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FINITE VOLUME ELEMENT METHODS FOR NONLINEAR
PARABOLIC PROBLEMS

QIAN LI AND ZHONGYAN LIU

Abstract. In this paper, finite volume element methods for nonlinear parabolic
problems are proposed and analyzed. Optimal order error estimates in W 1,p and Lp

are derived for 2 ≤ p ≤ ∞. In addition, superconvergence for the error between the
approximation solution and the generalized elliptic projection of the exact solution
(or and the finite element solution) is also obtained.

1. Introduction

Consider the following nonliear parabolic initial boundary value problem

(1.1)

(a)
∂u

∂t
− ∂

∂x
(a(x, u)

∂u

∂x
) = f(x, t, u), (x, t) ∈ (a, b)× (0, T ],

(b) u(x, 0) = u0(x), x ∈ [a, b],

(c) u(a, t) = 0,
∂u

∂x
(b, t) = 0, t ∈ [0, T ],

where the functions a, f and u0 are smooth enough to ensure the analysis validity and
a(x, u) is bounded from above and below:

(1.2) 0 < a0 ≤ a(x, u) ≤ M, (x, u) ∈ [a, b]×R.

Since we shall show that the approximate solution is uniformly convergent to the exact
solution of (1.1), the above assumptions only need to hold in a neighborhood of the
exact solution.

Throughout the paper, C denotes a generic constant independent of discrete param-
eter h and can have different values at different places. Let ‖·‖m,p,G and | · |m,p,G denote
norm and seminorm in the Sobolev space Wm,p(G) with G and p often omitted when
G = I = [a, b] and p = 2, respectively. And write ‖ · ‖ = ‖ · ‖0.

It is well known that finite difference methods (FDM) and finite element methods
(FEM) are two kinds of important numerical methods for solving partial defferential
equations. However there exist some obvious defects in both methods. For a long time
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people have spent much effort to modefy the classical numerical methods. Finite volume
element (FVE) methods are numerical technique that lie somewhere between FDM and
FEM. FVE methods have a flexibility similar to that of FEM for handling complicated
solution geometries and boundary conditions, and have a comparable simiplicity for
implimentation like FDM when partitions have simply structures. More importantly,
numerical solution generated by FVE methods usually maintains mass conservation
features, which are desirable in many applications. However, the analysis for FVE
methods is far behind that for FDM and FEM. The readers are referenced to [1, 3–6,
8, 10, 11] for elliptic problems, [2, 4, 5, 8, 9] for linear parabolic problems, [7, 11] for
linear hyperbolic problems, and [11] for the other partial differential equations.

Our main goal is to discuss FVE methods of one-dimensional nonlinear parabolic
problems. We derive the optimal error estimates in W 1,p and Lp for 2 ≤ p ≤ ∞.
Moreover, some superconvergence is also obtained.

The rest of this paper is organized. In Section 2, FVE approximation schemes
are formulated in piecewise linear finite element spaces. Some important lemmas are
introduced in Section 3, which are essential in our analysis. Main results of this paper
are given in Section 4.

2. Finite Volume Element Methods

In this paper we will follow the notations and symboles in [5]. For examples,
Th = {Ii; Ii = [xi−1, xi], 1 ≤ i ≤ n}, and T ∗h = {I∗i ; I∗i = [xi− 1

2
, xi+ 1

2
], 1 ≤ i ≤ n −

1, I∗n = [xn− 1
2
, xn]} denote the primal partition and its dual partition, respectively. The

trial function space Uh ⊂ H1
E(I) ≡ {u ∈ H1(I);u(0) = 0} is defined as a piecewise

linear function space over Th and Uh = span{φi(x), 1 ≤ i ≤ n}. The test function
space Vh ⊂ L2(I) is defined as a piecewise constant function space over T ∗h and Vh =
span{χi(x); 1 ≤ i ≤ n}. Let hi = xi − xi−1, h = max{hi; 1 ≤ i ≤ n}. The partitions
are assumed to be regular, that is, there exists a constant µ > 0 such that hi ≥ µh,
i = 1, 2, · · · , n. Let Πh and Π∗h be interpolation opetators into Uh and Vh, respectively,
i.e. Πhw(x) =

