, Wywn)| < Mlla(2)llo,collunllillwnllz,
(5)  la* (23 un, Iiun)| > aollunlf?, (2.12)
(€) 16" (25 un, Ihwn)| < MIb(2)[lo,collunllsllwnllr-

Let X be a Banach space with norm || - || x and ¢ : [0,T] — X. Define

T
Nz x) :/ o)k dt  and ||llL(x) = ess sup_[[4(t)llx-
0 0<t<T

Let the space H*(W*?) be defined by
o

Hk TSP — $,p !

c L2(0,T;Ws’p), 7=0,1,-- ,k}
and for any u € H¥(W*P), we set

k . .
du t o
Bl = 305 o + [ 15 etr), € 0.7

For Ry, R}, Vi, we have the following results.
Lemma 2.4(See[6]) For 2 < p < oo, we have

(@) |lw— Rpwllop + hllw — Rywll1p < Ch?||wll2p,
(®) [[(w — Rpw)il| + hli(w — Rpw)illy < CRA(Jlwl2 + [[well2)-

Lemma 2.5(See[6]) For £ = 0,1,2, we have

(2.13)

k
() IDF(w — Rjw)l < ChY_ |IDiwllz,
=0 (2.14)

() IDF(w - Riw)| < Ch? Y [|Djwllzp, p > 2
=0
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Lemma 2.6(See[l, 10]) For 2 < p < oo, we have

(@) Jw~Viwlop + hllw — Vawllip < Ch2|1w110 2,07
(®)  l(w — Vaw)illop + hll(w = Vaw)ellip < CA*lwlli,2p-
We now present a very useful lemma:
Lemma 2.7(See[3, 6]) For any up,wp, € Up, we can get,

(2.15)

(@) |di(z;u — un, wn)| < Clla(2) |l oh(u — unliplwnlry + hlulsglwnlie),
(5) |di(23u = un,wn)| < Clla(2)ll1ooh([t — unliplwnlipy + [ulzglwnlie), (5 16)
(c) lda(z5u — un,wn)| < Cllb(Z)Hloo (Ju — unl1plwnlp + hluls,glwnlig), '
(d) |da(z;u — up, wp)| < ClIB(2)lI1,00h(|u — unlplwnlip + [ulz,glwhlie),

Where

di(z;u — up, wp) = a(z;u — up, wp) +a ( — up, I} wn),
do(z;u — up, ws) = b(z;u — Uh,wh) +b*(z; Uh,thn)
1 1
=1.

1<p, g <00, -+—,:17 _+ ;
p p q9 9
Remark 2.1 If a(z) in the bilinear forms a(z;-,-) and a*(z;-,1I}-), and b(z) in the
bilinear forms b(z;,-) and b*(z;-,II} ) are replaced by other function, the inequalities
(2.12) and (2.16) are still valid.
The following lemma gives another key character of the the bilinear forms a *(2;-, 115 )
and b*(z;-, 11} ).

1 1
Lemma 2.8(See[6]) For 1 < p < oo, ’ + s =1, any up, wy, € Uy, we have
(@) |a*(u;v, TWwn) — a*(un;v, Miwa)| < Clofico(llu — unllop + hlu = wrlyp)lwhlliy,
(b) 16 (3, T wn) — 6 (un; v, I wp)| < Cloly,eo(ffu — unllop + hlu — unlip)lwnlliy-

(2.17)
In order to select A in (2.8), we next introduce the following lemma:
Lemma 2.9(See[6]) |c*(£(0); Rjuo, ITjwa)| < C|Rjtol1,00[I€(O) | lwnlls-
Then we now can select A large enough to ensure the coercivity of the bilinear form
A(-,113+) in (2.8) over Hy(I).

3. SOME PROPERTIES OF THE GENERALIZED RITZ-VOLTERRA PROJECTION

In this section, we will prove some properties of V*w defined by (2.7) for the error
estimates later. For simplicity, we write p = w — Vjw, py = (w — Vyw):.
Theorem 3.1 If V*w and u are the solution of (2.7) and (1.1), respectively, and assume
that w is sufficiently smooth and h sufficiently small, then for 0 <t < T, we have
lw — Vywllip < Chllwllogp, 2<p < oo (3.1)

Proof (i) Let us first consider the case of 2 < p < co. We now introduce an auxiliary
problem. Denote ¢ to be the derivative of ¢ and let ¢ € H}(I) be the solution of

a(u;0,9) = —(v,¢), v € Hy(I), (3.2)
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and there is a priori estimate

1 1
[@ll1 < Clidllop, -+ 5 =1

pl
By virtue of Green formula, (2.4) and (2.7), we obtain that

(P2, ¢) = —(p,¢2)
a(u; p, @)

= afu; w = Rpw, @) + [a(u; p, Rp®) — a*(u; p, I} Rp®)]
+ /0 [b(u(7); p(T), Rp®) — b*(u(7); p(7), I, Ry ®)]dT
t

- / b(u(r); plr), Ra®)dr
0
=L+ I+ I3+ 14.

