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THE GRADIENT RECOVERY FOR FINITE VOLUME

ELEMENT METHOD ON QUADRILATERAL MESHES

Yingwei Song and Tie Zhang

Abstract. We consider the finite volume element method for elliptic

problems using isoparametric bilinear elements on quadrilateral meshes.
A gradient recovery method is presented by using the patch interpolation

technique. Based on some superclose estimates, we prove that the recov-
ered gradient R(∇uh) possesses the superconvergence: ‖∇u−R(∇uh)‖ =

O(h2)‖u‖3. Finally, some numerical examples are provided to illustrate

our theoretical analysis.

1. Introduction

The derivative (gradient) recovery techniques are postprocess techniques
that reconstruct the derivative from the discrete solution to achieve better
derivative approximation, for example, to obtain the superconvergent result.
In the 1960s, the derivative recovery technique had been used to compute the
derivative (stress) via the C0-finite elements [7]. In particular, the simple av-
eraging or weighted averaging methods were employed by engineers for linear
finite elements [16]. Subsequently, new derivative recovery techniques have been
developed, for example, the L2-projection post-processing technique [6, 14], the
well known Zienkiewicz-Zhu’s patch recovery technique (SPR) [22], the interpo-
lation postprocess technique [10], the polynomial preserving recovery technique
(PPR ) [13] and the derivative patch interpolation recovery technique [19], and
so on. However, all these recovery techniques were presented for the finite
element methods on triangle or rectangular meshes.

Finite volume element (FVE) method is a discrete technique for solving
partial differential equations. In general, it represents the conservation of an
interest quantity, such as mass, momentum, or energy in fluid mechanics, so
that it can be expected to simulate corresponding physical phenomena more
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effectively. Readers are referred to the monograph [8] for general presentation
of the FVE method and to [1, 2, 3, 4, 9, 11, 12, 15, 17, 18, 20] and the references
therein for details.

Compared with FVE methods on triangle and rectangular meshes, less works
can be found for FVE methods on quadrilateral meshes. We know that finite
element methods on quadrilateral meshes usually have better accuracy than
that on triangle meshes, and quadrilateral meshes are more flexible than rect-
angular meshes in handing complicated domain geometries. So quadrilateral
meshes are also used frequently in practical applications. For isoparametric bi-
linear FVE method solving elliptic problems on quadrilateral meshes, Schmidt,
Li et al. [9, 15] first give the optimal H1-error estimate; Then, Lv and Li [11]
further obtain the optimal L2-error estimate if the quadrilateral mesh is h2-
uniform; Recently, Lv and Li [12] also derive a superconvergence result in the
average gradient form.

In this paper, we study the isoparametric bilinear FVE method to solve the
following elliptic problem on quadrilateral meshes,

{
−div(A∇u) + c u = f, in Ω,
u = 0, on ∂Ω,

(1.1)

where Ω ⊂ R2 is a polygonal domain with boundary ∂Ω, coefficient matrix
A = (aij)2×2. Our main goal is to present a gradient recovery method for
the FVE solution uh on quadrilateral meshes by using the patch interpolation
technique [19]. This recovery method can provide a better approximation to
the gradient of the exact solution. In fact, based on some superclose estimates,
we prove that the recovered gradient Q(∇uh) possesses the superconvergence:

(1.2) ‖∇u−Q(∇uh)‖ = O(h2)‖u‖3.

This paper is organized as follows. In Section 2, we introduce the FVE
scheme and some related results. Section 3 is devoted to deriving some su-
perclose estimates for the interpolation function. In Section 4, we present
the gradient recovery method and give its superconvergence analysis. Finally,
in Section 5, numerical experiments are provided to illustrate our theoretical
analysis.

We shall use the standard notation for the Sobolev space Wm,p(D) equipped
with the norm ‖ · ‖m,p,D and the semi-norm | · |m,p,D. In order to simplify the
notations, we set Wm,2(D) = Hm(D), ‖ · ‖m,2,D = ‖ · ‖m,D, and when D = Ω
we skip the index D. Furthermore, notations ( , ) and ‖ · ‖ denote the inner
product and norm in space L2(Ω), respectively. We use letter C to represent a
generic positive constant, independent of the mesh size h.
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2. Finite volume element method on quadrilateral meshes

2.1. Partition and isoparametric bilinear transformation

Let Th =
⋃
{K} be a convex quadrilateral mesh partition of domain Ω so

that Ω =
⋃
K∈Th

{K }, where h = max hK , hK is the diameter of element K.
We assume that partition Th is regular, that is, all the inner angles of any
element in Th are uniformly bounded away from 0 and π, and there exists a
positive constant γ > 0 such that

(2.1) hK/ρK ≤ γ, ∀K ∈ Th,
where ρK denotes the diameter of the biggest ball included in K.

The following strong regular and h2-uniform mesh conditions will be used in
our analysis.

Definition 2.1. A regular quadrilateral partition Th is called strongly regular
if for any element K = �P1P2P3P4 in Th, it holds (see Fig.1)

(2.2) |
−−−→
P1P2 +

−−−→
P3P4|+ |

−−−→
P1P4 +

−−−→
P3P2| ≤ Ch2

K .

Furthermore, a strongly regular quadrilateral partition Th is called h2-uniform,
if for any two adjacent elements K and K ′, it holds (see Fig. 1)

(2.3) |
−−−→
P1P2 +

−−−→
P1P6| ≤ Ch2

K .
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Figure 1. Two adjacent elements K and K ′.

