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Abstract. We consider the finite element method applied to nonlinear Sobolev
equation with smooth data and demonstrate for arbitrary order (k ≥ 2) finite el-
ement spaces the optimal rate of convergence in L∞

�
W 1,∞(Ω)

�
and L∞(L∞(Ω))

(quasi–optimal for k = 1). In other words, the nonlinear Sobolev equation can be
approximated equally well as its linear counterpart. Furthermore, we also obtain su-
perconvergence results in L∞(W 1,∞(Ω)) for the difference between the approximate
solution and the generalized elliptic projection of the exact solution.

1. Introduction

Consider the nonlinear Sobolev equation on a bounded smooth domain Ω ⊂ R2

ut = ∇ · {a(x, u)∇ut + b(x, u)∇u}+ f(x, u), (x, t) ∈ Ω× [0, T ],
u(x, 0) = u0(x), x ∈ Ω,

(1.1)
u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

where ut = ∂u/∂t, the functions a, b, f, u0 are smooth enough for the ensuing analysis
to be valid, and the function a(x, u) is bounded below and above:

(1.2) 0 < a∗ ≤ a(x, u) ≤ M, x ∈ Ω, u ∈ R.

Since we shall show that the approximate solution is uniformly convergent to the exact
solution of (1.1), assumption (1.2) needs hold only in a neighborhood of the exact
solution. Problems of form (1.1) arise in many physical applications such as the flow
of fluids through fissured rock [2] and dispersive waves [3]. For more detail the reader
is referred to [1, 5] and the references therein.

We shall use Wm,p(Ω) to denote the usual Sobolev spaces and ‖ · ‖m,p the corre-
sponding norms. When p = 2 we write Hm(Ω) for Wm,p(Ω) with ‖ · ‖m,2 = ‖ · ‖m, and
‖ · ‖0,2 = ‖ · ‖. Let X be a Banach space with norm ‖ · ‖X . For φ : [0, T ] → X, define

‖φ‖p
Lp(X) :=

∫ T

0
‖φ(t)‖p

Xdt, 1 ≤ p < ∞, ‖φ‖L∞(X) = sup
0≤t≤T

‖φ(t)‖X .
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We use (·, ·) to denote L2(Ω) or L2(Ω)2 inner product. The symbol C will be used as a
generic constant independent of the triangulation mesh gauge h and may have different
values at different places.

Let Sh be a finite-dimensional subspace of⊂ H1
0 (Ω)∩W 1,∞(Ω) such that the following

standard approximation and inverse properties hold:

inf
χ∈Sh

{||φ− χ||0,p + h||φ− χ||1,p ≤ C||φ||r,phr, φ ∈ H1
0 (Ω) ∩W r,p,

1 ≤ r ≤ k + 1, 2 ≤ p ≤ ∞,(1.3)

and

||χ||0,∞ ≤ C| ln h|1/2||χ||1, χ ∈ Sh.(1.4)

Throughout the paper we shall refer to the integer k as the order of the approximation
space.

Problem (1.1) has the following semidiscrete approximation:
Find U(·, t) ∈ Sh, t ∈ [0, T ] such that

(Ut, χ) + (a(U)∇Ut + b(U)∇U,∇χ) = (f(U), χ), χ ∈ Sh,

(1.5)
U(0) = Rhu0, x ∈ Ω,

where a(U) = a(x,U), b(U) = b(x, U), f(U) = f(x,U), U(0) = U(x, 0) and Rh is the
generalized elliptic projection operator satisfying Rhu(·, t) ∈ Sh, t ∈ [0, T ] such that for
all χ ∈ Sh

(1.6)(
a(u)∇(u−Rhu) +

∫ t

0
[b(u(τ))− au(u(τ))ut(τ)]∇(u(τ)−Rhu(τ))dτ,∇χ

)
= 0.

Differentiating (1.6) leads to

(1.7) (a(u)∇(u−Rhu)t + b(u)∇(u−Rhu),∇χ) = 0, χ ∈ Sh,

and now setting t = 0 gives

(1.8) (a(u(0))∇(u(0)−Rhu(0)),∇χ) = 0.