Noting that the boundedness of a(z;-,-) and b(z;-,-) , (2.13a) and ||R,®|1 p < C||®
we have

L] < Cllw— Rpw||1p|®|1pr
< Chllwll2p]|®]l1,p

and

1
L) <cC /0 ol pdr | Ra®] 1

t
<c /0 loll1pdr 1Bl
From (2.165) and (2.16d), we get

2] < Ch(lplip + lwl2p) | Ra®@1p
< Ch(\\p\h,p + nwnlp)\\@\ll,p’v

and

t
L) < Ch /0 Upllp + lll2p)drl| @1 -

Combining the estimates of I; through I, with (3.4), we obtain also by (3.3) that

lplhpy <C sup J('.L’d)_)_!_
peLy (1) lldlloy

< Ch{llwllap + /Ot lwll2pd7} + Chllpllp + C/O ol pd.

41

a(u;w — Rpw, @ — Rp®) + a(u; Rpw ~ Viiw, ® — Rp®) + a(u; p, Ry @)

(3.4)
Hl,p'a

1
By letting h sufficiently small such that Ch < 5 the results of (3.1) for 2 < p < o

now follows by applying Gronwall’s Lemma.
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(ii) Let us next consider the case of p = oco. For this purpose, we need to apply the
Green function. Following [13], the discrete Green function g € U, associated with
a(u; -, -) satisfies

a(u;wy, g") = Qwy(2), 2€1, wy € Up. (3.5)
Then, by(2.4), we have

8, (Ryw — Viw) = a(u; Ryw — Viw, g%
= a(u;w — Vyw, gz)

Consequently, upon replacing R, ®, p and p’ by gf, oo and 1 in part(i), respectively, we
can easily derive the conclusion by applying [lg?|l1,, < C (See [13]) and (2.13a). The
proof is completed.

Now we demonstrate the estimates of w — Vyw in Ly(I)(2 < p < 00).
Theorem 3.2 If, in addition the hypotheses of Theorem 3.1 , w € W*!(I), then for
0 <t < T, we can obtain

lw — Vywllop < Ch*wllosn, 2<p < oo (3.6)

Proof: For 0 <t < T, the proof also proceeds in two steps.

(i) We consider the case of p = 0.
Noting that the definition of Green function G* € Uy (See[13]), (2.4) and (2.7), we
deduce that

(Rpw — Viw)(z) = a(u; Ryw — Viw, G?)
= a(u;w — V;'w,GP)

t
— [alus p, G) — a* (u; p, TL,GH)] + /0 [blu(r); p(r), G1)
t

b u(r); (), TGl — / bu(r) o), G g
=dy(u;0,G / do(u G’ 2 )dr
~ [ btz 6%~ @y~ [ btatr; pir), G2
=J1-’2J2+J3+J4, ’
By (2.16a), (2.16b), Sobolev’s imbedding inequalities and ||G?||; . < C, We have

|J1] < Ch(lpli1 + hlwl|s1)|GH1,00
< Ch(|lpllx + Rllwlls,1),

and

t
12| < Ch / (ol + Rllwlls.)dr
0
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For Js, it follows from ||G? — G}|l1,1 < Ch that

t
5l <C /0 lollcodrl|G? — G2l
t

< Ch / ol codir-
0

Finally, it is easy to see, by integration by parts and [|G}|2,1 < C, that

t b
Il = /0 / b(t, u(r))p () (G2 dadr|
<c /0 lolloedrlIGll2.
<c /0 ollo.codr-

Combining the estimates of J; — —J4 with (3.7),we have, by Theorem 3.1,

t t
1B — Vit wllo.co < CR2 (i3 + /0 w3 2dr) +C /0 lollo.ootT

which together with (2.13a), Sobolev’s imbedding inequalities, triangle inequality and
Gronwall’s Lemma completes the proof of p = oo.