Let l = |P1P4| be the length of the common edge of K and K ′ (see Fig. 1).
Since

hK =
hK
ρK

ρK
l

l

hK′
hK′ ≤ γhK′ ,

then hK in (2.3) may be replaced by hK′ .
It is well known that a FVE method usually concerns two mesh partitions:

a basic partition Th and its dual partition T ∗h . We here form the dual partition
T ∗h in the following way. For each element K ∈ Th, we connect the center of
K to the midpoints of its edges by straight lines. Then, for each nodal point
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P in Th, there exists a polygonal region K∗P = �G1G2G3G4 surrounding P ,
K∗P is called the dual element at point P , and T ∗h is the union of all such dual
elements, see Fig. 2.
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Figure 2. The dual element K∗P surrounding point P .

Let K̂ = [0, 1] × [0, 1] be the reference element in the x̂ = (ξ, η) plane.
Then, for each convex quadrilateral K = �P1P2P3P4, there exists an invertible

isoparametric bilinear mapping FK : (ξ, η) ∈ K̂ → x = (x, y) ∈ K such that
(see Fig. 3)

(2.4) x = P1 + (P2 − P1)ξ + (P4 − P1)η + (P1 − P2 + P3 − P4)ξη.

Figure 3. The isoparametric bilinear transformation.

Let Pi = (xi, yi). Transformation (2.4) also can be expressed as follows.

x = x1 + a1ξ + a2η + a3ξη,(2.5)

y = y1 + b1ξ + b2η + b3ξη,(2.6)

where

a1 = x2 − x1, a2 = x4 − x1, a3 = x1 − x2 + x3 − x4,

b1 = y2 − y1, b2 = y4 − y1, b3 = y1 − y2 + y3 − y4.
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Denote the Jacobi matrix of mapping FK by JK and the determinant of JK
by JK , then we have

JK =

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
=

(
a1 + a3η a2 + a3ξ
b1 + b3η b2 + b3ξ

)
.

Furthermore, by the differentiation law of inverse function we have

(2.7) J−1
K =

(
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)
=

1

JK

(
b2 + b3ξ −(a2 + a3)ξ
−(b1 + b3η) a1 + a3η

)
.

Under mesh conditions (2.2) and (2.3), by straightforward computation, one
can derive the following results, see [9, 11].

Lemma 2.1. Assume that partition Th is strongly regular, then

|JK |0,∞ = O(h2
K), |JK |0,∞ = O(hK), |J−1

K |0,∞ = O(h−1
K ),(2.8)

|J−1
K |m,∞ ≤ Ch

−1
K , m = 1, 2, 3,(2.9)

|J−1
K (ξ, η)− J−1

K (ξ′, η′)|0,∞ ≤ C, ∀ (ξ, η), (ξ′, η′) ∈ K̂.(2.10)

Furthermore, if partition Th is h2-uniform, then for any two adjacent elements
K and K ′,

(2.11) |J−1
K (ξ, η)− J−1

K′ (ξ′, η′)|0,∞ ≤ C, ∀ (ξ, η) ∈ K̂, (ξ′, η′) ∈ K̂.

Let function û(ξ, η) = u(x(ξ, η), y(ξ, η)) = u◦FK(ξ, η), where u◦FK denotes
the compound function of u(x, y) and the mapping FK(ξ, η). From Lemma 2.1
and noting that

∇̂û = J TK∇u, ∇u = J−TK ∇̂û,
we can derive the following estimates

|û|m,p,K̂ ≤ Ch
m− 2

p

K ‖u‖m,p,K , m = 0, 1, 2, 3, 1 ≤ p ≤ ∞,(2.12)

|u|m,p,K ≤ Ch
−m+ 2

p

K ‖û‖m,p,K̂ , m = 0, 1, 2, 3, 1 ≤ p ≤ ∞.(2.13)

2.2. Finite volume element scheme

Consider problem (1.1). As usual, we assume that there exist positive con-
stants C1 and C2 such that

(2.14) C1z
T z ≤ zTA(x, y)z ≤ C2z

T z, ∀ z ∈ R2, (x, y) ∈ Ω,

We further assume that A ∈ [W 1,∞(Ω)]2×2, c ∈ L∞(Ω) and c ≥ 0.
Associated with partition Th and T ∗h , we introduce the trial function space

Uh and test function space Vh, respectively,

Uh = {uh ∈ C0(Ω) : uh|K = PK̂ ◦ F
−1
K , PK̂ ∈ Q11(K̂), ∀K ∈ Th, uh|∂Ω = 0 },

Vh = { vh ∈ L2(Ω) : vh|K∗P = constant, ∀P ∈ Nh, vh|K∗P = 0, ∀P ∈ ∂Ω},

where Q11(K̂) is the set of all bilinear polynomials on K̂ and Nh is the set of
all mesh points of Th.
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Let u be the solution of problem (1.1). Using the Green formula, we obtain

(2.15) −
∫
∂K∗P

n · (A∇u)vds+

∫
K∗P

cuv =

∫
K∗P

fv, K∗P ∈ T ∗h , v ∈ Vh,

where n is the outward unit normal vector on the boundary concerned. Ac-
cording to weak formula (2.15), we set the bilinear form ah(u, v) by
(2.16)

ah(u, v) =
∑

K∗P∈T∗h

(
−
∫
∂K∗P

n · (A∇u)vds+

∫
K∗P

cuv
)
, u ∈ H2(Ω), v ∈ Vh,

and define the FVE approximation to problem (1.1): Find uh ∈ Uh such that

(2.17) ah(uh, vh) = (f, vh), ∀ vh ∈ Vh.
Let Π∗h : Uh → Vh be the interpolation operator defined by