∑n
i=1 w(xi)φi(x), Π∗hw(x) =

∑n
i=1 w(xi)χi(x). We have the following

properties:

(2.1) (a) |w −Πhw|m,p ≤ Chk−m|w|k,p, m = 0, 1, k = 1, 2, 1 ≤ p ≤ ∞,
(b) ‖w −Π∗hw‖0,p ≤ Ch|w|1,p, 1 ≤ p ≤ ∞.

We now define a bilinear form as follows.

(2.2) a∗(z;u, v) =
n∑

j=1

vja
∗(z; u, χj), v ∈ Vh,

where

a∗(z; u, χj) =





a(z)j− 1
2
u′(xj− 1

2
)− a(z)j+ 1

2
u′(xj+ 1

2
), u ∈ H1

E(I) ∪ Uh,

a(z)j− 1
2

uj − uj−1

hj
− a(z)j+ 1

2

uj+1 − uj

hj+1
, u ∈ Uh,
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with u′ = ∂u
∂x , uj = u(xj), vj = v(xj), xj− 1

2
= 1

2(xj−1 + xj), a(z)j− 1
2

= a(z(xj− 1
2
)),

u0 = 0, a(z)n+ 1
2

= 0. For error estimates we next introduce the generalized elliptic
projection operator R∗

h : H1
E(I) −→ Uh defined by

(2.3) a∗(u; R∗
hw − w, vh) = 0, vh ∈ Vh,

where u is the solution of (1.1).
Then, the semi-discrete finite volume element approximation scheme is to find a map

uh(t) : [0, T ] −→ Uh such that

(2.4) (a) (uh,t, vh) + a∗(uh;uh, vh) = (f(t, uh), vh), vh ∈ Vh,
(b) uh(0) = uh,0,

where uh,0 ∈ Uh is determined by

(2.5) A(ξ(0), vh) = a∗(u0; ξ(0), vh) + b∗(ξ(0);R∗
hu0, vh) + λ(ξ(0), vh)

= −b∗(η(0);R∗
hu0, vh), vh ∈ Vh,

here λ is a constant which will be determined in §3, ξ = uh −R∗
hu, η = R∗

hu− u, and

(2.6) b∗(z; u, vh) =
n∑

j=1

(au(u0)z)j− 1
2

(uj − uj−1)(vj − vj−1)
hj

.

3. Lemmas

In this section, we will give some lemmas for the error analysis later. We first
have for any uh ∈ Uh,

|uh|1,p = (
n∑

i=1

∫ xi

xi−1

|u′h|pdx)
1
p

= {
n∑

i=1

hi(
ui − ui−1

hi
)p} 1

p .

Next, we define some discrete norms in Uh. Let

‖uh‖0,h = {
n∑

i=1
hi(u2

i−1 + u2
i )}

1
2 ,

‖uh‖1,h = (‖u‖2
0,h + |uh|21,h)

1
2 ,

|||uh||| = (uh, Π∗huh)
1
2 .

Lemma 3.1. (See [8, 11]) There exist two positive constants C1 and C2, independent
of h, such that for any uh ∈ Uh,

C1‖uh‖0,h ≤ ‖uh‖ ≤ C2‖uh‖0,h,
C1|||uh||| ≤ ‖uh‖ ≤ C2|||uh|||,

C1‖Π∗huh‖ ≤ ‖uh‖ ≤ C2‖Π∗huh‖,
C1‖uh‖1,h ≤ ‖uh‖1 ≤ C2‖uh‖1,h.
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Noting u0 = 0 and a(z)n+ 1
2

= 0 in (2.2), we can rewrite the bilinear form a∗(z; ·, Π∗h·)
as
(3.1)

a∗(z;u,Π∗hw) =
n∑

j=1

a(z)j− 1
2
u′(xj− 1

2
)(wj − wj−1), (u,w) ∈ H1

E(I) ∪ Uh × Uh,

=
n∑

j=1

a(z)j− 1
2

(uj − uj−1)(wj − wj−1)
hj

, (u,w) ∈ Uh × Uh.