(ii) We consider the case of 2 < p < 0.
An application of part (i) and inequality

lw = Viwllop < Cllw = Vywlloeo, 2 p <00

immediately yields the results of 2 < p < co. The proof of Theorem 3.2 is competed.

In order to obtain the estimates of (w — Vyw); and (w — Vyw)y in L*(I), we first
derive the following.

Theorem 3.3 Under the conditions of Theorem 3.1 , for 0 < ¢ < T, we can deduce

[(w = Vyw)ells < Ch{flwllz + llwell2 + /0 lwl|2d7}

Proof. Differentiating (2.7) with respect to t, we see that

t
a* ('LL, ptvvh) + a:(u, P ’Uh) + b* (U, P ’Uh) + / bZ(U, P Uh)dT =0, vp € Vhs (38)
0

where the coefficients of a}(+;-,-) and b}(-;-,-) are obtained from differentiating the
corresponding coefficients of a*(:;+, ) and b*(+;-, ) with respect to ¢, respectively.

For simplicity, we set 8 = [lyw — Viw = (Ilhw — w) + (w—Viw) =C+p, 0=
tht — (Vh*’u))t.
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Then, by (2.12b), (3.8), (2.16), Theorem 3.1 and (2.1a), we can derive

aoll6elf < a*(u; 0, I1}6,)
*(U <t7 H;;ot) +a* (U; Pt HZOt)
(

= a*(u; G, 13,0;) — af (u; p, I3 0;) — b*(U;p, 1T} 6;) — /0 t b; (u; p, I0},60;)dr

= {—di(u; ¢, 0:) + di,i(u; p, 0;) + da(u; p,0:)} + /Ot dat(u(t, 7); p(1), 0;)dr
ol 0) = outuip, 00 ~blusp, ) - [ bu(u(t,7); (), B)dr

< (G + fula-+ pl)ioch + Ch [ (s + o)l

Ol + loh)1eds + [ alhyariads

t
< Ch{|[wlla + [lwel2 +/0 l[wll2d7 }H6¢l

Thus, the conclusion follows from (2.1a) and triangle inequality.
We still need to proof the following lemma.
Lemma 3.1 If, in addition the hypotheses of Theorem 3.1 , Vjw is the solution of
(2.5), then for 0 < ¢t < T, we have
IVhw = Viwliiy < Ch?|wllozp, 2 <p < oo. (3.9)

Proof: (i) For 2 < p < oo, we also introduce the auxiliary problem (3.2) and (3.3) used
in the proof of Theorem 3.1.
Then, by (2.4), (2.5), (2.7), Lemma 2.7, (2.15a) and Theorem 3.1,

(Vhw — Vifwg, ) = alu; Vyw — Viw, D)
= a(u Viw — w, Rp @) + a(u; w — Viw, R, ®)

= / b{u; w — Viw, Rp®)dr — / b* (us w — Viw, I Ra®)dr}
0
+{a(u w — Vyw, Ry ®) — a*(u; w — Vhw I} R, ®)}

-{/ b* (u;w — Viw, [T} Ry ®)dr —/ b*(u; w — Vyw, I} Ry ®)d7}
0

< O [ bllw — Viwisy + Wl gl Rnlny + W~ Vi
+hlwls p) [ Ra®@ll1p} + | / b* (u; Vaw — V'w, IT Ry @)d|

< C{R*(|lwllsp + /||w||3,pdT /HVhw Vi wl|1pd7 | ®l1p-

(3.10)
Accordingly, the conclusion (3.9) for 2 < p < oo is derived from the above inequality,
(3.3) and Gronwall’s Lemma.
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(i) The proof of p = oo is similar to that of part(ii) in Theorem 3.1. This completes
the proof for 2 < p < o0.

From Theorem 3.3 and Lemma 3.1, we can obtain the following,.
Theorem 3.4 Under the conditions of Theorem 3.1 , for 0 < t < T, we have

| Df(w — Viw)|| < Ch?|lwllksp, k=1,2, 2<p< oo. (3.11)

Proof: Only the case of k = 1 will be proved.
We now apply Nitsche technique or duality argument to obtain ||(w — V;*w),||. For
Y € L*(I), let ¥ € H{(I), such that

a(u;v,¥) = (v,9), v € Hy(I), (3.12)
and there is the regularity estimate

12 < Clll. (3.13)
We differentiate (2.5) to get

¢
a(u; (w—Vhw)t,vh)+at(u;w—Vhw,vh)+b(u;w—Vhw,vh)-’r/ be(u; w—Vhaw, v )dr = 0, vy, € Uy,
0

(3.14)
where the coefficients of a.(-;-,-) and b:(;-,-) are obtained from differentiating the
corresponding coefficients of a( ;+,-) and b(+;-,-) with respect to ¢, respectively.

