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Abstract. The superconvergence of the Sloan iterate obtained from a Galerkin method for the ap-
proximate solution of the singular integral equation based on the use of two sets of orthogonal polynomials
is investigated. The discrete Sloan iterate using Gaussian quadrature to evaluate the integrals in the equa-
tion becomes the Nyström approximation obtained by the same rules. Consequently, it is impossible to
expect the faster convergence of the Sloan iterate than the discrete Galerkin approximation in practice.
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Singular integral equations (SIEs) differ from Fredholm integral equations (FIEs) be-
cause they contain a Cauchy principal value integral. Because of this difference, the
number of applicable numerical methods for SIEs is less than that for FIEs. Among
numerical methods used for FIEs, the Sloan iterate is well-known to solve FIEs of the
second kind with its superconvergence. It is taken as a better approximation than
the Galerkin method as its general case [?, ?]. Recently the Sloan iterate of projection
method for solving SIEs has been considered without practical examples in a number of
papers [?, ?, ?]. They suggest the Sloan iterate as a very useful method for accelerating
the convergence of some projection methods for SIEs. However, its superconvergence
was not shown in actual calculations. In the special case of SIEs, the airfoil equation
which is the SIEs of the first kind, the Sloan iterate does not converge at the rate no
faster than the original approximation [?]. Here we will extend this result to the SIEs
with variable coefficients. This shows we may not obtain the superconvergence of the
Sloan iterate for SIEs.

The paper is organized as follows: after recalling some preliminary results, in sec-
tion 3 we consider the quadrature methods used in SIEs including the Hunter’s method
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to evaluate numerically Cauchy principle value integrals, and derive some facts which
are important in proving the main result. In section 4 we review the two sets of
orthonormal polynomial-based Galerkin method for solving the SIEs with the order
of convergence. Then we investigate the functional equation satisfied by the discrete
Galerkin approximation, that is essential to obtain the discrete Sloan iterate. In the last
section, we establish that the convergence rate of the Sloan iterate is exactly same to the
rate of the Nyström approximation by examining the effects of numerical integration
errors on the Galerkin solution.

2. Preliminaries. Consider the second kind singular integral equation on (−1, 1)

ã (x) µ̃ (x) +
1
π

∫ 1

−1

η(x, t)
t− x

µ̃(t)dt = f̃(x) − 1 < x < 1,(1)

with ã(x) and η(x, t), real valued functions. We assume here that the kernel η is a Hölder
continuous function on [−1, 1] × [−1, 1], and moreover a continuously differentiable
function of the variable x. We now consider the function of a single variable η (x, x),
which is also Hölder continuous. Since it may have zeros at the points λi, i = 1, ..., Nλ,
each respectively of multiplicity ζi, we can define the polynomial

b̃ (x) =
Nλ∏

i=1

(x− λi)
ζi with N =

Nλ∑

i=1

ςi(2)

and consider the function

v (x) =
η (x, x)
b̃ (x)

(3)

which is of one sign, here taken to be positive, bounded near the endpoints±1. Since η is
Hölder continuous, v(x) must be integrable in [−1, 1]. After subtracting the singularity,
the SIE then becomes

ã (x) µ̃ (x) +
b̃ (x)

π

∫ 1

−1

v (t) µ̃ (t)
t− x

dt +
∫ 1

−1
k̃ (x, t) µ̃ (t) dt = f̃(x), −1 < x < 1.(4)

where the coefficients ã and b̃ do not have common zeros [?]. Since v (x) is one-signed,
we can then normalize them introducing the function

r2 (x) ≡ ã2 (x)
v2(x)

+ b̃2 (x) > 0, ∀x ∈ [−1, 1] ,

after appropriate simplifying and finally by changing the dependent variable

µ (x) = v (x) µ̃ (x) ,
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the SIE (??) then takes the standard form

a (x) µ (x) +
b (x)