Then, according to technique given in [8, 11], we easily derive the following conclusions.

Lemma 3.2. For any uh, wh ∈ Uh, we have

(3.2) (a) (uh,Π∗hwh) = (wh, Π∗huh),
(b) a∗(z; uh, Π∗hwh) = a∗(z; wh, Π∗huh).

Lemma 3.3. There exist two positive constants M and α0, independent of h, and
h0 > 0 such that for all 0 < h ≤ h0,

(3.3) (a) |a∗(z;uh, Π∗hwh)| ≤ M‖a(z)‖0,∞‖uh‖1‖wh‖1, uh, wh ∈ Uh,
(b) |a∗(z;uh, Π∗huh)| ≥ α0‖uh‖2

1, uh ∈ Uh.

For R∗
h we have the following results.

Lemma 3.4. (See [7]) For 2 ≤ p ≤ ∞, we have

(3.4) (a) ‖w −R∗
hw‖1,p ≤ Ch‖w‖2,p,

(b) ‖w −R∗
hw‖0,p ≤ Ch2‖w‖3,1.

For any w ∈ H1
0 (I) we introduce its elliptic projection Rhw defined by

(3.5) a(u; Rhw − w, χ) = 0, χ ∈ Uh,

where

a(u; w, χ) =
∫ b

a
a(u)w′χ′dx.

Then we have, by the well known estimates,

(3.6) (a) ‖w −Rhw‖0,p + h‖w −Rhw‖1,p ≤ Ch2‖w‖2,p, 2 ≤ p ≤ ∞,
(b) ‖(w −Rhw)t‖+ h‖(w −Rhw)t‖1 ≤ Ch2(‖w‖2 + ‖wt‖2).

The following lemma comes from [5].

Lemma 3.5.

(3.7) ‖R∗
hw −Rhw‖1,p ≤ Ch2‖w‖3,p, 2 ≤ p ≤ ∞.

We now present a very useful lemma.
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Lemma 3.6. (See [5, 8]) For any uh, wh ∈ Uh, we have

(3.8) (a) |d(z;u− uh, wh)| ≤ C‖a(z)‖1,∞h(|u− uh|1,p|wh|1,p′ + h|u|3,q|wh|1,q′),
(b) |d(z;u− uh, wh)| ≤ C‖a(z)‖1,∞h(|u− uh|1,p|wh|1,p′ + |u|2,q|wh|1,q′),

where

(3.9) d(z; u− uh, wh) = a(z;u− uh, wh)− a∗(z;u− uh,Π∗hwh),

1 ≤ p, q ≤ ∞,
1
p

+
1
p′

= 1,
1
q

+
1
q′

= 1.

Remark 3.1. If a(z) in the bilinear form a(z; ·, ·) and a∗(z; ·, Π∗h·) is replaced by the
other function, the inequalities (3.3a) and (3.8) are still valid.

Lemma 3.7. For k = 0, 1, 2 we have

(3.10)
(a) ‖Dk

t (R∗
hw − w)‖1 ≤ Ch

k∑
l=0

‖Dk
t w‖2,

(b) ‖Dk
t (R∗

hw − w)‖ ≤ Ch2
k∑

l=0

‖Dk
t w‖3,p, p > 1.

Proof. Only the case of k = 1 will be proved. For simplicity, we set ζ = R∗
hw − w.

