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Superconvergent Gradient Recovery For
The Parabolic Initial Boundary Value Problem

A M LAKHANY and J R WHITEMAN

on a non-empty closed subset k of a uniformly convex Banach space is proved.

The maps f and g satisfy the inequality

jjfx� gyjj2�(jjx� fxjj jjy � gyjj; jjx � gyjj; jjy � fxjj

jjx� fxjj jjx� gyjj; jjy � fxjj jjy � gyjj)
for all x; y 2 k

where � is an upper semi-continuous function from R4
+ to R+ satisfying(i) �(t; 0; �t; 0)�t

and �(t; 0; 0; �t)�t) where � = 1 for �+ 2 and � < 1 for � < 2;(ii) �(t; t; t; t) < t:

Abstract

Gradient recovery techniques for the second order elliptic boundary value problem

are well known. In particular, the Midpoint and the Vertex Recovery Operator have

been studied by various authors and under suitable assumptions on the regularity of

the unknown solution superconvergence property of these recovered gradients have been

proved. In this paper we extend these results to the recovered gradient of the �nite

element approximation to a model initial-boundary value problem, and go on to prove

superconvergence result for this recovered gradient in a discrete (in time) error norm.

1. Introduction. In this paper we study the superconvergence properties of the

generic gradient recovery operator rR introduced in Lakhany & Whiteman[3] for the

case of model parabolic initial-boundary value problem

@u

@t
+ L[u] = f (x; y; t) 2 
� J (1:1a)

subject to the initial condition

u(x; y; 0) = u0 (x; y) 2 
 (1:1b)

and the boundary condition

u(x; y; t) = 0 (x; y; t) 2 @
� J (1:1c)
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where J represents the interval [0; T ] for some �xed, but otherwise arbitrary, time length

T , 
 is a rectangular domain in R2, L is a positive de�nite second order elliptic operator

for any t 2 J , f is su�ciently smooth in 
 � J . We further assume that 
 is triangu-

lated using a right-angled isosceles triangulation T h, which essentially means that every

element in T h has as its set of vertices either the set f(p; q); (p+ h; q); (p; q + h)g or the
set f(p+ h; q + h); (p; q + h); (p+ h; q)g for some real numbers p; q such that (p; q) 2 
.

We point out that the superconvergent property of the recovered gradients for parabolic

problems was �rst established by Wheeler and Whiteman [9]. In the present paper we

shall closely follow their work and moreover support their analysis by means of a numer-

ical experiment.
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2 A M Lakhany and J R whiteman

In dealing with parabolic problems it is convenient to introduce Hilbert spaces of

the type Hp (J ;Hr (
)) for various combinations of non-negative numbers p and r, so

that when we say that u is in Hp (J ;Hr (
)) we imply u(x; y; t) 2 Hr (
)8t 2 J and

kukHr(
)(t) 2 Hp (J). When no confusion arises regarding the space and time domains

over which the above Hilbert spaces are de�ned we shall, for the sake of brevity, denote

such spaces by Hp(Hr) only.

The weak solution u(x; y; t) of the initial-boundary value problem (1.1) satis�es

for any t 2 J the equality

�
@u

@t
; v

�
+ a (t;u; v) = hf; vi 8v 2 H1

0 (
) (1:2)

where the bilinear form a (t;u; v) is the one associated with the elliptic operator L[u] in
(1.1a). Its dependence on t comes from the fact that in more general situations L[u] will
include coe�cients dependent on the time variable t. The regularity demanded of the

weak solution u will be apparent from the analysis carried out in the following sections.

The semi-discrete �nite element approximation uh(x; y; t) for any t 2 J satis�es

�
@uh

@t
; vh

�
+ a (t;uh; vh) = hf; vhi 8vh 2 Sh0 (1:3)

where Sh0 is the �nite dimensional subspace of the Hilbert Space H1
0 (
), which we shall

take to be the space of continuous piecewise linear functions on the fully structured

triangulation T h of 
 .