π

∫ 1

−1

µ (t)
t− x

dt +
∫ 1

−1
k (x, t) µ (t) dt = f (x) , −1 < x < 1,(5)

where we recall that b (x) is a polynomial of degree N in (??).
We denote the space of Hölder continuous functions on [−1, 1] by H, but we seek

the solution in the space denoted by H∗, see [?], of Hölder continuous functions on
(−1, 1), such that near the endpoints their behavior is given by

µ (x) =
σ−1 (x)

(1 + x)ξ̃−1
, µ (x) =

σ1 (x)

(1− x)ξ̃1
, 0 ≤ ξ̃−1, ξ̃1 < 1,(6)

with σ−1 (x) and σ1 (x) also in H. Also the real valued function f is assumed to lie in
H∗.

Now it is convenient to introduce LZ and LZ−1 Hilbert spaces of real-valued square-
integrable functions with weights Z and 1/Z respectively for Galerkin methods used in
this study. The inner products on LZ and LZ−1 are denoted by <,>Zand <,>Z−1where

< f, g >Z=
∫ 1

−1
Z(t)f(t)g(t)dt and < f, g >Z−1=

∫ 1

−1
Z−1(t)f(t)g(t)dt,

and the induced norms by || ||Z and || ||Z−1 . The symbol || || without subscript will be
used for operator norms. In operator notation, equation (??) can be written as

Ŝµ + K̂µ = f,(7)

where the so-called dominant operator is

Ŝµ (x) ≡ a (x) µ (x) +
b (x)

π

∫ 1

−1

µ (t)
t− x

dt,(8)

and

K̂µ (x) ≡
∫ 1

−1
k (x, t) µ (t) dt(9)

defines a compact operator from LZ to LZ−1 . We assume that Ŝµ+K̂µ = 0 has only the
zero solution so that (Ŝ + K̂)−1 : LZ−1 → LZ is bounded by the Fredholm alternative.
Following [?] we introduce the “regularizing” operator S∗ on H∗ by

S∗ρ (x) ≡ a (x) ρ (x)− b (x) Z (x)
π

∫ 1

−1

ρ (t)
Z (t) (t− x)

dt,(10)

where Z(x) represents the fundamental function of the SIE, see [?]. There is a relation-
ship between the fundamental function and the canonical function X(z) of the SIE, see
e.g. [?]. Indeed letting
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θ (t) = − 1
2πi

ln
a(t)− ib(t)
a(t) + ib(t)

=
1
π

arctan
b(t)
a(t)

+ N(t),

where the function N (t) takes integer values, we have

X (z) = (1− z)−κ exp
{
−

∫ 1

−1

θ (t) dt

t− z

}
, z /∈ [−1, 1] ,(11)

Z (x) = (1− x)−κ exp
{
−

∫ 1

−1

θ (t) dt

t− x

}
, x ∈ (−1, 1).

Here κ denotes the index of the equation, to be defined below. Observe that Z(x) is
positive and bounded in each closed subinterval of (−1, 1), since in our case it can be
written as follows, [?]

Z (x) = (1− x)γ1−θ(1)(1 + x)γ2+θ(−1)ω (x) ,(12)

with −1 < γ1 − θ(1), γ2 + θ(−1) < 1, and ω (x) a nonvanishing and bounded function.
The integers γ1 and γ2 are related to its index, see [?, ?, ?],

κ = − (γ1 + γ2) .