Note that (1.7)-(1.8) is equivalent to (1.6). From (1.8), it is clear that Rh is the general-
ization of the usual elliptic projector [16] associated with the error analysis of parabolic
problems. The projector Rh was first introduced in [4, 11] for integrodifferential equa-
tions to unify and obtain optimal error analysis of the associated Galerkin method. In
this context, the partial derivative term au is not needed. Although the Sobolev equa-
tion (1.1) cannot be put into the general integrodifferential form studied in [4, 9, 11],
Lin et al. [14, 15] introduced (1.6) above by including the partial derivative term.

Galerkin finite element methods for the linear and nonlinear Sobolev equations have
been studied in [1, 5, 6, 10, 14, 15]. See also [4, 7, 11] for closely related integrodiffer-
ential equations. In [1, 10, 11] some optimal order H1 and L2 estimates were shown



ESTIMATES FOR FINITE ELEMENT METHODS 27

in special cases. In addition, One can find in [15] the quasi-optimal order L∞ estimate
for the linear element for (1.1). Some extensive results in one dimension case can be
found in [12]. Up to now it is unclear if the higher order elements possess optimal
L∞ estimate for (1.1). We show in this paper that the answer is positive and demon-
strate the optimal rate of convergence in L∞(W 1,∞(Ω)) and L∞(L∞(Ω)) for arbitrary
order (k ≥ 2) finite element spaces. (Of course for k = 1 one still has quasi-optimal.)
In other words, the nonlinear Sobolev equation can be approximated equally well as
its linear counterpart. Furthermore, we also obtain superconvergence results in the
L∞(W 1,∞(Ω)) norm for the approximate spaces. The rest of this paper is organized as
follows. In section 2 we derive some preliminary lemmas. In section 3 we demonstrate
the main results of this paper. Max-norm error estimates in W 1,∞(Ω) and L∞ and
superconvergence are given in Thms 3.1, 3.2 and 3.3 respectively. The main tool we
used is the Green’s functions method.

2. Preliminary Lemmas

In the remaining section we shall use u,U and Rhu to denote, respectively, the
solutions of (1.1), (1.5), and (1.6). Let

η = u−Rhu, ξ = U −Rhu.

The following lemma is contained in [4]

Lemma 2.1. Assume that u, ut, utt ∈ L1(Hk+1(Ω)). Then

‖η(t)|| + ||ηt(t)‖+ ‖ηtt(t)‖
(2.1)

≤ Chk+1
2∑

j=0

[‖∂ju

∂tj
(t)||k+1 +

∫ t

0
||∂

ju

∂tj
(τ)||k+1dτ ]

The above lemma combined with the inverse properties and the interpolation theory
give at once the following lemma.

Lemma 2.2. Assume that u, ut, utt ∈ L1(Hk+1(Ω)). Then

(2.2)
2∑

j=0

‖ ∂j

∂tj
Rhu‖L∞(W 1,∞(Ω)) ≤ C.

Applying Lemmas 2.1 and 2.2, we can prove the superconvergence estimates of ξ and
ξt in H1.

Lemma 2.3. If u(0), ut(0) ∈ Hk+1(Ω), u, ut, utt ∈ L2(Hk+1(Ω)) then the following
superconvergence result holds:

(2.3) ‖ξ(t)‖1 + ‖ξt(t)‖1 ≤ Chk+1.
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Proof. From (1.1), (1.5) and (1.7),

(ξt, χ) + (a(U)∇ξt,∇χ) + (b(U)∇ξ,∇χ)
= (f(U)− f(u)− ηt, χ)− ((a(U)− a(u))∇Rhut,∇χ)

−(((b(U)− b(u))∇Rhut,∇χ), χ ∈ Sh.(2.4)

Differentiate the above with respect to t to obtain

(ξtt, χ) + (a(U)∇ξtt,∇χ) +
1
2
(au(U))Ut∇ξt,∇χ)

= (fu(U)Ut − fu(u)ut − ηtt, χ)− 1
2
(au(U)Ut∇ξt,∇χ)

−(au(U)Ut − au(u)ut)∇Rhut,∇χ)− ((a(U)− a(u))∇Rhutt,∇χ)
−((bu(U)Ut − bu(u)ut)∇Rhu,∇χ)− ((b(U)− b(u))∇Rhutt,∇χ)
−(bu(U)Ut∇ξ,∇χ)− (b(U)∇ξt,∇χ)

:= I1 + . . . + I8(2.5)

Set χ = ξt in (2.5) and proceed to estimate Ij ’s. First note that the left hand-side of
(2.5)

(ξtt, ξt) + (a(U)∇ξtt,∇ξt) +
1
2
(au(U)Ut∇ξt,∇ξt)

=
1
2

d

dt
[||ξt||2 + (a(U)∇ξt,∇ξt)].