The discretization of the time derivative can be done as follows: we �rst discretize

the time interval into M equal parts each of length k = T=M and furthermore de�ne

tn � nk; n = 1; � � �M and In � (tn�1; tn). We �rst replace the time derivative in (1.3)

by a backward di�erence approximation after which we apply the �nite element method

in space over a triangular partition of 
 and obtain the fully discrete approximation

Un; n = 1; � � � ;M through the formulation

�
Un � Un�1

k
; V

�
+ a

�
tn;�;U

n;�; V
�
= hf(�; �; tn;�); V i 8V 2 Sh0 ; n = 1; � � �M;

(1:4)

where � is a parameter such that 0 � � � 1=2,

tn;� � �tn�1 + (1� �)tn n = 1; � � �M

and for any function � we de�ne

�n;� � ��n�1 + (1� �)�n n = 1; � � �M:
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For the complete error analysis of the �nite element approximation so obtained we refer

to the earlier works of Douglas & Dupont[2], Wheeler[8] and Thom�ee[7].

In the present paper we shall prove the superconvergence property of the generic

recovered gradient function for the general case when � is allowed to vary between 0 and

1=2 for the fully discrete approximation given in (1.4). The breakdown of this paper is as

follows: in x2 we prove a lemma regarding the the approximation property of the elliptic
projection of the weak solution u of the initial-boundary value problem (1.1). In x3 we

prove the superconvergence property of the recovered gradient rRUn. Our approach in

this section will be similar to that of Wheeler & Whiteman [9]. Finally in x4 we support
our study by a numerical experiment.

2. Approximation Properties of Elliptic Projection. In this and the fol-

lowing section we shall consider the initial-boundary value problem (1.1) corresponding

to the positive de�nite elliptic operator

L[u] � �r � A(x; y; t)ru (2:1)

with the associated bilinear form

a (t;u; v) =

Z



A(x; y; t)ru � rvdxdy

where A(x; y; t) is positive for all values (x; y; t) in the domain 
�J . Now for any t 2 J
the elliptic projection, ~U � PEu of u is de�ned by

a
�
t;u� ~U;�

�
= 0 8� 2 Sh0 : (2:2)

We shall make use of the following approximation property of the elliptic projection in

our analysis in the sequel.

Lemma 2.1. Let u and @u=@t be in the space L2(H2) where u is the weak solution

of the initial-boundary value problem (1.1) with L[u] de�ned in (2.1). Let ~U be the elliptic

projection of u at any time t given by (2.2), then

 @�@t� (u� ~U)


L2(L2)

� Ch2

 
kukL2(H2) +

@u@t

L2(H2)

!

for � = 0; 1.

Proof :. We �rst recall the following estimate for the elliptic projection (for any

t 2 J): r(u� ~U )

L2(
)

(t) � ChkukH2(
)(t): (2:3)
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Now for � = 0 the proof follows from the Aubin - Nitshe Lemma (c.f. Ciarlet[1]), and as

such our main concern is to prove the theorem for the case � = 1. Di�erentiating (2.2)

with respect to t we getZ



@A

@t
r(u� ~U ) � r�dxdy = �

Z



Ar @

@t
(u� ~U) � r�dxdy: (2:4)

Let  2 Sh0 be the elliptic projection of @u=@t at any time t, then by de�nition

Z



Ar
�
@u

@t
�  

�
� r�dxdy = 0 8� 2 Sh0 (2:5)

From (2.4) and (2.5), therefore

Z



Ar
"
@ ~U

@t
�  

#
� r�dxdy =

Z



@A

@t
r(u� ~U) � r�dxdy: (2:6)

Letting � = @ ~U=@t�  in (2.6) we obtain using (2.3)

r
"
@ ~U

@t
�  

#
L2(
)

(t) � ChkukH2(
)(t): (2:7)

Furthermore, we directly haver
�
@u

@t
�  

�
L2(
)

(t) � Ch

@u@t

H2(
)

(t): (2:8)

From (2.7), (2.8) and the triangle inequality we have

 @@t
h
r
�
u� ~U

�i
L2(L2)

� Ch

"
kukL2(H2) +

@u@t

L2(H2)

#
: (2:9)

We now estimate the L2 error
 @
@t

h
u� ~U

i
L2(L2)

. In order to do this we consider the

following auxiliary boundary value problem for any t 2 J :

�r � A(x; y; t)r� = �(t) t 2 J; (x; y) 2 


� = 0 (x; y) 2 @


where for any t 2 J , � 2 H1
0 (
) is such that

Z



Arv � r�dxdy = �
Z



@A

@t
r(u� ~U ) � rvdxdy 8v 2 H1

0 (
) : (2:10)
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From (2.10) and (2.4) it follows that