Note that Z ∈ H∗and 1/Z ∈ H.
The classical theory [?] shows that if κ ≥ 0, the dominant equation (??) where

K̂ ≡ 0, is solvable for any right hand side f . Uniqueness however is not guaranteed.
To ensure it, we need the supplementary conditions

1
π

∫ 1

−1
tκ−1−lµ (t) dt = Cl, l = 0, 1, .., κ− 1,(13)

where Cl denote constants. For κ < 0, the dominant equation has a unique solution if
and only if f satisfies the −κ orthogonality conditions

∫ 1

−1

tl

Z (t)
f (t) dt = 0, l = 0, 1, . . . ,−κ− 1.(14)

Let {φn}∞n=0 be the set of monic polynomials orthogonal with respect to the weight
function Z, and let {ψn}∞n=0 be the corresponding set of monic polynomials orthogonal
with respect to 1/Z. There is a special relationship between the two sets of orthogonal
polynomials given by the dominant operator Ŝ of (??). Let us recall the following two
results, Theorems 3.1 and 3.2 of [?]:

Lemma 2.1. Let Q, R be functions such that
(i) QX −R is analytic in the deleted complex plane and zero at infinity.
(ii) on (−1, 1), Q+ (x) = Q− (x) , R+ (x) = R− (x) and the functions aQZ − R,

bQZ are in the Hölder space H∗. Then for −1 < x < 1,

1
π

∫ 1

−1

b (t) Q (t) Z (t)
t− x

dt = −a (x) Q (x) Z (x) + R (x) .
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Lemma 2.2. Let Q, R be functions such that
(i) QX−1 −R is analytic in the deleted complex plane and zero at infinity.
(ii) on (−1, 1), Q+ (x) = Q− (x) , R+ (x) = R− (x) and the functions aQ/Z − R,

bQ/Z are in the Hölder space H∗. Then for −1 < x < 1,

1
π

∫ 1

−1

b (t) Q (t)
Z (t) (t− x)

dt =
a (x) Q (x)

Z (x)
−R (x) .

For our analysis the important tool is given by Theorem 9.14 of [?]. See also
theorems 3.2 and 3.4 of [?]. In our notation, recalling that N = deg b (x), (??), it reads

Theorem 2.3. Let pn be a polynomial of degree n. Then the function qn defined
by qn =

(
aZI + bŜZI

)
pn is a polynomial of degree at most max {n− κ,N − 1} and of

degree n−κ if n−κ > N −1. If pn is an orthogonal polynomial of degree n with respect
to the weight Z and if n − κ > N − 1, then qn =

(
aZI + bŜZI

)
pn is an orthogonal

polynomial of degree n− κ with respect to the weight 1/Z. Moreover if n− κ > N − 1
then

‖pm‖Z = ‖qm‖Z−1 .

From now on assume that n − κ > N − 1. Recall that κ is the index of Ŝ.
By applying the above result to the two families of monic polynomials {φn}∞n=0 and
{ψn}∞n=0, orthogonal with respect to the weights Z and Z−1 respectively, we have

a(x)φn(x)Z(x) +
b (x)

π

∫ 1

−1

Z(t)φn(t)
t− x

dt = (−1)κ ψn−κ (x) ,(15)

a(x)ψn(x)
Z(x)

− b (x)
π

∫ 1

−1

ψn(t)
Z(t) (t− x)

dt = (−1)κ φn+κ (x) ,(16)

where n = κ + N, κ + N + 1, . . . . Also φ−1 = ψ−1 ≡ 0.
Note that two sets of polynomials mentioned above can be taken normalized be-

cause the operator Ŝ is unitary if the index of Ŝ is zero [?, ?].
In what follows we will consider the polynomial b(x) evaluated at the zeros ti and

sj of the orthogonal polynomials φn and ψn−κ respectively. Since b has N zeros, we can
always assume that by taking n large enough, the following conditions are satisfied

b (ti) 6= 0, i = 1, ..., n; b (sj) 6= 0, j = 1, ..., n− κ.(17)

3. Quadrature Methods in SIE. To set up a numerical method we define a
new unknown u using the fundamental function Z

µ(t) = Z(t)u(t).(18)
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Indeed, the function Z (t) contains the “bad features” of the unknown, and u (t) is
smooth. With this notation, we introduce simple operators by

Su = ŜZu = Ŝµ(19)
Ku = K̂Zu = K̂µ.