Π∗hvh =
∑
P∈Nh

vh(P )χ
P
, ∀ vh ∈ Uh,

where χ
P

is the characteristic function of the dual element K∗P . Obviously,
Π∗h is a one to one mapping from Uh onto Vh. Then, we obtain the equivalent
scheme of (2.17): Find uh ∈ Uh such that

(2.18) ah(uh,Π
∗
hvh) = (f,Π∗hvh), ∀ vh ∈ Uh,

which is the FVE scheme actually used in our argument. From (2.15) and
(2.18), we can derive the error equation

(2.19) ah(u− uh,Π∗hvh) = 0, ∀ vh ∈ Uh.
Let Πhu ∈ Uh be the usual isoparametric bilinear interpolation of continuous

function u. In our analysis, the following approximation property and trace
inequality will be used frequently, see [5]. For 1 < p ≤ ∞, we have

‖u−Πhu‖m,p,K ≤ Ch2−m
K ‖u‖2,p,K , m = 0, 1, 2,(2.20)

‖u‖0,p,∂K ≤ Ch
− 1

p

K

(
‖u‖0,p,K + hK‖∇u‖0,p,K

)
, u ∈W 1,p(K).(2.21)

Furthermore, the following two lemmas hold.

Lemma 2.2 ([8]). Let Π̂∗hv̂h = Π̂∗hvh. Then for vh ∈ Uh, we have∫
K̂

(v̂h − Π̂∗hv̂h)dK̂ = 0,

∫
τ̂

(v̂h − Π̂∗hv̂h)ds = 0,(2.22)

‖vh −Π∗hvh‖0,q,K ≤ ChK‖vh‖1,q,K , 1 ≤ q ≤ ∞,(2.23)

where τ̂ ⊂ ∂K̂ be any one edge of the reference element K̂.

Lemma 2.3 ([9, 15]). Let partition Th be strongly regular, u and uh be the
solutions of problems (1.1) and (2.18), respectively. Then, we have

ah(vh,Π
∗
hvh) ≥ C‖vh‖21, ∀ vh ∈ Uh,

‖u− uh‖1 ≤ Ch‖u‖2.



GRADIENT RECOVERY OF FVE METHOD ON QUADRILATERAL MESHES 1417

3. Superclose estimate for the interpolation approximation

The superclose estimate of interpolation function usually provides a useful
analysis tool in the study of superconvergence of finite element method [10, 21].
In this section, we establish some superclose estimates for the finite volume
element method.

Let wc be the piecewise constant approximation of function w on Th,

(3.1) wc|K =
1

|K|

∫
K

w, K ∈ Th; ‖w − wc‖0,p,K ≤ ChK |w|1,p,K , 1 ≤ p ≤ ∞.

Lemma 3.1. Let partition Th be strongly regular and ac be a constant vector,
u ∈W 3,p(Ω). Then, for v ∈ Uh, we have

|(ac · ∇(u−Πhu)x,Π
∗
hv − v)K |+ |(ac · ∇(u−Πhu)y,Π

∗
hv − v)K |(3.2)

≤ Ch2
K‖u‖3,p,K‖vh‖1,q,K , 2 ≤ p, q ≤ ∞, 1/p+ 1/q = 1.

Proof. Let w = u − Πhu and eh = Π∗hv − v. Using the isoparametric bilinear
transformation, we have

(ac · ∇(u−Πhu)x,Π
∗
hv − v)K =

∫
K̂

ac · J−TK ∇̂(ŵξξx + ŵηηx)êhJKdK̂(3.3)

=

∫
K̂

ac · J−TK (∇̂ŵξξx + ∇̂ŵηηx)êhJK

+

∫
K̂

ac · J−TK (ŵξ∇̂ξx + ŵη∇̂ηx)êhJK

= E1 + E2.

From (2.7) we obtain

E1 =

∫
K̂

ac · J−TK (∇̂ŵξ(b2 + b3ξ)− ∇̂ŵη(b1 + b3η))êh(3.4)

=

∫
K̂

ac · (J−TK − J−TK (0, 0))(∇̂ŵξ(b2 + b3ξ)− ∇̂ŵη(b1 + b3η))êh

+

∫
K̂

ac · J−TK (0, 0)(∇̂ŵξb2 − ∇̂ŵηb1)êh

+

∫
K̂

ac · J−TK (0, 0)(∇̂ŵξb3ξ − ∇̂ŵηb3η)êh = F1 + F2 + F3.

It follows from Lemma 2.1 and condition (2.2) that

|J−TK |∞ ≤ Ch−1
K , |J−TK − J−TK (0, 0)|∞ ≤ C, b1 = b2 = O(hK), b3 = O(h2

K),

therefore, we have from (2.12), (2.20) and (2.23) that

F1 + F3 ≤ ChK |ŵ|2,p,K̂‖êh‖0,q,K̂ ≤ ChKh
2− 2

p

K ‖w‖2,p,Kh
− 2

q

K ‖eh‖0,q,K
≤ Ch2

K‖u‖2,p,K‖v‖1,q,K .
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For F2, noting that ∇̂(Π̂hû)ξ and ∇̂(Π̂hû)η are constants, then from (2.22),
(3.1) and (2.12), we have

F2 =

∫
K̂

ac · J−TK (0, 0)(∇̂ûξb2 − ∇̂ûηb1)êh

=

∫
K̂

ac · J−TK (0, 0)(∇̂ûξb2 − (∇̂ûξ)cb2 − ∇̂ûηb1 + (∇̂ûη)cb1)êh

≤ C|J−TK |∞(|b1|+ b2|)|û|3,p,K̂‖êh‖0,q,K̂

≤ Ch3− 2
p

K ‖u‖3,p,Kh
− 2

q

K ‖eh‖0,q,K ≤ Ch
2
K‖u‖3,p,K‖v‖1,q,K .