Differentiating (2.3) with respect to t, we see that

(3.11) a∗(u; ζt, vh) + a∗t (u; ζ, vh) = 0, vh ∈ Vh,

where the coefficients of a∗t (·; ·, ·) are obtained from differentiating the corresponding
coefficients of a∗(·; ·, ·) with respect to t. Then, by Lemma 3.3 and ε-inequality,

α0

2
‖ζt‖2

1 − C‖ζ‖2
1 ≤ a∗(u; ζt, Π∗hζt) + a∗t (u; ζ, Π∗hζt)

= a∗(u; ζt, Π∗h(Πhwt − wt)) + a∗t (u; ζ, Π∗hwt − wt)

≤ α0

4
‖ζt‖2

1 + C(‖Πhwt − wt‖2
1 + ‖ζ‖2

1).

The first conclusion follows from (2.1a) and (3.4a).
To estimate ‖ζt‖, we can make use of duality argument. For φ ∈ L2(Ω), let Φ ∈

H1
E(Ω) be the solution of the auxiliary problem

(3.12) a(u; v, Φ) = (v, φ), v ∈ H1
E(Ω),

and

(3.13) ‖Φ‖2 ≤ C‖φ‖.
We differentiate (3.5) with respect to t to get

(3.14) a(u; (Rhw − w)t, χ) + at(w; Rhw − w, χ) = 0, χ ∈ Uh,
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and therefor, by (3.14) and (3.11),

(3.15)

(ζt, φ) = a(u; ζt,Φ−RhΦ) + d(u; ζt, RhΦ)
−a∗t (u;R∗

hw −Rhw, Π∗hRhΦ) + [at(u; Rhw − w, Rhw)
−a∗t (u;Rhw − w,Π∗hRhΦ)] + a(u; (Rhw − w)t, Rhw)

≡ J1 + J2 + J3 + J4 + J5.

From (3.6a) and (3.10a), we have

|J1| ≤ C‖ζt‖1‖Φ−RhΦ‖1 ≤ Ch2(‖w‖2 + ‖wt‖2)‖Φ‖2.

To bound J2, we apply Lemma 3.6 to obtain

|J2| ≤ Ch{|ζt|1|RhΦ|1 + h|wt|3,p|RhΦ|1,p′}
≤ Ch2(‖w‖2 + ‖wt‖3,p)‖Φ‖2, p > 1, 1

p′ + 1
p = 1,

where the boundedness of the elliptic projection operator, ‖RhΦ‖1,q ≤ C‖Φ‖1,q, and
Sobolev’s imbedding inequalities have been used. Similarly, by (3.6a),

|J4| ≤ Ch2‖w‖3,p‖Φ‖2, p > 1.

For J3, it follows from (3.3a) and (3.7) that

|J3| ≤ C‖R∗
hw −Rhw‖1‖RhΦ‖1 ≤ Ch2‖w‖3‖Φ‖2.

Finally, it is easy to see, by integration by parts and (3.6), that

|J5| = |a(u; (Rhw − w)t, RhΦ− Φ) + a(u; (Rhw − w)t,Φ)|
≤ C{‖(Rhw − w)t‖1‖RhΦ− Φ‖1 + ‖(Rhw − w)t‖‖Φ‖2}
≤ Ch2(‖w‖2 + ‖wt‖2)‖Φ‖2.

Combining the estimates obtained about J1–J5 with (3.15), we have, by (3.13),

(ζt, φ) ≤ Ch2(‖w‖3,p + ‖wt‖3,p)‖φ‖, ∀φ ∈ L2(Ω),

which implies (3.10b). this completes the proof.
The following lemma gives another key character of the bilinear form a∗(·; ·, Π∗h·).