It is easy to estimate Ij ’s using (2.1) and (2.2):

|I1| = ((fu(U)(ξt + ηt) + (fu(U)− fu(u))ut − ηtt, ξt)
≤ C[||ξt||2 + ||ηt||2 + ||ξ||2 + ||η||2 + ||ηtt||2]
≤ C[h2k+2 + ||ξ||2 + ||ξt||2],

|I2| = |1
2
(au(U)(ξt + Rhut)∇ξt,∇ξt)|

≤ C(||ξt||L∞(L∞(Ω)) + ||Rhut||L∞(L∞(Ω)))||∇ξt||2
≤ C(||ξt||L∞(L∞(Ω)) + 1)||∇ξt||2,

|I3| = |(au(U)(ξt + ηt) + (au(U)− (au(u)))∇Rhut,∇ξt)
≤ C

(||∇Rhut||L∞(L∞(Ω)) + 1
)
[||ξt||2 + ||ηt||2 + ||ξ||2 + ||η||2 + ||∇ξt||2]

≤ C[h2k+2 + ||ξ||2 + ||ξt||21].
Similarly,

|I4 + I5 + I6 + I8| ≤ C[h2k+2 + ||ξ||2 + ||ξt||21],
|I7| ≤ C(||ξt||L∞(L∞(Ω)) + 1)[||∇ξ||2 + ||∇ξt||2].
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Substitute the above into (2.5) to obtain

d

dt
[ ||ξt||2 + (a(U)∇ξt,∇ξt)]

≤ C(||ξt||L∞(L∞(Ω)) + 1)[h2k+2 + ||ξ||21 + ||ξt||21].(2.6)

From the inverse property (1.4) and the known estimate of ξt (see [14])

||ξt||L∞(L∞(Ω)) ≤ Ch−1||ξt||L∞(L2(Ω)) ≤ Chk ≤ C

and hence from (2.6)

||ξt(t)||21 = ||ξt(t)||2 + ||∇ξt(t)||2

≤ C

[
||ξt(0)||21 + h2k+2 +

∫ t

0
(||ξ(τ)||21 + ||ξt(τ)||21)dτ

]
.(2.7)

Since U(0) = Rhu(0) then ξ(0) = 0. Hence set t = 0 in (2.4) to obtain that for all
χ ∈ Sh

(ξt(0), χ) + (a(Rhu(0))∇ξt(0),∇χ) = −(ηt(0), χ)
+ ([f(Rhu(0))− f(u(0)], χ)− ([a(Rhu(0))− a(u(0)]∇Rhut(0),∇χ)

−([b(Rh(u(0))− b(u(0)]∇Rhut(0),∇χ).

Set χ = ξt(0) and use ab ≤ εa2 + 1
4εb

2 to derive

||ξt(0)||21 ≤ C[||ηt(0)||2 + ||η(0)||2] + ε||ξt(0)||21
and so that by Lemma 2.1

(2.8) ||ξt(0)||1 ≤ Chk+1.

On the other hand,

(2.9) ||ξ(t)||21 ≤ C||∇ξ(t)||2 ≤ C

∫ t

0
||ξt(τ)||21dτ

Add (2.9) to (2.7) and use (2.8) to obtain

||ξ(t)||21 + ||ξt(t)||21 ≤ C[h2k+2 +
∫ t

0
(||ξ(τ)||21 + ||ξt(τ)||21) dτ ].

Now applying the Gronwall’s inequality completes the proof of (2.3). ¤
We will use the Green’s function method [17, 18] to derive max-norm error estimates.

Let us introduce a discrete delta function: for a fixed z in Ω̄, define the discrete delta
function δh

z ∈ Sh by
(δh

z , χ) = χ(z), χ ∈ Sh.

