References
- Z. Q. Cai, On the finite volume element method, Numer. Math. 58 (1991), no. 7, 713-735.
- L. Chen, A new class of high order finite volume methods for second order elliptic equations, SIAM J. Numer. Anal. 47 (2010), no. 6, 4021-4023. https://doi.org/10.1137/080720164
-
Z. Y. Chen,
$L^2$ estimate of linear element generalized difference schemes, Acta. Sci. Nat. Univ. Sunyatseni 33 (1994), 22-28. -
S. H. Chou and Q. Li, Error estimates in
$L^2$ ,$H^1$ ,$L^{\infty}$ in covolume methods for elliptic and parabolic problem: a unified approach, Math. Comp. 69 (2000), no. 229, 103-120. https://doi.org/10.1090/S0025-5718-99-01192-8 - P. G. Ciarlet, The Finite ElementMethods for Elliptic Problems, North-Holland, Amesterdam, 1978.
-
B. Heimsund, X. Tai, and J. Wang, Superconvergence for the gradients of finite element approximations by
$L^2$ projections, SIAM J. Numer. Anal. 41 (2004), 1052-1073. - B. M. Irons, Least squares surface fitting by finite elements and an application to stress smoothing, Aero. Stree Memo ASM 1524, Rolls-Royce, 1967.
- R. H. Li, Z. Y. Chen, and W. Wu, Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Marcel, New York, 2000.
- Y. H. Li and R. H. Li, Generalized difference methods on arbitrary quadrilateral net-works, J. Comput. Math. 17 (1999), no. 6, 653-672.
- Q. Lin and Q. D. Zhu, The preprocessing and postprocessing for the finite element methods, Shanghai Sci & Tech Publishing, Shanghai, 1994.
-
J. L. Lv and Y. H. Li,
$L_2$ error estimate of the finite volume element methods on quadrilateral meshes, Adv. Comput. Math. 33 (2010), no. 2, 129-148. https://doi.org/10.1007/s10444-009-9121-z -
J. L. Lv and Y. H. Li,
$L_2$ error estimates and superconvergence of the finite volume element methods on quadrilateral meshes, Adv. Comput. Math. 37 (2012), no. 3, 393-416. https://doi.org/10.1007/s10444-011-9215-2 - A. Naga and Z. Zhang, A posteriori error estimates based on the polynomial preserving recovery, SIAM J. Numer. Anal. 9 (2004), no. 4, 1780-1800.
- J. T. Oden and H. J. Brauchli, On the calculation of consistent stress distributions in finite element applications, Int. J. Numer. Methods Engrg. 3 (1971), 317-325. https://doi.org/10.1002/nme.1620030303
- T. Schmidt, Box schemes on quadrilateral meshes, Computing 51 (1993), no. 3-4, 271-292. https://doi.org/10.1007/BF02238536
- M. J. Turner, H. C. Martin, and B. C. Weikel, Further developments and applications of the stiffness method, Matrix Meth. Struct. Anal. AGARDograph 72 (1964), 203-266.
- M. Yang, A second-order finite volume element method on quadrilateral meshes for elliptic equations, M2AN 40 (2007), no. 6, 1053-1067.
- T. Zhang, Y. P. Lin, and R. J. Tait, On the finite volume element version of Ritz-Volterra projection and applications to related equations, J. Comput. Math. 20 (2002), no. 5, 491-504.
- T. Zhang, Y. P. Lin, and R. J. Tait, The derivative patch interpolating recovery technique for finite element approx-imations, J. Comput. Math. 22 (2004), no. 1, 113-122.
- T. Zhang and Y. Sheng, Superconvergence and gradient recovery for a finite volume element method for solving convection-diffusion equations, Numer. Methods Partial Differential Equations 30 (2014), no. 4, 1152-1168. https://doi.org/10.1002/num.21862
- Q. D. Zhu and Q. Lin, The superconvergence theory of finite elements, Hunan Science and Technology Publishing House, Changsha, 1989.
- O. C. Zienkiewicz and J. Z. Zhu, The superconvergence patch recovery and a posterior error estimates, Part 1: the recovery technique, Int. J. Numer. Methods Engrg. 33 (1992), 1331-1364. https://doi.org/10.1002/nme.1620330702