Lemma 3.8. For 1 < p < ∞, 1
p + 1

p′ = 1, we have

(3.16)
|a∗(u; v, Π∗hwh)− a∗(uh; v, Π∗hwh)|

≤ C|v|1,∞(‖u− uh‖0,p + h|u− uh|1,p)‖wh‖1,p′ ,
uh, wh ∈ Uh.
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Proof. It follows from (2.2) and Hőlder inequality that

(3.17)

|a∗(u; v, Π∗hw)− a∗(uh; v, Π∗hw)|
= |

n∑
j=1

(a(u)− a(uh))j− 1
2
vj− 1

2
(wj − wj−1)|

≤ C|v|1,∞
n∑

j=1
|(u− uh)j− 1

2
||wj − wj−1|

≤ C|v|1,∞{
n∑

j=1
hj |(u− uh)j− 1

2
|p} 1

p {
n∑

j=1
hj |wj−wj−1

hj
|p′} 1

p′

= C|v|1,∞{
n∑

j=1
hj |φj− 1

2
|p} 1

p |wh|1,p′ ,

where φ = u− uh.

To obtain the desired estimates, we introduce the affine mapping ξ =
x− xj

hj
which

maps each element Ij = [xj−1, xj ] into reference element Ĵ = [0, 1] with correspondence
φ(x) = φ̂(ξ). Thus by the imbedding property W 1,p(Ĵ) ↪→ C(Ĵ), p ≥ 1,

|φ(xj− 1
2
)|p = |φ̂(

1
2
)|p ≤ C‖φ̂‖p

1,p,Ĵ

= C(
∫ 1

0
|φ̂|pdξ +

∫ 1

0
|φ̂′|pdξ).

Since
∫ 1

0
|φ̂(ξ)|pdξ =

∫ xj

xj−1

|φ|pdxh−1
j = h−1

j ‖φ‖p
0,p,Ij

,

∫ 1

0
|φ̂′(ξ)|pdξ =

∫ xj

xj−1

|φ′(x)|php
jdxh−1

j = hp−1
j |φ|p1,p,Ij

,

so that

{
n∑

j=1

hj |φj− 1
2
|p} 1

p ≤ C(‖u− uh‖0,p + hj |u− uh|1,p).

This together with (3.17) completes the proof.

Remark 3.2. The technique of lemma 3.8 is easily adapted to give

|b∗(ξ(0);R∗
hu0,Π∗hwh)| ≤ C|R∗

hu0|1,∞‖ξ(0)‖‖wh‖1.

Then we now can select λ large enough to ensure the coercivity of the bilinear form
A(·,Π∗h·) in (2.5) over H1

E(I).

Writing ξ = uh − R∗
hu, τ = R∗

hu− u as in §2, we will now turn to the estimates for
the initial value errors ξ(0) and ξt(0).
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Lemma 3.9. Assume that u0 and uh,0 are the initial values problems (1.1) and (2.4),
respectively. Then we have

(3.18) (a) ‖ξ(0)‖1 ≤ Ch2‖u0‖3,1,
(b) ‖ξt(0)‖ ≤ Ch2{‖u0‖3,p + ‖ut(0)‖3,p}, p > 1,

where ut(0) =
∂

∂x
(a(x, u0)

∂u0

∂x
) + f(x, 0, u0).

Proof. It follows from (2.5) that

‖ξ(0)‖2
1 ≤ CA(ξ(0), Π∗hξ(0))

= C|b∗(ζ(0);R∗
hu0, Π∗hξ(0))|

= C|
n∑

j=1

(au(u0)η(0))j− 1
2
(R∗

hu0)′j− 1
2
(ξj − ξj−1)(0)|.

Following a similar argument used in the proof of Lemma 3.8, we have

‖ξ(0)‖2
1 ≤ C|R∗

hu0|1,∞{‖(R∗
hu− u)(0)‖+ h|(R∗

hu− u)(0)|1}‖ξ(0)‖1,

which together with Lemma 3.4 derives (3.18a).
To show (3.18b), apply (1.1a), (2.3) and (2.4a) to get the error equation

(3.19)
(ξt, vh) + a∗(uh; ξ, vh)

= (f(uh)− f(u)− ηt, vh) + a∗(u;R∗
hu, vh)

−a∗(uh, R∗
hu, vh), vh ∈ Vh.