It is also necessary to introduce the new function Λn associated with φn

Λn (x) =
1
π

∫ 1

−1

Z (t) φn (t)
t− x

dt.(20)

As quadrature formula we use Hunter’s method

1
π

∫ 1

−1

Z (t) u (t)
t− x

dt =
1
π

n∑

i=1

wi u (ti)
ti − x

+
Λn (x)
φn (x)

u (x) + εH(21)

where the wi’s are the Gaussian quadrature weights associated with the weight Z, the
ti’s are the zeros of φn and εH represents the error term

εH =
∫ 1

−1
Z(t) Rn (x, t) φn (t) dt, Rn (x, t) =

1
2πi

∫

C

u (z) dz

(z − x) (z − t) φn (z)
,(22)

where C denotes a contour in the complex plane, enclosing the interval [−1, 1]. In this
notation (??) becomes

b (x) Λn (x) = (−1)κ ψn−κ (x)− a (x) Z (x) φn (x)(23)

where κ is the index of the singular integral equation. Note that (??) is exact when u
is a polynomial of degree less than 2n + 1, see [?]. In a similar way by introducing the
function

Λ̃n (x) =
1
π

∫ 1

−1

ψn (t)
Z (t) (t− x)

dt,(24)

we can also write the “dual form” of Hunter’s quadrature (??), which is obtained by
using the weight function 1/Z in place of Z, the weights w∗j in place of wj and where
the polynomials ψn−κ (x) and their zeros replace φn (x) and their zeros, and similar
changes take place in the error term ε̃H ,

1
π

∫ 1

−1

u (t)
Z (t) (t− x)

dt =
1
π

n−κ∑

j=1

w∗
j u (sj)
sj − x

+
Λ̃n−κ (x)
ψn−κ (x)

u (x) + ε̃H .(25)

Shifting the indices in (??) and rewriting it in this notation

−b (x) Λ̃n−κ (x) = (−1)κ φn (x)− a (x)
Z (x)

ψn−κ (x) .(26)
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For i = 1, 2, . . . , n, the Christoffel number wi associated with the zeros ti of φn,
from (3.4.3) in [?] is

wi =
∫ 1

−1

Z (t) φn (t)
φ′n (ti) (t− ti)

dt = π
Λn (ti)
φ′n (ti)

.(27)

It follows then from (??)

b (ti) wi =
π

φ′n (ti)
[(−1)κ ψn−κ (ti)− a (ti) Z (ti) φn (ti)] ≡ π (−1)κ ψn−κ (ti)

φ′n (ti)
.(28)

Similarly from (??) the value for the Christoffel numbers w∗
j associated with the

zeros sj of the orthogonal polynomials ψn−κ is

−b (sj) w∗
j ≡ −b (sj) π

Λ̃n−κ (sj)
ψ′n−κ (sj)

= π (−1)κ φn (sj)
ψ′n−κ (sj)

for j = 1, 2, . . . , n− κ.(29)

Recall that the Christoffel numbers are all positive [?]. Using this fact with (??), (??)
and (??), it follows then that {ti} ∩ {sj} = ∅.

Recalling (??) and (??), since ti ∈ (−1, 1), we define Knu by discretizing Ku by
means of a Gaussian quadrature with weight Z (t) as follows

Ku(x) =
∫ 1

−1
Z (t) k (x, t) u (t) dt '

n∑

i=1

wik (x, ti) u (ti) ≡ Knu(x).(30)

We now consider the regularized equation. Recalling (??), the FIE equivalent to
the SIE (??) is given by (107.15) of [?],

µ (x) + S∗Kµ (x) = S∗f (x) + Z (x) b (x) p̃κ−1 (x) ,(31)

where p̃κ−1 represents an arbitrary polynomial of degree not greater than κ− 1, which
is identically zero for nonpositive index.