Combining estimates F1 ∼ F3, we obtain from (3.4) that

E1 ≤ Ch2
K‖u‖3,p,K‖v‖1,q,K .

Next, we estimate E2. Since |J−TK | = O(h−1
K ), |JK | = O(h2

K) and (see (2.9))

|∇̂ξx| ≤ |ξxxxξ + ξxyyξ|+ |ξxxxη + ξxyyη| ≤ ChK(|ξxx|+ |ξxy|) ≤ C,
then, we have from (2.12), (2.20) and (2.23) that

E2 =

∫
K̂

ac · J−TK (ŵξ∇̂ξx + ŵη∇̂ηx)êhJK ≤ ChK |ŵ|1,p,K̂‖êh‖0,q,K̂

≤ ChKh
1− 2

p

K ‖u−Πhu‖1,p,Kh
− 2

q

K ‖eh‖0,q,K ≤ Ch
2
K‖u‖2,p,K‖v‖1,q,K .

The proof is completed by substituting estimates E1 and E2 into (3.4). �

Let E0
h be the union of all interior edges of elements in Th.

Lemma 3.2. Let partition Th be h2-uniform and matrix AM |τ be constant on
each τ ∈ E0

h, u ∈W 3,p(Ω). Then, we have for 2 ≤ p, q ≤ ∞, 1/p+ 1/q = 1,∣∣∣ ∑
K∈Th

∫
∂K

n ·AM∇(u−Πhu)(Π∗hv − v)ds
∣∣∣ ≤ Ch2‖u‖3,p‖v‖1,q, v ∈ Uh.

Proof. Let w = u−Πhu and eh = Π∗hv − v. We need to estimate∑
K∈Th

∫
∂K

n ·AM∇wehds(3.5)

=
∑
K∈Th

∑
τ∈∂K\∂Ω

∫
τ

n ·AM∇wehds =
∑
K∈Th

∑
τ∈∂K\∂Ω

F (τ)

=
∑
τ∈E0h

(
F (τ ∩ ∂K) + F (τ ∩ ∂K ′)

)
,

where K and K ′ be two adjacent elements with the common edge τ .
Let quadrilateral element K = �P1P2P3P4, τ ∈ ∂K be an edge of K, for

example, τ = P1P4, see Fig. 1. On edge τ (τ̂ = { ξ = 0, 0 ≤ η ≤ 1}), we have
from (2.5)-(2.6) that

ds =
√

(dx)2 + (dy)2 |ξ=0 =
√
x2
η + y2

η dη|ξ=0 = |P1P4|dη.
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Therefore, we can write

(3.6) F (τ) =

∫
τ

n ·AM∇wehds =

∫ 1

0

|P1P4|n̂ ·AMJ−TK (τ̂)∇̂ŵêhdη.

Let K ′ = �P6P1P4P5 be an adjacent element of K with the common edge
τ = ∂K∩∂K ′ = P1P4 and τ ′ = τ ∩∂K ′ (see Fig. 1). Since the outward normal
vector n′|τ ′ = −n|τ , then we have

F (τ ∩ ∂K) + F (τ ∩ ∂K ′) =

∫ 1

0

|P1P4|n̂ ·AMJ−TK (τ̂)∇̂ŵ(τ̂)êhdη

−
∫ 1

0

|P1P4|n̂ ·AMJ−TK′ (τ̂ ′)∇̂ŵ(τ̂ ′)êhdη.

Set ah = |P1P4|n̂ · AM = O(hK). Noting that eh is continuous across edge
τ = τ ′ (excepting at the midpoint of τ), we obtain

F (τ ∩ ∂K) + F (τ ∩ ∂K ′)(3.7)

=

∫ 1

0

ah · (J−TK (τ̂)− J−1
K (0, 0))∇̂ŵ(τ̂)êhdη

+

∫ 1

0

ah · J−TK (0, 0)(∇̂ŵ(τ̂)− ∇̂ŵ(τ̂ ′))êhdη

+

∫ 1

0

ah · (J−TK (0, 0)− J−TK′ (τ̂ ′))∇̂ŵ(τ̂ ′))êhdη

= S1 + S2 + S3.

Using Lemma 2.1, trace inequality (2.21) and the finite element inverse inequal-
ity, we obtain

S1 + S3 ≤ ChK(‖∇̂ŵ‖0,p,K̂ + |∇̂ŵ|1,p,K̂)‖êh‖0,q,K̂
+ ChK′(‖∇̂ŵ‖0,p,K̂′ + |∇̂ŵ|1,p,K̂′)‖êh‖0,q,K̂′

≤ ChK(h
1− 2

p

K ‖w‖1,p,K + h
2− 2

p

K ‖w‖2,p,K)h
− 2

q

K ‖eh‖0,q,K

+ ChK′(h
1− 2

p

K′ ‖w‖1,p,K′ + h
2− 2

p

K′ ‖w‖2,p,K′)h
− 2

q

K′ ‖eh‖0,q,K′

≤ Ch2‖u‖2,p,K∪K′‖v‖1,q,K∪K′ .