Z



Ar
�
@

@t
(u� ~U )� �

�
� � = 0 8� 2 Sh0 (2:11)

and therefore using Aubin - Nitsche Lemma one can show that @@t (u� ~U)� �


L2(
)

(t) � Ch

r
�
@

@t
(u� ~U )� �

�
L2(
)

(t): (2:12)

Furthermore, from (2.10) we see that

kr�kL2(
)(t) � C
r(u� ~U )


L2(
)

(t) (2:13)

and as such it is clear that, in order to obtain the desired bound, we need an estimate

for the term k�kL2(
)(t). Using (2.10) we have

k�k2L2(
)(t) =

Z



Ar� � r�dxdy

= �
Z



@A

@t
r(u� ~U) � r�dxdy

= �
Z



Ar(u� ~U) � r
�
A�1

@A

@t
�

�
dxdy +

Z



Ar(u� ~U ) � �r
�
A�1

@A

@t

�
dxdy

= �
Z



Ar(u� ~U) � r(��� �) dxdy +

Z



Ar(u� ~U) � �r� dxdy

= T1 + T2 (say)

(2:14)

where � = 1=A @A=@t.

To bound T1 we make use of (2.3) to obtain

jT1j � Ch2kukH2(
)(t)k�kH2(
)(t): (2:15)

In order to bound T2 we �rst make use of Green's Formula and the fact that � vanishes

on the boundary so as to obtain:

jT2j =
����
Z



(u� ~U )r �A�r�dxdy
���� � Ch2kukH2(
)(t)k�kH2(
)(t): (2:16)

Making use of a stability result in (2.0) and (2.16) and recollecting estimates (2.12),

(2.13), (2.14) along with estimates (2.3), (2.9), (2.0) and (2.16) we have the desired

proof.
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We shall make use of Lemma 2.1 in order to prove Lemma 3.1 in the following

section.

3. Superconvergent Error Estimates For The Recovered Gradient. We

start this section by proving the following lemma

Lemma 3.1. Let u be the weak solution of the initial-boundary value problem (1.1),
~U denote its elliptic projection in Sh0 at any time t 2 J and Un denote its �nite element

approximation at time level tn = nk. If � is the parameter appearing in (1.4) and

kj�kjL2(
) �
vuut MX

n=1

kk�k2L2(
)

then the following estimate holds���r(Un;� � ~Un;�)
���
L2(
)

� Ch2

 
kukL2(H2) +

@u@t

L2(H2)

!

+ C

8>>>>><
>>>>>:

k

 @2u@t2

L2(L2)

+

@u@t

L2(H1)

!
0 � � < 1=2

k2

 @3u@t3

L2(L2)

+

@2u@t2

L2(H1)

!
� = 1=2

provided u is regular enough so that the right hand side is well de�ned.

Proof:. Letting v = � 2 Sh0 in (1.2) and replacing the time derivative of u by its

backward di�erence approximation we have, on letting un � u(tn),�
un � un�1

k
; �

�
+ a (tn;�;u(�; �; tn;�); �) = hf(�; �; tn;�); �i+ hRn;�; �i (3:1)

where Rn;� is the Taylor Remainder

Rn;� =
un � un�1

k
� @u

@t
(�; �; tn;�): (3:2)

We recall that for any t 2 J the elliptic projection, ~U , of u satis�es

a
�
t;u� ~U;�

�
= 0 8� 2 Sh0 : (3:3)

Now from (3.1) and (3.3), we have*
~Un � ~Un�1

k
; �

+
+ a

�
tn;�; ~U

n;�; �
�
=

*
~Un � ~Un�1

k
� un � un�1

k
; �

+

+ a
�
tn;�; ~U

n;�; �
�
� a

�
tn;�; ~U (�; �; tn;�); �

�
+ hf(�; �; tn;�); �i+ hRn;�; �i :

(3:4)
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Subtracting (3.4) from (1.4) we obtain on letting V = �

*
Un � Un�1

k
�

~Un � ~Un�1

k
; �

+
+ a

�
tn;�;U

n;� � ~Un;�; �
�
=

�
*
~Un � ~Un�1

k
� un � un�1

k
; �

+

� a
�
tn;�; ~U

n;�; �
�
+ a

�
tn;�; ~U(�; �; tn;�); �

�
� hRn;�; �i :

(3:5)