Subtracting (2.5) from (3.19) with t = 0 and taking vh = Π∗hξt(0), we find (with the
argument t = 0 omitted)

(3.20)

(ξt, Π∗hξt) = (f(uh)− f(u)− ηt + λξ, Π∗hξt)
+[a∗(u; ξ,Π∗hξt)− a∗(uh; ξ,Π∗hξt)]
+[a∗(u;R∗

hu,Π∗hξt)− a∗(uh; R∗
hu,Π∗hξt)

+b∗(uh − u; R∗
hu,Πhξt)] ≡ J1 + J2 + J3.

Obviously

|J1| ≤ C(‖ξ‖+ ‖η‖+ ‖ηt‖)‖ξt‖.
For J2, we have, by (3.3a), the imbedding theorems and inverse properties,

|J2| ≤ C‖a(u)− a(uh)‖0,∞‖ξ‖1‖ξt‖1

≤ C(‖ξ‖0,∞ + ‖η‖0,∞)‖ξ‖1‖ξt‖1

≤ Ch−1(‖ξ‖1 + ‖η‖1)‖ξ‖1‖ξt‖.
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As for J3, we note that

J3 =
n∑

j=1

[au(u)(uh − u)− (a(uh)− a(u))]j− 1
2
(R∗

hu)′
j− 1

2
(ξt,j − ξt,j−1)

=
n∑

j=1

∫ 1

0
[au(u)− au(u + s(uh − u))]j− 1

2
ds(uh − u)j− 1

2
(R∗

hu)′
j− 1

2
(ξt,j − ξt,j−1),

then

|J3| ≤ C
n∑

j=1

(ξ + η)2
j− 1

2

(R∗
hu)′

j− 1
2

(ξt,j − ξt,j−1)

≤ C|R∗
hu|1,∞‖uh − u‖0,∞

n∑

j=1

|uh − u|j− 1
2
|ξt,j − ξt,j−1|.

The argument in the proof of Lemma 3.8 yields

|J3| ≤ C‖uh − u‖1(‖u− uh‖+ h|u− uh|1)‖ξt‖1

≤ Ch−1(‖ξ‖1 + ‖η‖1){‖ξ‖+ ‖η‖+ h(‖ξ‖1 + ‖η‖1)}‖ξt‖.

Collecting the estimates above with (3.20), we have

|||ξt|||2 ≤ C{1 + h−1(‖ξ‖1 + ‖η‖1)}(‖ξ‖1 + ‖ηt‖+ h‖η‖1)‖ξt‖.

Then applying Lemmas 3.4, 3.7 and (3.18a) leads to the second result of this lemma.
Now, let us consider estimates for ξ and ξt.

Lemma 3.10. Assume that u and uh are the solutions of (1.1) and (2.4), respectively,
then we have

‖ξt‖+ ‖ξ‖1 + (
∫ t

0
‖ξt‖2

1dτ)
1
2

≤ Ch2{‖u0‖3,p + ‖ut(0)‖3,p +
2∑

l=0

∫ t

0
‖Dl

tu‖3,pdτ}, p > 1, 0 ≤ t ≤ T.(3.21)

Proof. We differentiate (3.19) with respect to t to get

(ξtt, vh) + a∗(uh; ξt, vh)
= ((f(uh)− f(u)− ηt)t, vh)