Next, we estimate S2. Let Πh|K = ΠK , Πh|K′ = ΠK′ . Since ∇u is continuous
across edge τ = τ ′, we have

(3.8) ∇̂ŵ(τ̂)− ∇̂ŵ(τ̂ ′) = ∇̂Π̂K̂ û(τ̂)− ∇̂Π̂K̂′ û(τ̂ ′).

Noting that the bilinear interpolation Π̂K̂ û can be written as

Π̂K̂ û = u1 + (u2 − u1)ξ + (u4 − u1)η + (u1 − u2 + u3 − u4)ξη, (ξ, η) ∈ K̂,
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where ui = u(Pi), and

(u1 − u2 + u3 − u4) = −
∫ 1

0

ûξ(ξ, 0)dξ +

∫ 1

0

ûξ(ξ, 1)dξ

=

∫ 1

0

∫ 1

0

ûξηdξdη =
1

|K̂|

∫
K̂

ûξηdK̂ = (ûξη)c(K̂),

then, on edge τ̂ = τ̂ ′ = {ξ = 0, 0 ≤ η ≤ 1}, we have

∇̂Π̂K̂ û(τ̂)− ∇̂Π̂K̂′ û(τ̂ ′)

= (u2 − u1 + (ûξη)c(K̂)η, u4 − u1)T − (u1 − u6 + (ûξη)c(K̂ ′)η, u5 − u6)T

= (u2 − 2u1 + u6, u4 − u1 − u5 + u6)T + ((ûξη)c(K̂)− (ûξη)c(K̂ ′))ηε,

where vector ε = (1, 0)T . Now, from (3.8) and (2.22) we obtain

S2 =

∫ 1

0

ah · J−TK (0, 0)((ûξη)c(K̂)− (ûξη)c(K̂ ′))ηεêhdη

=

∫ 1

0

ah · J−TK (0, 0)((ûξη)c(K̂)− ûξη + ûξη − (ûξη)c(K̂ ′))ηεêhdη.

It follows from Lemma 2.1, trace inequality (2.21) and the finite element inverse
inequality that

S2 ≤ C(‖ûξη − (ûξη)c‖0,p,K̂ + |ûξη|1,p,K̂)‖êh‖0,q,K̂
+ C(‖ûξη − (ûξη)c‖0,p,K̂′ + |ûξη|1,p,K̂′)‖êh‖0,q,K̂′

≤ C|û|3,p,K̂‖êh‖0,q,K̂ + C|û|3,p,K̂′‖êh‖0,q,K̂′

≤ Ch
3− 2

p

K ‖u‖3,p,Kh
− 2

q

K ‖eh‖0,q,K + Ch
3− 2

p

K′ ‖u‖3,p,K′h
− 2

q

K′ ‖eh‖0,q,K′

≤ Ch2‖u‖3,p,K∪K′‖v‖1,q,K∪K′ .

Substituting estimates S1 ∼ S3 into (3.7), it yields

(3.9) F (τ ∩ ∂K) + F (τ ∩ ∂K ′) ≤ Ch2‖u‖3,p,K∪K′‖v‖1,q,K∪K′ .

The proof is completed by combining (3.9) with (3.5). �

We known that the conventional bilinear form of finite element method for
problem (1.1) reads as

(3.10) a(u, v) =

∫
Ω

A∇u · ∇v + cuv.

Under strongly regular mesh condition, the following interpolation weak esti-
mate has been established [21] for 2 ≤ p ≤ ∞, 1/p+ 1/q = 1 ,

(3.11) |a(u−Πhu, v)| ≤ Ch2‖u‖3,p‖v‖1,q, ∀ v ∈ Uh.

Below we will prove that estimate (3.11) also holds for the bilinear form of
the FVE method ah(u,Π∗hv). In order to use the known result (3.11) in our
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argument, we need to give the difference between bilinear forms a(u, v) and
ah(u,Π∗hv).

Let Uh +H2(Ω) = {w : w = uh + u, uh ∈ Uh, u ∈ H2(Ω)} be the algebraic
sum space.

Lemma 3.3. It holds for w ∈ Uh +H2(Ω) and v ∈ Uh that

ah(w,Π∗hv)− a(w, v) =
∑
K∈Th

∫
∂K

n ·A∇w(Π∗hv − v)ds(3.12)

+
∑
K∈Th

(−div(A∇w) + cw,Π∗hv − v)K .

Proof. Using the integration by parts, we obtain∫
K

A∇w · ∇v = −
∫
K

div(A∇w)v +

∫
∂K

n · (A∇w)vds,

and (see Fig. 2)∑
K∈Th

∫
K

div(A∇w)Π∗hv =
∑
K∈Th

∑
K∗P∈T∗h

∫
K∗P∩K

div(A∇w)Π∗hv

=
∑
K∈Th

∫
∂K

n · (A∇w)Π∗hvds+
∑

K∗P∈T∗h

∫
∂K∗P

n · (A∇w)Π∗hvds.

Then, from the definitions of a(w, v) and ah(w,Π∗hv) (see (2.16) and (3.10)),
the desired estimate is derived. �

Theorem 3.1. Let partition Th be h2-uniform, u ∈ W 3,p(Ω). Then, we have
for 2 ≤ p, q ≤ ∞, 1/p+ 1/q = 1 that

(3.13) |ah(u−Πhu,Π
∗
hv)| ≤ Ch2‖u‖3,p‖v‖1,q, ∀ v ∈ Uh .