Then, using (3.8) and (3.14), we write

(o1, ¥) = a(u; pt, ¥)

= a(u; pt, ¥ — Va¥) + a(u; ps, V4 ¥)

= a(u; pr, ¥ — Vi ¥) + di (u; pr, Vi ¥) + a* (u; pr, TV 0)
a(u; pr, ¥ — Vu0) + dlt(u pt, Vo¥) — ai (u; p, I, V2 )

b (u; p, I Vi T) — / b (us p, T Vi 0) dr
0
= {a(u; pt, ¥ — V5, U) + dy (u; py, V3 ¥) + dit(u; w — Vw, V3, ¥)
¢
+do(u; w — Vyw, V3 0) + / dot(u;w — Vyw, Vy ¥)dr}
0

fl

(3.15)

+a(u; (w — Vayw)s, Vo) — {af (u; Vyw — Viiw, I}V, U)
t
+b* (u; Vaw — Vi¥w, I}V, 0) +/ b (u; Vaw — Viw, I}V, ¥)dr}
0

= Q1+ Q2+ Qs.
Applying Lemmas 2.7, 2.6 and Theorem 3.3, we get

@] < Chilloellal1®llz + (loells + hllwells) Va2 li} + Chihlwellap + lw = Vawllp
+hijwllzp + /0 (lw = Vawllrp + hllwllsp)dr HIVAE |1

t 1 1
< R ullsy + ey + [ Nollpdr} Bl 2<p <00, b =1,
0
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where ||V (|1, < C||¥||1 and Sobolev’s imbedding inequalities have been used.
Also we know, from Green formula , Lemmas 2.6 and 3.1, that
Q2| = la(u; (w — Vaw)y, V¥ — &) + a(y; (w — Vaw)e, V)|
< Chll(w = Vaw)ell1 ¥ l2 + Cll(w — Vaw)illopl| ¥l

t
< CR*{||lwllzp + lwillap + /0 (lwllz,p + llwell2,p)d7 HI|l2,
and

t
Qs < C{lIVaw — Vywll1p + /0 Vaw — Vywll pd7 Va1
t

SCWthraémwmmmwm

Combining the estimates of @1 — —Q3 with (3.15), we obtain also by (3.13) that

t
(ot 0)] < CR*{llwllsp + wellsp + [ (lwllsp + lwellsp)dr}lwl, ¢ € L2(I),
0

which implies the conclusion of k¥ = 1.
Similarly, the case of ¥k = 2 can be proved. The proof is completed.

4. MAIN RESULTS

We let £ = up — Vy'u,n = V'u — u as in section 2. Noting that V;*(0) = R;}(0), from
[6], we have the following lemma.
Lemma 4.1 Assume that ug and ug, are the initial values of problems (1.1) and (2.8),
respectively, then we have

@ IOl < CRuolls, 1)
®)  1a©) < Ch{uollsp + luOlag, p> 1. |

where 4;(0) = £ (a(z,u0) 22) + f(=,0,up).

Now, let us consider estimates of £ and &;.
Lemma 4.2 Assume that v and wuy, are the solutions of problems (1.1) and (2.8),
respectively, then, for A sufficiently small, we have

t 1
||§t||+||€||1+(/0 1€12d7)2 < Ch2{|juol|3 p+]lut (0) |3 p+lull2zp}, 2<p <00, 0Kt T.