We need some results which are used for last part of the paper. From [?], the
canonical function X (z) and its reciprocal have the expansions

X (z) = (−1)κ
−κ∑

j=−∞
αj zj and X−1 (z) = (−1)κ

κ∑

j=−∞
βj zj ,(32)

where the coefficients αj are given by

αj =
1
π

∫ 1

−1
τ−j−1b (τ) Z (τ) dτ for j ≤ min (−κ,−1) .(33)

The other coefficients can be obtained from X X−1 ≡ 1, which gives

−j∑

l=0

α−κ+j+l βκ−l =

{
0 j < 0
1 j = 0.

(34)
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Note that the canonical function for large x behaves like (1− x)−κ, (??). Then

X (x) ∼ (−1)κ x−κ,

and from this we have α−κ = 1, so that βκ = 1 as well. We define the polynomial p̂κ(x)
as follows

p̂κ(x) = pp
(
(−1)κ X−1

)
=

κ∑

i=0

βi x
i.(35)

Moreover in (2.11) of [?] it is observed that the function R of lemma ?? represents the
principal part of the canonical function, so that

R (x) = p̂κ (x) .(36)

Theorem 3.4.

1
π

n−κ∑

j=1

w∗
j b (sj)

(tl − sj) (ti − sj)
+ p̂κ [ti, tl] =





0 i 6= l

π

b (tl) wl
i = l

where the last term represents the first divided difference of a certain polynomial p̂κ (x),
of degree κ, which for κ = 0 becomes identically 0.

Proof. Using partial fractions, if l 6= i

1
π

n−κ∑

j=1

w∗
j b (sj)

(tl − sj) (ti − sj)
=

1
π (ti − tl)

n−κ∑

j=1

w∗
j b (sj)

[
1

tl − sj
− 1

ti − sj

]
.(37)

Now we need to evaluate the right hand side of (??). Since b(x) is a polynomial of fixed
degree N , for n large enough the above quadrature is exact. The second term in the
right hand side of (??) can now be rewritten using (??), while for the term on the left
hand side we can use lemma ?? with Q ≡ 1 to get

1
π

n−κ∑

j=1

w∗
j b (sj)
sj − x

=
a (x)
Z (x)

−R (x) +
1

ψn−κ (x)

[
(−1)κ φn (x)− a (x)

Z (x)
ψn−κ (x)

]

= −R (x) +
(−1)κ φn (x)

ψn−κ (x)
.(38)

Use of (??) and collocation of (??) at the nodes tl yields

1
π

n−κ∑

j=1

w∗
i b (sj)
sj − tl

= −p̂κ (tl) .(39)

On using this result twice in (??) we have the first claim. For the case, i = l, we start
by differentiating (??) with respect to x, to get

1
π

n−κ∑

j=1

w∗
j b (sj)

(sj − x)2 = −R′ (x) + (−1)κ

[
φ′n (x)

ψn−κ (x)
− ψ′n−κ (x) φn (x)

ψn−κ (x)2

]
.
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Upon collocation at tl, we have then

1
π

n−κ∑

j=1

w∗
j b (sj)

(sj − tl)
2 = −p̂′κ (tl) + (−1)κ φ′n (tl)

ψn−κ (tl)
.

The claim follows then using equation (??).

We can now characterize the coefficients of the arbitrary polynomial p̃κ−1 (x) of
(??) by using the supplementary normalization conditions (??).

Proposition 3.5. We have

p̃κ−1 (x) =
κ−1∑

i=0

ξi x
i

where

ξi = Ci +
κ−1−i∑

l=1

βκ−l Ci+l,

and the Ci’s are given by (??).

Proof. From the proof of Theorem 4.4 of [?] and by taking into account limits of
sequences of functions, Theorem 5.3 of [?], p̃κ−1 (x) has the following coefficients. For
0 ≤ i ≤ κ− 1, on using (??)