Proof. Denote by AM the value of matrix A at the centroid of edge τ ⊂ ∂K.
Then, it follows from Lemma 3.3 that

ah(u−Πhu,Π
∗
hv)− a(u−Πhu, v)(3.14)

=
∑
K∈Th

∫
∂K

n · (A−AM )∇(u−Πhu)(Π∗hv − v)ds

+
∑
K∈Th

∫
∂K

n · (AM∇(u−Πhu))(Π∗hv − v)ds

+
∑
K∈Th

(−div(A∇(u−Πhu)),Π∗hv − v)K

+
∑
K∈Th

(c(u−Πhu),Π∗hv − v)K

= R1 +R2 +R3 +R4.
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Using trace inequality (2.21) and the approximation properties, we have

R1 ≤ C
∑
K∈Th

hK |A|1,∞‖∇(u−Πhu)‖0,p,∂K‖v −Π∗hv‖0,q,∂K

≤ Ch2‖u‖2,p‖v‖1,q,

R4 ≤ C
∑
K∈Th

‖u−Πhu‖1,p,K‖v −Π∗hv‖0,q,K ≤ Ch2‖u‖2,p‖v‖1,q.

Next, it follows from Lemma 3.2 that

R2 ≤ Ch2‖u‖3,p‖v‖1,q.

Now, we need to estimate R3. Set A = (a1,a2). Since

(3.15) div(A∇w) = (div a1, div a2) · ∇w + a1 · ∇wx + a2 · ∇wy,

then we have

R3 =
∑
K∈Th

(−(div a1, div a2) · ∇(u−Πhu),Π∗hv − v)K

−
∑
K∈Th

((a1 − ac1) · ∇(u−Πhu)x + (a2 − ac2) · ∇(u−Πhu)y,Π
∗
hv − v)K

−
∑
K∈Th

(ac1 · ∇(u−Πhu)x + ac2 · ∇(u−Πhu)y,Π
∗
hv − v)K .

Using Lemma 3.1 and the approximation properties, it yields

R3 ≤ Ch2‖u‖3,p‖v‖1,q.

Substituting estimates R1 ∼ R4 into (3.14), the proof is completed. �

From Theorem 3.1, we immediately obtain the following superclose result.

(3.16) ‖Πhu− uh‖1 ≤ Ch2‖u‖3.

In fact, from Lemma 2.3, error equation (2.19) and the interpolation weak
estimate (3.13), we obtain

C‖uh −Πhu‖21 ≤ ah(uh −Πhu,Π
∗
h(uh −Πhu))

= ah(u−Πhu,Π
∗
h(uh −Πhu)) ≤ Ch2‖u‖3‖uh −Πhu‖1.

This gives estimate (3.16)

Remark 3.1. We note that Lv and Li in [12] derived estimate (3.13) for p =
q = 2 by a lengthy and complex argument. For this estimate, we here give an
alternative and more accessible argument, in particular, our result holds true for
2 ≤ p, q ≤ ∞. Such result will be useful in the study of W 1,p-superconvergence,
see [10, 21].
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4. Gradient recovery formula and superconvergence

In this section, we will construct the gradient recovery formula for the
isoparametric bilinear element and make the superconvergence estimate for
the recovered gradient.

Let P be an interior mesh point and elements K1,K2,K3,K4 take point P
as a vertex. Denote by Sp =

⋃4
i=1Ki the patch recovery domain at point P ,

see Fig. 4. Let FKi
: K̂i → Ki be the isoparametric bilinear mapping and

Ŝp =
⋃4
i=1 K̂i be the reference patch recovery domain, see Fig. 4.

Figure 4. The patch recovery domain Sp around point P .

We first give the gradient recovery formula on the reference domain Ŝp.

Let Ĝi be the centroid of K̂i (Gi = FKi
(Ĝi) is the centroid of element Ki)

and further let ϕ̂i ∈ Q11(ŜP ) be the basis function corresponding to Ĝi such

that ϕ̂i(Ĝj) = δij . Then, functions {ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4} form the base of bilinear

polynomial space Q11(ŜP ). Denote the piecewise smooth function space by

Wh(ŜP ) = { ŵ : ŵ|K̂i
= polynomial, K̂i ∈ Ŝp }.

Now, let derivative operator D̂ = D̂ξ or D̂η. For ŵ ∈ Wh(ŜP ), we define the

derivative recovery operator Q̂ : D̂ŵ → Q̂(D̂ŵ) ∈ Q11(ŜP ) such that

(4.1) Q̂(D̂ŵ) =

4∑
i=1

D̂ŵ(Ĝi)ϕ̂i(ξ, η), (ξ, η) ∈ ŜP , ŵ ∈Wh(ŜP ).

It is easy to see that Q̂(D̂ŵ) is the bilinear interpolation of D̂ŵ on ŜP with the

interpolation nodes {Ĝ1, Ĝ2, Ĝ3, Ĝ4}. For ŵ ∈ Wh(ŜP ), function D̂ŵ may be

discontinuous on ŜP , while Q̂(D̂ŵ) is a bilinear polynomial on ŜP .

From (4.1), we also obtain the gradient recovery formula on Ŝp:

(4.2) Q̂(∇̂ŵ) = (Q̂(D̂ξŵ), Q̂(D̂ηŵ))T =

4∑
i=1

∇̂ŵ(Ĝi)ϕ̂i(ξ, η), (ξ, η) ∈ ŜP .
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Lemma 4.1. Let Ĝ0 = (ξ0, η0) be the centroid of K̂. Then

(4.3) ∇̂(û− Π̂hû)(Ĝ0) = 0, ∀ û ∈ P2(K̂),

where P2(S) represents the set of all quadratic polynomials on set S.