Setting � = Un;�� ~Un;� in (3.5), making use of the H1
0 (
)-coercivity of the bilinear form

a (t; �; �) for all t and noting that with the help of geometric arithmetic mean inequality

and the fact that 0 � � � 1=2, the �rst term on the left hand side of (3.5) can be written

as *
Un � Un�1

k
�

~Un � ~Un�1

k
; �(Un�1 � ~Un�1) + (1� �)(Un � ~Un)

+

=
1� �

k

Un � ~Un
2
L2(
)

� �

k

Un�1 � ~Un�1
2
L2(
)

� 1� 2�

k

D
Un � ~Un; Un�1 � ~Un�1

E
� 1

2k

Un � ~Un
2
L2(
)

� 1

2k

Un�1 � ~Un�1
2
L2(
)

we obtain

1

2k

�Un � ~Un
2
L2(
)

�
Un�1 � ~Un�1

2
L2(
)

�
+K

r(Un;� � ~Un;�)
2
L2(
)

�
�����
*
~Un � ~Un�1

k
� un � un�1

k
; Un;� � ~Un;�

+�����
+
���a�tn;�; ~Un;�; Un;� � ~Un;�

�
� a

�
tn;�; ~U (�; �; tn;�); Un;� � ~Un;�

����
+
���DRn;�; U

n;� � ~Un;�
E���

= T3 + T4 + T5 (say): (3:6)

We now estimate terms appearing on the right hand side of (3.6). For instance,

jT3j �
1k
Z
In

@

@t
( ~U � u)dt


L2(
)

�Un � ~Un

L2(
)

+
Un�1 � ~Un�1


L2(
)

�

� 1p
k

 @@t ( ~U � u)


L2(In;L2(
))

�Un � ~Un

L2(
)

+
Un�1 � ~Un�1


L2(
)

� (3:7)
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whereupon using Lemma 2.1 we have

jT3j � Ch2p
k

"
kukL2(In;H2(
)) +

@u@t

L2(In;H2(
))

#
�Un � ~Un


L2(
)

+
Un�1 � ~Un�1


L2(
)

�
:

(3:8)

Next using Taylor Expansion we have

~Un;� = ~U (�; �; tn;�) + R̂n;�

where

���R̂n;�

��� � C

8>>>><
>>>>:

Z
In

�����@
~U

@t

����� dt 0 � � < 1=2

k

Z
In

�����@
2 ~U

@t2

����� dt � = 1=2

and therefore using the boundedness of the bilinear form a (t; �; �) for any t, we have

jT4j � C
r(Un;� � ~Un;�)


L2(
)

8>>>>><
>>>>>:

k1=2

r@
~U

@t


L2(In;L2(
))

0 � � < 1=2

k3=2

r@
2 ~U

@t2


L2(In;L2(
))

� = 1=2:

(3:9)

Once again making use of Taylor Expansion, we obtain

jT5j �
Un;� � ~Un;�


L2(
)

kRn;�kL2(
)
(t)

� C
Un;� � ~Un;�


L2(
)

8>>>><
>>>>:
k1=2

@2u@t2

L2(In;L2(
))

0 � � < 1=2

k3=2
@3u@t3


L2(In;L2(
))

� = 1=2:

(3:10)

Thus using estimates (3.8), (3.9) and (3.10) we obtain from (3.6)

1

2k

�Un � ~Un
2
L2(
)

�
Un�1 � ~Un�1

2
L2(
)

�
+K

r(Un;� � ~Un;�)
2
L2(
)

�

2
66664
C1h

2

p
k

 
kukL2(In;H2(
)) +

@u@t

L2(In;H2(
))

!
+

8>>>><
>>>>:
k1=2

@2u@t2

L2(In;L2(
))

0 � � < 1=2

k3=2
@3u@t3


L2(In;L2(
))

� = 1=2

9>>>>=
>>>>;

3
77775
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L2(
)

+
Un�1 � ~Un�1


L2(
)

�

+ C2

r(Un;� � ~Un;�)

L2(
)

8>>>>>><
>>>>>>:

k1=2

r@
~U

@t


L2(In;L2(
))

0 � � < 1=2

k3=2

r@
2 ~U

@t2


L2(In;L2(
))

� = 1=2:

9>>>>>>=
>>>>>>;

(3:11)

Next using the stability of the elliptic projection (c.f. Scott[6]), the arithmetic geometric

mean inequality and letting for the sake of brevity

e = U � ~U

we have from (3.11)

1

2k

n
kenk2L2(
) �

en�12
L2(
)

o
+K

ren;�2
L2(
)

� Ch4

k

 
kukL2(In;H2(
)) +

@u@t

L2(In;H2(
))

!2

+ Ck2��1

 @�+1u@t�+1


2

L2(In;L2(
))

+

@�u@t�


2

L2(In;H1(
))

!