ξi =
1
π

∫ 1

−1
τκ−1−i φ (τ) dτ −

κ−1−i∑

l=1

ξi+l
1
π

∫ 1

−1
τκ−1+l b (τ) Z (τ) dτ(40)

= Ci −
κ−1−i∑

l=1

ξi+l α−κ−l.

Introduce the vectors ξ = (ξ0,ξ1, . . . , ξκ−1) T , C = (C0, C1, . . . , Cκ−1) T and the κ × κ
matrix A = (Aij)with entries

Aij =





0 i > j
1 i = j

α−κ−j+i i < j.

To get ξi, rearrange (??) and solve the triangular system A ξ = C. The triangular
matrix A is nonsingular since it has nonzero diagonal elements. Hence the inverse
matrix A−1 = B = (Bij) exists. By considering (??), we easily find its elements

Bij =





0 i > j
1 i = j

β−κ−j+i i < j.
(41)
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We have then ξ = B C, and use of (??) leads to the claim.
Remark. These proofs in a certain sense use a “dual” argument of the one used

in the proof of theorem 2.1 of [?].
We consider the case only the index κ = 0 for the remainder of the paper. In this

case, the regularizing operator S∗ becomes the inverse S−1 of the dominant operator S
because p̂κ−1 becomes zero in (??).

4. The Galerkin Scheme. Approximating u by a polynomial un of degree ≤ n
and setting the residual rn = Sun + Kun − f orthogonal to SUn where Un is the set of
polynomials of degree ≤ n ,which has a basis {φl}n

l=0,

un =
n∑

l=0

κlφl,

we obtain the linear equation to determine {κl}n
l=0,

n∑

l=0

< Sφl, Sφj >Z−1 κl +
n∑

l=0

< Kφl, Sφj >Z−1 κl =< f, Sφj >Z−1(42)

where {Sφl}n
l=0 are orthonormal with respect to 1/Z, (??) because κ = 0.

Let Pn be the operator of orthogonal projection onto Vn = SUn. Then un satisfies

PnSun = −PnKun + Pnf.(43)

Since Sun ∈ Vn, PnSun = Sun,

Sun = −PnKun + Pnf.(44)

From [?, ?, ?], the unique existence of un for n large enough and the convergence of un

to u in LZ are obtained with

||u− un||Z ≤ Cg ||Su− PnSu||Z−1

where Cg is constant. For f and k ∈ Cr,α which is the Hölder space of order 0 ≤ α < 1
for the rth derivative and r > 0,

||u− un||Z = O(n−(r+α)).(45)

Discretizing (??) by n point quadrature rules with the weight Z−1 and (??), we
obtain vn, called a discrete Galerkin approximation to u, as the solution of the resulting
functional equations and vn is given by

vn =
n∑

l=0

κ̃lφl,(46)
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where the {κ̃l} satisfies
n∑

l=0

[
n∑

d=1

w∗
dψl(sd)ψj(sd)

]
κ̃l

+
n∑

l=0




n∑

d=1

n∑

p=1
w∗

dwpk(sd, tp)ψj(sd)φl(tp)


 κ̃l(47)

=
n∑

d=1

w∗
df(sd)ψj(sd) for 0 ≤ j ≤ n

where the first term becomes κ̃j ||ψj ||2Z−1 = κ̃j because of the precision of the quadra-
ture rule.

For the convergence of the discrete Galerkin approximation vn to u, we refer the
following theorem[?, ?].

Theorem 4.6. For n large enough, the discrete Galerkin approximation vn exists
uniquely and converge to u in LZ if f and k ∈ Cr,α, r + α > 5/2. Furthermore ||u −
vn||Z = O(n−(r+α)+1), and ||u− vn||∞ = O(n−(r+α)+5/2).