+[a∗(u; (R∗
hu)t, vh)− a∗(uh; (R∗

hu)t, vh)]
+[a∗t (u; Rhu, vh)− a∗t (uh; Rhu, vh)]
−a∗t (uh; ξ, vh), vh ∈ Vh.
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Setting vh = Π∗hξt and using Lemmas 3.2, 3.3 and 3.8, we have, by the boundedness of
‖R∗

hu‖1,∞ and ‖(R∗
hu)t‖1,∞,

1
2

d

dt
|||ξt|||2 + α0‖ξt‖2

1

≤ C{‖ξ‖1 + ‖η‖+ ‖ξt‖+ ‖ηt‖+ ‖ηtt‖+ h(‖η‖1 + ‖ξt‖1 + ‖ηt‖1)}‖ξt‖1

≤ (ε + Ch)‖ξt‖2
1 + C{‖ξ‖2

1 + ‖η‖2 + ‖ξt‖2 + ‖ηt‖2 + ‖ηtt‖2}.
Hence, by elliminating the first term on the right hand side and applying Lemmas 3.1,
3.4, 3.7 and 3.9, we obtain

‖ξt‖2 +
∫ t

0
‖ξt‖2

1dτ

≤ C{h2(‖u0‖3,p + ‖ut(0)‖3,p +
2∑

l=0

∫ t

0
‖Dl

tu‖3,pdτ) +
∫ t

0
(‖ξ‖2

1 + ‖ξt‖2)dτ}.

Observing that

‖ξ‖2
1 = ‖ξ(0)‖2

1 +
∫ t

0

d

dt
[(ξ, ξ) + (ξ′, ξ′)]dτ

≤ ‖ξ(0)‖2
1 + ε

∫ t

0
‖ξt‖2

1dτ + C

∫ t

0
‖ξ‖2

1dτ,

then, by (3.18a), we have

‖ξt‖2 + ‖ξ‖2
1 +

∫ t

0
‖ξt‖2

1dτ

≤ C{h2(‖u0‖3,p + ‖ut(0)‖3,p +
2∑

l=1

∫ t

0
‖Dl

tu‖3,pdτ)

+
∫ t

0
(‖ξt‖2 + ‖ξ‖2

1)dτ}.

The result of this lemma follows by applying Gronwall’s Lemma.

4. Main results

In this section u and uh denote the solutions of (1.1) and (2.4), respectively. We will
employ lemmas given in §3 to derive optimal W 1,p and Lp error estimates of u − uh

and some W 1,p superconvergence results.
Writing ξ = uh − R∗

hu and ζ = R∗
hu− u as before, we shall begin by demonstrating

a superconvergence result of ξ.
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Theorem 4.1. Under the conditions of Lemmas 3.6, 3.7 and 3.10, we have

‖ξ‖1,p ≤ Ch2{‖u0‖3,p + ‖ut(0)‖3,p +
2∑

i=0

∫ t

0
‖Di

tu‖3,pdτ},(4.1)

2 ≤ p ≤ ∞.

proof: (i) Let us first consider the case of 2 ≤ p < ∞.
We find from Lemma 3.10 that

‖∇uh‖0,∞ ≤ ‖∇ξ‖0,∞ + ‖∇R∗
hu‖0,∞

≤ Ch−1‖∇ξ‖+ ‖∇R∗
hu‖0,∞ ≤ C,

and hence a(uh) ∈ W 1,∞(Ω). In order to show (4.1) we now introduce the auxiliary
problem. For ψ ∈ L2(Ω), let Ψ ∈ H1

0 (Ω) be the solution of

(4.2) a(uh; v, Ψ) = −(v, ψx), v ∈ H1
0 (Ω),

and

(4.3) ‖Ψ‖1,p′ ≤ C‖ψ‖0,p′ ,
1
p

+
1
p′

= 1.

We then know from (3.5), (3,19), Lemmas 3.6 and 3.8 that

(ξx, ψ) = a(uh; ξ,Ψ)
= d(uh;u− uh, RhΨ) + d(uh; u−R∗

hu,RhΨ)
+(f(uh)− f(u)− ξt − ηt, Π∗hRhΨ)
+[a∗(u; R∗

hu,Π∗hRhΨ)− a∗(uh; R∗
hu,Π∗hRhΨ]

≤ C{h(‖ξ‖1,p + ‖η‖1,p + h‖u‖3,p) + ‖ξ‖0,p + ‖η‖0,p + ‖ξt‖+ ‖ηt‖}‖Π∗hRhΨ‖1,p′ .