If w = w(x) ∈ W 1,∞(Ω) then a(w) ∈ W 1,∞(Ω). Given a z ∈ Ω̄, a function Gh
z ∈ Sh is

called a discrete Green’s function if

(2.10) (a(w)∇Gh
z ,∇χ) = χ(z) = (δh

z , χ), χ ∈ Sh.
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A function G∗
z ∈ H1

0 (Ω) is called a pre-Green’s function if

(2.11) (a(w)∇G∗
z,∇v) = (δh

z , v) = Phv(z), v ∈ H1
0 (Ω),

where Ph : L2(Ω) → Sh is the L2 projection. A function Gz ∈ W 1,p
0 (Ω) is called a

Green’s function if

(2.12) (a(w)∇Gz,∇v) = v(z), v ∈ W 1,p′(Ω),

where 1
p + 1

p′ = 1, 1 ≤ p < 2.

We shall also need the discrete Green’s functions associated with the max-norm
estimates of the partial derivatives. Given a fixed unit vector e, we define the directional
derivative Dz,e of F : Ω → R as

(2.13) Dz,eF := lim
t→0

F (z + te)− F (z)
t

.

In this paper, the direction vector e will be taken as one of the unit coordinate
vectors, i.e., e = e1 = (1, 0)t or e = e2 = (0, 1)t, and so when there is no danger of
confusion, we will simply write Dz,e = ∂z. It is easy to see that

∂z(a(w)∇Gh
z ,∇χ) = (a(w)∇∂zG

h
z ,∇χ), χ ∈ Sh

and

∂z(δh
z , χ) = (∂zδ

h
z , χ), χ ∈ Sh.

Thus from (2.10) we have

(a(w)∇∂zG
h
z ,∇χ) = (∂zδ

h
z , χ), χ ∈ Sh.

(Note that the above equation is valid only for z in the interior of elements.) Alterna-
tively, one can simply define ∂zG

h
z = Dz,eG

h
z as the function gz

h,i (here e = ei, i = 1, or
2) satisfying the equation

(a(w)∇gz
h,i,∇χ) =

∂

∂xi
χ(z) χ ∈ Sh.

This is done in [13]. In other words, in terms of our notation ∂zG
h
z = gz

h,i. Similar
comments can be made about ∂zG

∗
z once one interprets (2.13) in the weak sense. Hence

(a(w)∇∂zG
∗
z,∇v) = Ph∂zv(z), v ∈ H1

0 (Ω),
(2.14)

(a(w)∇(∂zG
∗
z − ∂zG

h
z ),∇χ) = 0, χ ∈ Sh.

The following lemma is contained in [18] (see also [13]; bearing the above notation
convention in mind).
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Lemma 2.4. The following properties hold:

||Gz||1,1 + ||G∗
z||1,1 + ||∂zG

∗
z − ∂zG

h
z ||1,1 + h||∂zG

∗
z||2,1 ≤ C,

(2.15)
||∂zG

∗
z||1,1 ≤ C| ln h|.

The next lemma concerns the stability of Rh.

Lemma 2.5. Suppose that v, vt ∈ H1
0 (Ω)∩W 1,∞(Ω)∩L1(W 1,∞(Ω)). Then the gener-

alized elliptic projection of (1.7) has the following stability property:

(2.16) ||Rhvt(t)||1,∞ ≤ C[||v(0)||1,∞ + ||vt(t)||1,∞ +
∫ t

0
||vt(τ)||1,∞dτ.]

Proof.
Set w = v in the definition of the Green’s function and let ζ = v − Rhv. From (2.14)1
and (2.14)2

Ph∂zζt(z, t) = (a(v)∇ζt,∇∂zG
∗
z)

= (a(v)∇ζt,∇(∂zG
∗
z − ∂zG

h
z )) + (b(v)∇ζ,∇(∂zG

∗
z − ∂zG

h
z ))

−(b(v)∇ζ,∇∂zG
∗
z)

= (a(v)∇vt,∇(∂zG
∗
z − ∂zG

h
z )) + (b(v)∇(v − Phv),∇(∂zG

∗
z − ∂zG

h
z ))

+(b(v)∇Phζ,∇(∂zG
∗
z − ∂zG

h
z ))− (b(v)∇Phζ,∇∂zG

∗
z)

−(b(v)∇(v − Phv),∇∂zG
∗
z) = Q1 + . . . + Q5.(2.17)

Use (2.15)1 to obtain

|Q1| ≤ C||vt||1,∞||∂zG
∗
z − ∂zG

h
z ||1,1 ≤ C||vt(t)||1,∞.