Let us define Πn : C[−1, 1] → Vn by

Πnu(x) =
n∑

k=0




n∑

j=1

w∗
ju(sj)ψk(sj)


 ψk(x).(48)

Then using (??) and the fact κ = 0, we have

Svn(x) = S

[
n∑

k=0

κ̃kφk(x)

]
=

n∑

k=0

κ̃kψk(x)(49)

and

Πnf(x) =
n∑

k=0

[
n∑

d=1

w∗
df(sd)ψk(sd)

]
ψk(x).(50)

Similarly

ΠnKnvn(x) = Πn




n∑

p=1
wpk(x, tp)vn(tp)


(51)

=
n∑

p=1
wpvn(tp)Πnk(x, tp)

=
n∑

p=1
wpvn(tp)

[
n∑

k=0

[
n∑

d=1

w∗
dk(sd, tp)ψk(sd)

]
ψk(x)

]

=
n∑

p=1
wp

(
n∑

l=0

κ̃lφl(tp)

) [
n∑

k=0

[
n∑

d=1

w∗
dk(sd, tp)ψk(sd)

]
ψk(x)

]

=
n∑

k=0




n∑

l=0




n∑

p=1

n∑

d=1

w∗
dwpk(sd, tp)ψk(sd)φl(tp)


 κ̃l


 ψk(x).
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Here

Svn(x) + ΠnKnvn(x)−Πnf(x)

=
n∑

k=0


κ̃k +

n∑

l=0




n∑

p=1

n∑

d=1

w∗
dwpk(sd, tp)ψk(sd)φl(tp)


 κ̃l −

n∑

d=1

w∗
df(sd)ψk(sd)


 ψk(x)

= 0

since the inside term of the middle is exactly same to (??). Consequently, the discrete
Galerkin approximation vn satisfies

Svn + ΠnKnvn −Πnf = 0.(52)

5. The Sloan Iterate. In this section, we introduce the Sloan iterate [?, ?, ?]
ũn of un given by

Sũn = −Kun + f(53)

where

ũn = −S−1Kun + S−1f.

Here applying the orthogonal projection operator Pn to (??), we have

PnSũn = −PnKun + Pnf = PnSun = Sun.

Therefore un = S−1PnSũn = Qnũn where Qn = S−1PnS is the orthogonal projection
operator onto Un. Thus ũn satisfies

Sũn = −KQnũn + f.(54)

Lemma 5.7. The equation (??) has a unique solution for all n large enough.

Proof. Because Qn is orthogonal, ||K−KQn|| → 0 as n →∞. Letting Tn = S+KQn

and T = S + K,we have M = T − Tn = K −KQn and

Tn = Tn − T + T = T − (T − Tn)
= T −M

= T (I − T−1M) .

Here ||T−1M || < ||T−1||||K − KQn|| < 1/2 for n large enough. Hence T−1
n = (S +

KQn)−1 exists since (I − T−1M)−1 exists.

For n sufficiently large,

u− ũn = (S + K)−1f − (S + KQn)−1f(55)
= (S + KQn)−1(KQn −K)(S + K)−1f

= (S + KQn)−1(KQn −K)u
= (S + KQn)−1K(Qn − I)u
= (S + KQn)−1K(Qn − I)(Qn − I)(u− un)
= (S + KQn)−1(KQn −K)(u− un)
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since (Qn− I)2 = (Qn− I) and (I−Qn)un = 0. From (??), ||u−un||Z = O(n−(r+α))if k
and f are Cr,α. Also Jackson’s theorem and the orthogonality of Qn give ||K−KQn|| =
O(n−(r+α))for k ∈ Cr,α. With these facts and (??), we have the following theorem.

Theorem 5.8. Let un be the solution of Galerkin method for n sufficiently large
and the Sloan iterate ũn be defined by (??). Then ũn converges in LZ to u and ||u −
ũn||Z = O(n−2(r+α))if k and f are Cr,α functions.

This theorem shows that the Sloan iterate converges at twice the rate of the
Galerkin approximation if all integrals are evaluated exactly. This order of conver-
gence can be obtained only theoretically.