+
C1�1

2

�
kenkL2(
) +

en�1
L2(
)

�2
+
C2�2

2

ren;�2
L2(
)

(3:12)

where

� =

(
1 0 � � < 1=2

2 � = 1=2

and �1 and �2 are some positive numbers which can be chosen arbitrarily. Multiplying

(3.12) throughout by 2k and summing over the index n from 1 to M , and using the fact

that both �1 and �2 can be chosen small enough so that 9 > 0 such that



 eM2
L2(
)

+

MX
n=1

k
ren;�2

L2(
)

!

� Ch4

 
kuk2L2(H2) +

@u@t

2

L2(H2)

!

+ Ck2�

 @�+1u@t�+1


2

L2(L2)

+

@�u@t�


2

L2(H1)

!
+ C

M�1X
n=1

kkenk2L2(
) (3:13)
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where we have assumed that U0 = PEu0(x; y). Finally using Gronwall's Lemma (c.f.

Lees[4]) in (3.13) we obtain the estimate

eM2
L2(
)

+

MX
n=1

k
ren;�2

L2(
)

� C

"
h4

 
kuk2L(H2) +

@u@t

2

L(H2)

!
+ k2�

 @�+1u@t�+1


2

L2(L2)

+

@�u@t�


2

L2(H1)

!#

and hence Lemma 3.1 has been proved.

Lemma 3.1 now allows us to quote the following main result of this paper:

Theorem 3.2. Under the conditions of Lemma 3.1 and letting u 2 L2 �J ;H3 (
)
�

we have the following superconvergence estimate:

��run;� �rRUn;�
��
L2(
)

� C1(u)h
2 + C2(u)k

�

where rR is a gradient recovery operator, � = 1 if 0 � � < 1=2 and � = 2 provided

� = 1=2. In the above estimate C1(u) and C2(u) are constants dependent on u and its

derivatives.

Proof :. The proof follows immediately from Lemma 3.1 and the following super-

convergence estimate for the gradient recovery operator rR (c.f Lakhany and White-

man[3])

���run;� �rR ~Un;�)
���
L2(
)

=

MX
n=1

k
run;� �rR ~Un;�)


L2(
)

� C(u)h2:

4. A Numerical Experiment. In order to demonstrate the superconvergence

property of the Midpoint Recovered Gradient rM (c.f Lakhany and Whiteman[3]) and

the e�ectiveness of the Zienkiewicz - Zhu (or Z2 or Z�Z) Error Estimator (c.f.Zienkiewicz
- Zhu[10][11][12], Rodriguez[5]) using this recovered gradient we consider the model

initial-boundary value problem

@u

@t
��u = f (x; y; t) 2 [(�1; 1)� (�1; 1)]� [0; 1]

which has the solution

u = sin5
�
�t

2

�
exp

��(x2 + y2)

0:05

�
+

(x2 � 1)(y2 � 1)

4
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dictating appropriate initial and boundary conditions. For this test example the con-

vergence rates for the error at level t = 1:0 (for the chosen value of � = 0:0) are shown

in Fig. 4.1 in the L2-norm, whereas for the same level the convergence in the error

krun �rUnkL2(
) appear in Fig. 4.2. The Zienkiewicz-Zhu Estimator of this error us-

ing the Midpoint Recovered Gradient appears in Fig. 4.3. The convergence rates in the

norm kjr(�)kjL2(
) for the gradient of the �nite element approximation and the recovered

gradient of the same appear in Fig. 4.4 and Fig 4.5 respectively. Finally the Zienkiewicz-

Zhu Estimator in the norm kjr(�)kjL2(
) appears in Fig 4.6. A strong resemblance of

the true and computed error justi�es the use of Zienkiewicz-Zhu estimator in the case of

parabolic problems as well.
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Error in L2 Norm at t=1.0

Figure 4.1

Error in H1 Norm at t=1.0

Figure 4.2
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Z-Z Estimator at t=1.0

Figure 4.3

Error in Norm ||| |||

Figure 4.4
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Error in Norm ||| ||| for the Recovered Gradient

Figure 4.5

Z-Z Estimator in Norm ||| |||

Figure 4.6