From the property of Ph and bounds of the form (1.2) for b(v) and its derivative, we
have

|Q2| ≤ C||v(t)− Phv(t)||1,∞||∂zG
∗
z − ∂zG

h
z ||1,1

≤ C||v(t)||1,∞ ≤ C[||v(0)||1,∞ + ||
∫ t

0
vt(τ)dτ ||1,∞],

|Q3| ≤ C||Phζ(t)||1,∞||∂zG
∗
z − ∂zG

h
z ||1,1 ≤ C[||Phζ(0)||1,∞ +

∫ t

0
||Phζt(τ)||1,∞dτ ].
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For Q4 use Green’s identity, (2.14)1, and (2.15)2 to obtain

|Q4| = |(a(v)∇(
b(v)
a(v)

Phζ),∇∂zG
∗
z)− (a(v)Phζ∇(

b(v)
a(v)

),∇∂zG
∗
z)|

≤
∣∣∣∣Ph∂z

(
b(z, v(z, t))
a(z, v(z, t))

Phζ(z, t)
)∣∣∣∣ +

∣∣∣∣
(
∇ · (a(v)Phζ∇(

b(v)
a(v)

)), ∂zG
∗
z

)∣∣∣∣
≤ C||Phζ(t)||1,∞(1 + ||∂zG

∗
z||1,1)

≤ C[||Phζ(0)||1,∞ +
∫ t

0
||Phζt(τ)||1,∞dτ ].

Use v − Phv for the ζ in Q4 to have

|Q5| ≤ C[||v(0)− Phv(0)||1,∞ +
∫ t

0
||vt(τ)− Phvt(τ)||1,∞dτ ]

≤ C[||v(0)||1,∞ +
∫ t

0
||vt(τ)||1,∞dτ ].

By Thm. 1 of [14],

||Rhv(t)||1,∞ ≤ C[||v(t)||1,∞ +
∫ t

0
||v(τ)||1,∞] dτ

and so that

(2.18) ||Phζ(0)||1,∞ ≤ ||Phv(0)||1,∞ + ||Rhv(0)||1,∞ ≤ C||v(0)||1,∞.

Substitute the estimates for Q1–Q5 into (2.17) and combine (2.18) to derive

||Phζt(t)||1,∞ ≤ C[||v(0)||1,∞ + ||vt(t)||1,∞ +
∫ t

0
||vt(τ)||1,∞dτ +

∫ t

0
||Phζt(τ)||1,∞dτ ].

Use Gronwall’s inequality to obtain

(2.19) ||Phζt(t)||1,∞ ≤ C[||v(0)||1,∞ + ||vt(t)||1,∞ +
∫ t

0
||vt(τ)||1,∞dτ ].

Hence by the triangle inequality and the stability of Ph we have

||Rhvt(t)||1,∞ ≤ ||Phζt(t)||1,∞ + ||Phvt(t)||1,∞
≤ ||Phζt(t)||1,∞ + ||vt(t)||1,∞.

Combining this with (2.19) completes the proof. ¤
We now show the max-norm estimates of η.

Lemma 2.6. Suppose that u(0) ∈ W k+1,∞, u(t), ut(t) ∈ W k+1,∞(Ω)∩L1(W k+1,∞(Ω)).
Then the following estimates hold. For k ≥ 1,

||η(t)||1,∞ + ||ηt(t)||1,∞(2.20)

≤ Chk[||u(0)||k+1,∞ + ||ut(t)||k+1,∞ +
∫ t

0
||ut(τ)||k+1,∞dτ ],
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||η(t)||0,∞ + ||ηt(t)||0,∞(2.21)

≤ Chk+1

[
| ln h|r̄||u(0)||k+1,∞ + ||u(t)||k+1,∞ + ||ut(t)||k+1,∞ +

∫ t

0
||ut(τ)||k+1,∞dτ

]
,

r̄ = 1, if k = 1; r̄ = 0 if k ≥ 2.

Proof.