In the remainder of the paper, the discrete Sloan iterate will be defined and com-
pared with the discrete Galerkin approximation.

Ignoring the error term εH in (??) with (??), we define

Snu(x) ≡ a(x)Z(x)u(x) + b(x)

[
1
π

n∑

i=1

wiu(ti)
ti − x

+
Λn(x)
φn(x)

u(x)

]
(56)

= a(x)Z(x)u(x) +
b(x)
π

n∑

i=1

wiu(ti)
ti − x

+
u(x)
φn(x)

[(−1)κψn−κ(x)− a(x)Z(x)φn(x)]

=
b(x)
π

n∑

i=1

wiu(ti)
ti − x

+ (−1)κ ψn−κ(x)
φn(x)

u(x).

And for the discrete Sloan iterate, we now define v̂n by

Snv̂n = −Knvn + f.

Applying the operator Πn with (??), then

ΠnSnv̂n = −ΠnKnvn + Πnf

= Svn.

Hence vn = S−1ΠnSnv̂n so that

Snv̂n + KnS−1ΠnSnv̂n = f.(57)

Now we give the main result showing that the discrete Sloan iterate becomes the
Nyström quadrature approximation [?, ?].

Theorem 5.9. The discrete Sloan iterate v̂n of (??) also satisfies

Snv̂n + Knv̂n = f

which is the equation representing the Nyström approximation of u.
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Proof. Letting hn = S−1ΠnSnv̂n, we have

KnS−1ΠnSnv̂n(x) = Knhn

=
n∑

j=1

wjk(x, tj)hn(tj).

Thus it suffices to show

hn(tl) = v̂n(tl) for 1 ≤ l ≤ n.

Let τ = Snv̂n and use (??) and (??) to have

hn(x) = S−1Πnτ(x)

=
a(x)
Z(x)

Πnτ(x)− b(x)
π

∫ 1

−1

Πnτ(t)
Z(t)(t− x)

dt

=
a(x)
Z(x)

Πnτ(x)− b(x)


 1

π

n∑

j=1

w∗
jΠnτ(sj)
sj − x

+
Λ̃n(x)
ψn(x)

Πnτ(x)




since Πn is a polynomial. From (??),

hn(x) =
a(x)
Z(x)

Πnτ(x)− b(x)
π

n∑

j=1

w∗
jΠnτ(sj)
sj − x

+
Πnτ(x)
ψn(x)

[
φn(x)− a(x)

Z(x)
ψn(x)

]

=
−b(x)

π

n∑

j=1

w∗
jΠnτ(sj)
sj − x

+
φn(x)
ψn(x)

Πnτ(x).

Evaluating at the zero tl of φn, we obtain

hn(tl) =
−b(tl)

π

n∑

j=1

w∗
jΠnτ(sj)
sj − tl

since Πnτ(sj) = τ(sj)(Πn is the operator of polynomial interpolation on {sj}n
j=1),

=
−b(tl)

π

n∑

j=1

w∗
jSnv̂n(sj)
sj − tl

.

.
Hence we have, from (??)

hn(tl) =
−b(tl)

π

n∑

j=1

w∗
j

sj − tl

[
b(sj)

π

n∑

i=1

wiv̂n(ti)
ti − sj

]

=
b(tl)
π

n∑

i=1

wiv̂n(ti)


 1

π

n∑

j=1

w∗
j b(sj)

(ti − sj)(tl − sj)




= v̂n(tl).
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The last equality comes from the theorem ??.

The discrete Sloan iterate obtained from a polynomial Galerkin approximation for
solving SIEs becomes the Nyström approximation when all integrals are calculated by
Gaussian quadratures using zeros of basis polynomials as their nodes. This reads that
the discrete Galerkin approximation vn and the discrete Sloan iterate v̂n agree at the
quadrature nodes. Therefore we do not achieve the computational superconvergence in
practice.
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