(4.2)
Proof: To show (4.2), apply (2.3a), (2.8a) and (2.7) to get the error equation

i
(§t7 Uh) =+ a*(’LLh; ga ’Uh) + / b*(uh, f,’l)h)d’T

0
= (f(ttth) = f(u) — e, vp) + 6;*(u; Viiu, vp) — a* (un; Vyiu, vp) (4.3)
+/ b* (u; Viu, vp)dr — / b* (up; Vi u, vp)dr.
0 0
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We differentiate (4.3) with respect to ¢ to get

(&tt, vn) + @™ (un; &, vn) ,
= a;(’ll:h,g,’l)h) - b (’U:h,g,’l)h) / b:‘,k(uh;gv’uh)d'r

H(F(un) = £ () =)o om) + {0 (us (Ve on) — a*(uns (Viwon)} (44)
+{aj (u; Vi, vg) — a,’{(?h;V}fu,vh)} + {0*(u; ViFu, vp)

b (up; Vi, on)} + / (05 (u; Vi, vn) — B (un; Vi, on) .
0

Setting v, = II}¢; and using Lemmas 2.3 and 2.8, we have , by the boundedness of
IViull1,00 and ||(Viu)ell1,00 and e-inequality,

t
2dtlllétlll2 +aoll&llf < C{llEll +/ €Ml + N1l + [lell 4 [172ez
+||€It| + il + RCENL + lInlle + &l + llmelly)
(||€t|| + [Imell + Rll€ell1 + limell1)dr}

(e+0h>nstn? + el + / lelludr + 0}
+ Ol + el + ell + Bl + limell) + / (el + Bllmell)dr 2
t t
2 2 2 ~
e /0 &2dr + Ch /0 &l12d

Hence, letting h sufficiently small and using Gronwall’s Lemma to eliminate the first

and last terms on the right hand side, respectively, and applying Theorems 3.1-3.4 and
Lemma 4.1, we obtain

t t
lee? + [ Vealdr < CH(lunlag + [ua(O)lap + [ullag)? +C [ (€[ + e:lP)ar
Observing that
td
el = IO + [ Gl 0+ (€ €ndr
t t
<IN +e [ Neltar+c [ leliar

then, by (4.1a), we have

t t
|I£t|l2+||€||§+/0 &l dr < ChQ{II’uollz,erHUt(O)|I3,zo+IIUI|2,:>>,p}2+C/0 (IENE +lI€:]*)dr

The result of this lemma follows by applying Gronwall’s Lemma.
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We next demonstrate a superconvengence result of £.
Theorem 4.1 Under the conditions of Lemmas 4.1 and 4.2, for 0 < t < T, we have

1€y < Ch*{llwolls,p + Ilue(0) I3 + llull2p,p}, 2 < p < oo. (4.5)

Proof: (i) Consider the case of 2 < p < oo.
In order to show (4.5), we also introduce the auxiliary problem (3.2) and (3.3). We
then know from (4.2), Lemmas 2.7, 2.8 and the inverse property, that

(e d) = a(y;, Q)
= G(U, §a Rh@)
= dy(u;up — u, Ry ®) + di (u;u — Vi'u, Rp®) + a*(u; ¢, 11} Ry, @)
= di(w;up — u, Rp®) + di(u;u — Viiu, Rp®) + (f(uh) — f(u) —ny — &, 11} R, @)

+[a* (u; Viu, I} Ry ®) — a*(up; Viiu, [T Ry ®)] + / [b* (u; Vi u, 1T} Ry, ®)

b (u; Viu, TTE Ry @) dr — / b* (un; €, T} Ry ®)dr
+la*(u; &, I Rp @) — a*(up; €, 1T} Ry, @)
< C{A(lglp + limllp + h”u”3,p) + [1€llop + lInllop + &N + el
/ [€llop + lInllop + RN + lInll1p) + [1€]l1,p]dT HIB]l1 0
+Ch 3l {Ello + Imllo.p + hCIEllLp + I1ll10) HI@ )1 -
Then, by (3.3), Lemma 4.2 and the imbedding property W12(I) — LP(I),

I, <Clehy =C sup [z
gLy ldlloy

< ChlEl1+ C LIl + Wy + Il + I + el +
/ (el + Illop + Alinllyp)dr} +C / el pdr.

After eliminating the first term for h sufficiently small and the last term by Gronwall’s
Lemma on the right hand side, the results (4.5) for 2 < p < oo now follows by Theorems
3.1, 3.2, 3.4 and Lemma 4.2.

(ii) Consider the case of p = oo.

By (3.5),

&:(2) = a(u; €, g7)-
Therefore, similar to part(ii) of Theorem 3.1, the proof is easily completed. )
W'? and L, norms error estimates for u — uy, are then an immediate consequence of
Theorem 4.1 combined with Theorems 3.1 and 3.2.
Theorem 4.2 Under the same conditions of Theorem 4.1, for 0 < ¢t < T, we have

v = unllop + hllu — uplhp < CE*{lluollsp + lue(0)llsp + lull23p}, 2 <p < 0.
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