Let Πhu be the usual interpolant of u in Sh. By Lemma 2.5 and the interpolation
property we have

||ηt(t)||1,∞ ≤ ||ut −Πhut||1,∞ + ||Rh(ut −Πhut)||
≤ ||ut −Πhut||1,∞

+C[||u(0)−Πhu(0)||1,∞ + ||ut(t)−Πhut(t)||1,∞ +
∫ t

0
||ut(τ)−Πhut(τ)||1,∞dτ ]

≤ Chk[||u(0)||k+1,∞ + ||ut(t)||k+1,∞ +
∫ t

0
||ut(τ)||k+1,∞dτ ].(2.22)

Observe that

(2.23) ||η(t)||r,∞ ≤ ||η(0)||r,∞ +
∫ t

0
||ηt(τ)||r,∞dτ r = 0, 1.

Noting that when t = 0, the generalized elliptic projection operator Rh is the same
as the Ritz projection operator, we have

(2.24) ||η(0)||1,∞ ≤ Chk||u(0)||k+1,∞

and

(2.25) ||η(0)||0,∞ ≤ Chk+1| ln h|r̄||u(0)||k+1,∞.

Combining (2.22), (2.24), with (2.23), we derive the assertion (2.20).
As for the second assertion of the theorem, the case of k = 1 has been demonstrated

in [14]. Let us show the case k ≥ 2. Set w = u in the definitions of Gz and Gh
z to

obtain from (1.7)

ηt(z, t) = (a(u)∇ηt,∇Gz)

= (a(u)∇ηt,∇(Gz −Gh
z )) + (b(u)∇η,∇(Gz −Gh

z ))
−(b(u)∇(u− Phu),∇Gz)− (b(u)∇Phη,∇Gz)

= J1 + J2 + J3 + J4.(2.26)
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Use (2.15) and the property of Ph to get

|J1| ≤ C||ηt||1,∞||Gz −Gh
z ||1,1 ≤ Ch||ηt||1,∞,

|J2| ≤ C||η||1,∞||Gz −Gh
z ||1,1 ≤ Ch||η||1,∞,

|J3| = |(a(u)∇(
b(u)
a(u)

(u− Phu)),∇Gz)− (a(u)(u− Phu)∇(
b(u)
a(u)

),∇Gz)|

= | b(u)
a(u)

(u− Phu)|+ ||u− Phu||0,∞||Gz||1,1

≤ C||u− Phu||0,∞(1 + ||Gz||1,1) ≤ C||u− Phu||0,∞
≤ Chk+1||u(t)||k+1,∞.

Substitute Phη for u− Phu in the above inequality and use (2.23) to obtain

|J4| ≤ C||Phη(t)||0,∞ ≤ ||η||0,∞ ≤ C[||η(0)||0,∞ +
∫ t

0
||ηt(τ)||0,∞dτ ].

Substituting the estimates for J1–J4 into (2.26) to derive
(2.27)

||ηt(t)||0,∞ ≤ C{hk+1||u(t)||k+1,∞+||η(0)||0,∞+h[||η(t)||1,∞+||ηt(t)||1,∞]+
∫ t

0
||ηt(τ)||0,∞dτ}.

Finally the proof is complete by applying the Gronwall’s inequality to (2.27) and com-
bining (2.20), (2.25), and the property of Ph. ¤

3. Main Theorem

In this section, we will employ lemmas given in the previous section to derive the
main theorems of this paper. Our first result deals with the error estimates of U − u
in W 1,∞.

Theorem 3.1. Suppose that u, ut ∈ L∞(W k+1,∞(Ω)), utt ∈ L2(Hk+1(Ω)) then the
following estimate holds

(3.1) ||U − u||L∞(W 1,∞(Ω)) + ||(U − u)t||L∞(W 1,∞(Ω)) ≤ Chk.

Proof.
¿From the inverse property, (2.2) and (2.3) we derive

||U ||L∞(W 1,∞(Ω)) ≤ ||Rhu||L∞(W 1,∞(Ω)) + ||ξ||L∞(W 1,∞(Ω))

≤ ||Rhu||L∞(W 1,∞(Ω)) + ch−1||ξ||L∞(H1(Ω))

≤ ||Rhu||L∞(W 1,∞(Ω)) + Chk ≤ C
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Since U ∈ L∞(W 1,∞(Ω)), a(U) ∈ L∞(W 1,∞(Ω)). We can set w = U in the definition
of the Green’s function and derive from (2.14)1 and (2.4) that

