DOI QR코드

DOI QR Code

THE GRADIENT RECOVERY FOR FINITE VOLUME ELEMENT METHOD ON QUADRILATERAL MESHES

  • Song, Yingwei (Department of Mathematics and the State Key Laboratory of Synthetical Automation for Process Industries Northeastern University) ;
  • Zhang, Tie (Department of Mathematics Northeastern University)
  • Received : 2015.09.07
  • Published : 2016.11.01

Abstract

We consider the nite volume element method for elliptic problems using isoparametric bilinear elements on quadrilateral meshes. A gradient recovery method is presented by using the patch interpolation technique. Based on some superclose estimates, we prove that the recovered gradient $R({\nabla}u_h)$ possesses the superconvergence: ${\parallel}{\nabla}u-R({\nabla}u_h){\parallel}=O(h^2){\parallel}u{\parallel}_3$. Finally, some numerical examples are provided to illustrate our theoretical analysis.

Keywords

References

  1. Z. Q. Cai, On the finite volume element method, Numer. Math. 58 (1991), no. 7, 713-735.
  2. L. Chen, A new class of high order finite volume methods for second order elliptic equations, SIAM J. Numer. Anal. 47 (2010), no. 6, 4021-4023. https://doi.org/10.1137/080720164
  3. Z. Y. Chen, $L^2$ estimate of linear element generalized difference schemes, Acta. Sci. Nat. Univ. Sunyatseni 33 (1994), 22-28.
  4. S. H. Chou and Q. Li, Error estimates in $L^2$, $H^1$, $L^{\infty}$ in covolume methods for elliptic and parabolic problem: a unified approach, Math. Comp. 69 (2000), no. 229, 103-120. https://doi.org/10.1090/S0025-5718-99-01192-8
  5. P. G. Ciarlet, The Finite ElementMethods for Elliptic Problems, North-Holland, Amesterdam, 1978.
  6. B. Heimsund, X. Tai, and J. Wang, Superconvergence for the gradients of finite element approximations by $L^2$ projections, SIAM J. Numer. Anal. 41 (2004), 1052-1073.
  7. B. M. Irons, Least squares surface fitting by finite elements and an application to stress smoothing, Aero. Stree Memo ASM 1524, Rolls-Royce, 1967.
  8. R. H. Li, Z. Y. Chen, and W. Wu, Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Marcel, New York, 2000.
  9. Y. H. Li and R. H. Li, Generalized difference methods on arbitrary quadrilateral net-works, J. Comput. Math. 17 (1999), no. 6, 653-672.
  10. Q. Lin and Q. D. Zhu, The preprocessing and postprocessing for the finite element methods, Shanghai Sci & Tech Publishing, Shanghai, 1994.
  11. J. L. Lv and Y. H. Li, $L_2$ error estimate of the finite volume element methods on quadrilateral meshes, Adv. Comput. Math. 33 (2010), no. 2, 129-148. https://doi.org/10.1007/s10444-009-9121-z
  12. J. L. Lv and Y. H. Li, $L_2$ error estimates and superconvergence of the finite volume element methods on quadrilateral meshes, Adv. Comput. Math. 37 (2012), no. 3, 393-416. https://doi.org/10.1007/s10444-011-9215-2
  13. A. Naga and Z. Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal. 9 (2004), no. 4, 1780-1800.
  14. J. T. Oden and H. J. Brauchli, On the calculation of consistent stress distributions in finite element applications, Int. J. Numer. Methods Engrg. 3 (1971), 317-325. https://doi.org/10.1002/nme.1620030303
  15. T. Schmidt, Box schemes on quadrilateral meshes, Computing 51 (1993), no. 3-4, 271-292. https://doi.org/10.1007/BF02238536
  16. M. J. Turner, H. C. Martin, and B. C. Weikel, Further developments and applications of the stiffness method, Matrix Meth. Struct. Anal. AGARDograph 72 (1964), 203-266.
  17. M. Yang, A second-order finite volume element method on quadrilateral meshes for elliptic equations, M2AN 40 (2007), no. 6, 1053-1067.
  18. T. Zhang, Y. P. Lin, and R. J. Tait, On the finite volume element version of Ritz-Volterra projection and applications to related equations, J. Comput. Math. 20 (2002), no. 5, 491-504.
  19. T. Zhang, Y. P. Lin, and R. J. Tait, The derivative patch interpolating recovery technique for finite element approx-imations, J. Comput. Math. 22 (2004), no. 1, 113-122.
  20. T. Zhang and Y. Sheng, Superconvergence and gradient recovery for a finite volume element method for solving convection-diffusion equations, Numer. Methods Partial Differential Equations 30 (2014), no. 4, 1152-1168. https://doi.org/10.1002/num.21862
  21. Q. D. Zhu and Q. Lin, The superconvergence theory of finite elements, Hunan Science and Technology Publishing House, Changsha, 1989.
  22. O. C. Zienkiewicz and J. Z. Zhu, The superconvergence patch recovery and a posterior error estimates, Part 1: the recovery technique, Int. J. Numer. Methods Engrg. 33 (1992), 1331-1364. https://doi.org/10.1002/nme.1620330702