Then, by (4.3) and the imbedding property W 1,2(I) ↪→ Lp(I),

‖ξ‖1,p ≤ C|ξ|1,p = C sup
ψ∈Lp′ (I)

(ξx, ψ)
‖ψ‖0,p′

≤ Ch‖ξ‖1,p + C(‖ξ‖1 + ‖ξt‖+ h‖η‖1,p + ‖η‖0,p + ‖ηt‖).
After eliminating the first term on the right hand side, the results (4.1) for 2 ≤ p < ∞
now follows by Lemmas 3.7 and 3.10.

(ii) Let us next consider the case of p = ∞.
For this purpose, we need to apply the Green function. Following [12], the discrete

Green function gn
z ∈ Uh associated with a(uh; ·, ·) satisfies

a(uh; w, gh
z ) = wz(z), z ∈ I, w ∈ Uh.

Then
ξz(z) = a(uh; ξ, gh

z ).

Consequently, upon replacing RhΨ, p and p′ by gh
z , ∞ and 1 in part (i), respectively, we

can easily derive the conclusion by applying ‖gh
z ‖1,1 ≤ C [12]. The proof is completed.
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W 1,p and Lp norms error estimates for u−uh are then an immediate consequence of
Theorem 4.1 combined with Lemma 3.4.

Theorem 4.2. Under the same conditions of Theorem 4.1, we have

‖u− uh‖0,p + h‖u− uh‖0,p ≤ Ch2{‖u0‖3,p + ‖ut(0)‖3,p +
2∑

i=0

∫ t

0
‖Di

tu‖3,pdt},

2 ≤ p ≤ ∞.(4.4)

We will now turn to superconvergence estimates between the finite volum element
solution and finite element solution. Let U be the finite element solution of (1,1), i.e.,
the map U(t) : [0, T ] −→ Uh satisfies

(4.5) (a) (Ut, χ) + a(U ; U, χ) = (f(U), χ), χ ∈ Uh,
(b) U(0) = U0,

where U0 ∈ Uh is determined by

(4.6) (a(u0)∇(U0 −Rhu0),∇χ) + (au(u0)(U0 −Rhu0)∇u0,∇χ)
+µ(U0 −Rhu0, χ) = −(au(u0)(Rhu0 − u0)∇u0,∇χ), χ ∈ Uh,

with some constant µ.
From [9], it holds in R1 that

‖U −Rhu‖1,p ≤ Ch2{‖u0‖2 + ‖u0‖2
2,4 + ‖ut(0)‖2

+
2∑

i=0

∫ t

0
‖Di

tu‖2,pdτ}, 2 ≤ p ≤ ∞.(4.7)

We will prove the following estimates.

Theorem 4.3. If, in addition the hypotheses of Theorem 4.1, u0 ∈ W 2,4(I), then we
have

(4.8) ‖U − uh‖1,p ≤ Ch2, 2 ≤ p ≤ ∞.

proof: We know from (4.2), (3.5) and (3.19) that

((U − uh)x, ψ) = a(uh; U − uh, RhΨ)
= a(uh;U −Rhu,RhΨ) + a(uh; u− uh, RhΨ)
= a(uh;U −Rhu,RhΨ) + d(uh; u− uh, RhΨ)

+(ξt + ηt + f(u)− f(uh), Π∗hRhΨ)
+a∗(uh; R∗

hu,Π∗hRhΨ)− a∗(u; R∗
hu,Π∗hRhΨ).

Then the conclusion follows by applying (4.7) and the technique in the proof of Theorem
4.1.
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