Proof. Let (ξ0, η0) = ((ξ1 + ξ2)/2, (η1 + η2)/2) be the centroid of element K̂ =
(ξ1, ξ2) × (η1, η2). Further let Iξ and Iη be the linear interpolation operators
with respect to variable ξ and η, respectively, such that Iξû(ξi, η) = û(ξi, η)

and Iηû(ξ, ηi) = û(ξ, ηi), i = 1, 2. Then, the bilinear interpolation operator Π̂h

can be represented as Π̂h = IηIξ. It follows from the Taylor expansion that for

û ∈ P2(K̂),

û− Iξû =
1

2
(ξ − ξ1)(ξ − ξ2)ûξξ, û− Iηû =

1

2
(η − η1)(η − η2)ûηη.

Then, we have (note that ûξξ = constant)

û− Π̂hû = û− Iηû+ Iη(û− Iξû)

=
1

2
(η − η1)(η − η2)ûηη + Iη

(1

2
(ξ − ξ1)(ξ − ξ2)ûξξ

)
=

1

2
(η − η1)(η − η2)ûηη +

1

2
(ξ − ξ1)(ξ − ξ2)ûξξ.

It yields

(û− Π̂hû)ξ = (ξ − ξ1 + ξ2
2

)ûξξ, (û− Π̂hû)η = (η − η1 + η2

2
)ûηη, ∀ û ∈ P2(K̂).

The proof is completed. �

From Lemma 4.1 we see that Gi = FKi
(Ĝi) is the Gauss point, that is, for

any u = û ◦ FKi , û ∈ P2(K̂i), it holds

(4.4) ∇(u−Πhu)(Gi) = J−TKi
∇̂(û− Π̂hû)(Ĝi) = 0.

Lemma 4.2. The following properties hold true for operator Q̂

D̂û = Q̂(D̂û), ∀ û ∈ P2(ŜP ),(4.5)

D̂û = Q̂(D̂Π̂hû), ∀ û ∈ P2(ŜP ).(4.6)

Proof. First, note that D̂û ∈ Q11(ŜP ) if û ∈ P2(ŜP ). Then, equality (4.5)
comes from (4.1) and the uniqueness of interpolation polynomial. Moreover,

it follows from (4.3) that D̂û(Ĝi) = D̂Π̂hû(Ĝi). Thus, using (4.1) we obtain

Q̂(D̂û) = Q̂(D̂Π̂hû). Together with (4.5), we complete the proof. �

Lemma 4.3. Recovery operator Q̂ is bounded and

(4.7) ‖Q̂(D̂ŵ)‖0,ŜP
≤ ‖Q̂‖ ‖D̂ŵ‖0,ŜP

, ∀ ŵ ∈Wh(ŜP ),

where ‖Q̂‖ represents the bound of operator Q̂. Furthermore, we have

(4.8) ‖D̂û− Q̂(D̂Π̂hû)‖0,ŜP
≤ C|û|3,ŜP

, û ∈ H3(ŜP ).
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Proof. First, it is easy to see that

(4.9) ‖ϕ̂i‖0,K̂ ≤ (meas(K̂))
1
2 ≤ 1, K̂ ∈ ŜP , i = 1, . . . , 4.

Hence, it follows from (4.1) and the inverse inequality that

‖Q̂(D̂ŵ)‖0,ŜP
=
( ∑
K̂∈ŜP

‖Q̂(D̂ŵ)‖2
0,K̂

) 1
2

≤
( ∑
K̂∈ŜP

( 4∑
i=1

|D̂ŵ(Ĝi)| ‖ϕ̂i‖0,K̂
)2) 1

2

≤ C
( ∑
K̂∈ŜP

‖D̂ŵ‖2
0,K̂

) 1
2

= C‖D̂ŵ‖0,ŜP
.

Estimate (4.7) is derived. Now, for given v̂ ∈ L2(ŜP ), we introduce the linear
functional

(4.10) F (û) = (D̂û− Q̂(D̂Π̂hû), v̂)ŜP
, û ∈ H3(ŜP ).

Using (4.7) and the boundness of interpolation operator Π̂h, we obtain

|F (û)| ≤ ‖D̂û− Q̂(D̂Π̂hû)‖0,ŜP
‖v̂‖0,ŜP

≤ C‖û‖3,ŜP
‖v̂‖0,ŜP

+ ‖Q̂‖
( ∑
K̂∈ŜP

‖D̂Π̂hû‖20,K̂
) 1

2 ‖v̂‖0,ŜP

≤ C‖û‖3,ŜP
‖v̂‖0,ŜP

.

Hence, F is a linear bounded functional on H3(ŜP ). Moreover, it follows from
Lemma 4.2 that

F (û) = 0, ∀ û ∈ P2(ŜP ).

Thus, using the Bramble-Hilbert Lemma, we derive

|F (û)| ≤ C|û|3,ŜP
‖v̂‖0,ŜP

, ∀ v̂ ∈ L2(ŜP ),

Together with (4.10), it yields

‖D̂û− Q̂(D̂Π̂hû)‖0,ŜP
≤ C|û|3,ŜP

.