∂zξt(z, t) = (a(U)∇ξt,∇∂zG
∗
z)

= ((f(U)− f(u)− ξt − ηt, ∂zG
∗
z)− ((a(U)− a(u))∇Rhut,∇∂zG

∗
z)

(3.2)
−((b(U)− b(u))∇Rhu,∇∂zG

∗
z)− (b(U)∇ξ,∇∂zG

∗
z)

Estimate the above equation by (2.1)-(2.3), imbedding theorem, and (2.15)1 to obtain

||ξt(t)||1,∞ ≤ C(||∇Rhu||L∞(L∞(Ω)) + 1)[||ξ||1 + ||η||+ ||ξt||+ ||ηt||]||∂zG
∗
z||1

(3.3)

≤ Chk+1||∂zG
∗
z||2,1 ≤ Chk

On the other hand,

(3.4) ||ξ(t)||1,∞ ≤
∫ t

0
||ξt(τ)||1,∞dτ.

Combining (3.3), (3.4), and (2.20) completes the proof. ¤
Our next theorem is to derive the max-norm estimates of U − u in L∞.

Theorem 3.2. Suppose the hypotheses of Thm. 3.1 hold. Then

||U − u||L∞(L∞(Ω)) + ||(U − u)t||L∞(L∞(Ω)) ≤ Chk+1| lnh|r̄,
(3.5)

r̄ = 1 if k = 1, r̄ = 0 if k ≥ 2.

Proof.
¿From (2.22) and the previous arguments, it suffices to show that

(3.6) ||ξt||L∞(L∞(Ω)) ≤ Chk+1| ln h|r̄.

Similar to (3.2), we have

ξt(z, t) = (a(U)∇ξt,∇G∗
z)

= (f(U)− f(u)− ξt − ηt, G
∗
z)− ((a(U)− a(u))∇Rhut,∇G∗

z)
−((b(U)− b(u))∇Rhu,∇G∗

z)− (b(U)∇ξ,∇G∗
z)
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and hence

||ξt(t)||0,∞ ≤ C(||ξ||+ ||η||+ ||ξt||+ ||ηt||) ||G∗
z||1,1

+(||∇Rhut||L∞(L∞(Ω)) + ||∇Rhu||L∞(L∞(Ω)))(||ξ||0,∞ + ||η||0,∞)||G∗
z||1,1

+|(a(U)∇(
b(U)
a(U)

ξ),∇G∗
z)− (a(U)ξ∇(

b(U)
a(U)

),∇G∗
z)|

≤ C[hk+1| ln h|r̄ + ||ξ||0,∞ + |Ph(
b(U)
a(U)

ξ)|
+||ξ||0,∞||G∗

z||1,1]

≤ C[hk+1| ln h|r̄ +
∫ t

0
||ξt(τ)||0,∞dτ ].

Now applying the Gronwall’s inequality completes the proof. ¤
Finally we turn to the superconvergence.

Theorem 3.3. Suppose the hypotheses of Thm. 3.1 hold. Then the following super-
convergence results hold:

||U −Rhu||L∞(W 1,∞(Ω)) + ||(U −Rhu)t||L∞(W 1,∞(Ω)) ≤ Chk+1| ln h|r̄+1,

(3.7)
r̄ = 1 if k = 1, r̄ = 0 if k ≥ 2.

Proof. By (2.15), (2.16), and (3.4), we derive from (3.2) that

||ξt(t)||1,∞ ≤ C[||ξ||+ ||η||+ ||ξt||+ ||ηt||) ||∂zG
∗
z||1,1 + ||U − u||0,∞||∂zG

∗
z||1,1]

+
∣∣∣∣
(
∇ · (a(U)ξ∇ b(U)

a(U)
), ∂zG

∗
z

)∣∣∣∣

≤ C[hk+1| ln h|r̄+1 + |Ph∂z(
b(U)
a(U)

ξ)|+ ||ξ||1,∞|(1 + |∂zG
∗
z)||1,1]

≤ C[hk+1| ln h|r̄+1 + ||ξ(t)||1,∞ + ||∇ξ|| | ln h|]

≤ C[hk+1| ln h|r̄+1 +
∫ t

0
||ξt(τ)||1,∞dτ ].

where in the last step we have used Lemma 2.3. Applying the Gronwall’s inequality
completes the proof. ¤
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