This gives estimate (4.8). �

Now, for uh ∈ Uh, we define its recovery gradient on the actual patch domain
SP by the formula:

(4.11) Q(∇uh)(x, y) = J−TKj
Q̂(∇̂ûh), (x, y) ∈ Kj , Kj ∈ SP ,

where Q̂(∇̂ûh) is given by (4.2). Since

Q(∇uh)(Gj) = J−TKj
Q̂(∇̂ûh)(Ĝj) = J−TKj

∇̂ûh(Ĝj) = ∇uh(Gj),
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therefore, Q(∇uh) is in fact an interpolation function of ∇uh on patch domain
SP with the Gauss points {Gi} as the interpolation nodes.

Theorem 4.1. Let quadrilateral partition Th be h2-uniform, u and uh be the
solutions of problems (1.1) and (2.18), respectively, u ∈ H3(Ω). Then, the
recovered gradient Q(∇uh) satisfies the local estimate

(4.12) ‖∇u−Q(∇uh)‖0,SP
≤ Ch2‖u‖3,SP

+ C‖∇(Πhu− uh)‖0,SP
.

Proof. From (4.11), Lemma 2.1 and Lemma 4.3, we obtain

‖∇u−Q(∇uh)‖0,SP
=
( 4∑
j=1

∫
K̂j

|J−TKj
(∇̂ûh − Q̂(∇̂ûh))|2JKjdK̂j

) 1
2

≤ C
( 4∑
j=1

∫
K̂j

|∇̂û− Q̂(∇̂ûh)|2dK̂j

) 1
2

= C‖∇̂û− Q̂(∇̂ûh)‖0,ŜP

≤ ‖∇̂û− Q̂(∇̂Π̂hû)‖0,ŜP
+ ‖Q̂(∇̂Π̂hû− ∇̂ûh)‖0,ŜP

≤ C|û|3,ŜP
+ C‖∇̂(Π̂hû− ûh)‖0,ŜP

≤ Ch2‖u‖3,SP
+ C‖∇(Πhu− uh)‖0,SP

.

This gives estimate (4.12). �

The gradient recovery formula (4.11) is local, below we expand this formula
to the whole domain Ω.

We will define the global recovery formula element-wise. For an interior
node Pj , let SPj

be the patch recovery domain around point Pj and Qj = Q
the gradient recovery operator on SPj

defined by (4.11). Note that for a given
element K, there are four patch domains {SPj} covering K (or less than four
if K is a boundary element). In order to balance the values of Qj(∇uh)|K∩SPj

for different SPj
(or Qj), we define the global recovery operator QΩ by the

average formula,

(4.13) QΩ(∇uh)|K =
1

NK

∑
SPj
∩K 6=Ø

Qj(∇uh)|SPj
∩K , K ∈ Th,

where NK ≤ 4 is the total number of elements in set {SPj : SPj

⋂
K 6= Ø}.

Theorem 4.2. Under the conditions of Theorem 4.1, the following supercon-
vergence estimate holds

‖∇u−QΩ(∇uh)‖ ≤ Ch2‖u‖3.(4.14)

Proof. It follows from (4.12) that

‖∇u−QΩ(∇uh)‖2 =
∑
K∈Th

‖∇u−QΩ(∇uh)‖20,K
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≤
∑
K∈Th

‖ 1

NK

∑
SPj
∩K 6=Ø

(∇u−Qj(∇uh))‖20,SPj
∩K

≤
∑
K∈Th

max
SPj
∩K 6=Ø

‖∇u−Qj(∇uh)‖20,SPj

≤
∑
K∈Th

max
SPj
∩K 6=Ø

(
Ch4‖u‖23,SPj

+ C‖∇(Πhu− uh)‖20,SPj

)
≤ C

(
h4‖u‖23 + ‖∇(Πhu− uh)‖2

)
.

We complete the proof by using estimate (3.16). �

5. Numerical example

In this section, we will present some numerical results to illustrate our the-
oretical analysis.

Let us consider problem (1.1) with the data:

A(x, y) =

(
e2x + y3 + 1 exy

exy e2y + x3 + 1

)
, c(x, y) = 1 + xy.

We take Ω = [0, 1]2 and the exact solution u(x, y) = 2 sin(2πx) sin(3πy).
We present numerical results using sequence of meshes {Ti}. This quadrilat-

eral mesh sequence is generated in the following way. We first make an original
quadrilateral mesh T1 with mesh size h = h1. Then we connect the midpoints
of each edge of elements in Ti (i ≥ 1) to obtain the refined mesh Ti+1 which
has half mesh size of Ti, see Fig. 5. It is easy to see that such bisection quadri-
lateral meshes must be h2-uniform. Denote by e(Ti) the error on mesh Ti in
the corresponding norm, then the numerical convergence rate r is computed
by the formula r = ln( e(Ti)/e(Ti+1) )/ ln 2. The numerical results are given in
Table 5.1. We see that an O(h2) order of convergence rate is achieved for the
recovered gradient as the theoretical prediction.

Figure 5. Left: original mesh T1; Right: refined mesh T5

obtained by bisection partition.
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Table 5.1. Convergence rate and error estimator.

‖∇u−QΩ∇uh‖ ‖∇u−∇uh‖

mesh size error rate error rate

h1 = 0.373 0.3621 - 0.6424 -

h1/2 0.9166e-1 1.982 3.2276e-1 0.993

h1/4 0.2314e-1 1.986 1.6194e-1 0.995

h1/8 0.5821e-2 1.991 0.8108e-1 0.998

h1/16 1.4621e-3 1.993 4.0513e-2 1.001

h1/32 0.3670e-3 1.994 2.0257e-2 1.000
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